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ABSTRACT
Much of the information we have on cyber-crime losses
is derived from surveys. We examine some of the diffi-
culties of forming an accurate estimate by survey. First,
losses are extremely concentrated, so that representa-
tive sampling of the population does not give represen-
tative sampling of the losses. Second, losses are based
on unverified self-reported numbers. Not only is it pos-
sible for a single outlier to distort the result, we find
evidence that most surveys are dominated by a minor-
ity of responses in the upper tail (i.e., a majority of
the estimate is coming from as few as one or two re-
sponses). Finally, the fact that losses are confined to
a small segment of the population magnifies the diffi-
culties of refusal rate and small sample sizes. Far from
being broadly-based estimates of losses across the pop-
ulation, the cyber-crime estimates that we have appear
to be largely the answers of a handful of people extrap-
olated to the whole population. A single individual who
claims $50,000 losses, in an N = 1000 person survey, is
all it takes to generate a $10 billion loss over the popu-
lation. One unverified claim of $7,500 in phishing losses
translates into $1.5 billion.

1. INTRODUCTION
In the 1983 Federal Reserve Survey of Consumer Fi-

nances an incorrectly recorded answer from a single in-
dividual erroneously inflated the estimate of US house-
hold wealth by $1 trillion [10]. This single error added
10% to the total estimate of US household wealth. In
the 2006 FTC survey of Identity Theft the answers of
two respondents were discarded as being “not identity
theft” and “inconsistent with the record.” Inclusion
of both answers would have increased the estimate by
$37.3 billion [14]; i.e., made a 3× difference in the total
estimate. In surveys of sexual behavior men consis-
tently report having had more female sex partners than
women report having had male sex partners (which is
impossible). The difference ranges from a factor of 3
to 9. Morris [27] points out that a tiny portion of men
who claim, e.g., 100 or 200 lifetime partners account
for most of the difference. Removing the outliers all

but eliminates the discrepancy.
How can this be? How can an estimate be so brit-

tle that a single transcription error causes a $1 tril-
lion difference? How can two answers (in a survey of
5000) make a 3× difference in the final result? These
cases have in common that the estimates are derived
from surveys, that the underlying quantity (i.e., wealth,
ID theft losses, or number of sexual partners) is very
unevenly distributed across the population, and that
a small number of outliers enormously influenced the
overall estimate. They also have in common that in
each case, inclusion of the outliers, caused an enormous
error to the upside, not the downside. It does not ap-
pear generally understood that the estimates we have of
cyber-crime losses also have these ingredients of catas-
trophic error, and the measures to safeguard against
such bias have been universally ignored.

The common way to estimate unknown quantities in
a large population is by survey. For qualities which
are evenly distributed throughout the population (such
as voting rights) the main task is to achieve a repre-
sentative sample. For example, if the achieved sample
over- or under-represents any age, ethnic or other demo-
graphic group the result may not be representative of
the population as whole. Political pollsters go to great
lengths to achieve a representative sample of likely vot-
ers.

With surveys of numeric quantities things are very
different. First, some quantities, such as wealth, in-
come, etc, are very unevenly distributed across the pop-
ulation. A representative sample of the population (i.e.,
all people have equal likelihood of being chosen) will
give an unrepresentative picture of the wealth. For ex-
ample, in the US, the top 1% and the bottom 90% of the
population each controls about one third of the wealth
[25]. A representative sample of 1000 people would end
up estimating the top third of the wealth from the an-
swers of about ten people, and the bottom third from
the answers of about 900 people. Thus, there are two
orders of magnitude difference in the sample size for
equivalent fractions of the wealth. We have far greater
accuracy at the bottom than at the top. Second, for nu-
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meric quantities even a single outlier can greatly effect
the survey estimate. The survey mean can be affected to
an arbitrary extent by a single lie, transcription error or
exaggeration. Self-reported numbers are known to have
large sources of bias [26] and there is no guarantee that
any survey respondent accurately reports the truth. If
errors cancel then this error is unbiased (i.e., in expecta-
tion neither pulls the estimate up nor down). However,
for non-negative quantities (e.g., prices, wealth, cyber-
crime losses, number of sex partners etc) errors have
a lower bound, but no upper bound, so errors do not
cancel and the bias is always upward. Finally, there
are unique difficulties when surveying rare phenomena.
Non-response error can be large, there is significant
reduction in effective sample-size and it is difficult to
overcome the fact that some fraction of the population
routinely lies, exaggerates and misreports. If the phe-
nomenon we wish to survey is rarer than the frequency
of liars, our signal is effectively overwhelmed with noise,
and no accurate estimate can be formed, at any survey
size.

These three sources of error, that a representative
sample of the population doesn’t give a representative
picture of the surveyed quality, that outliers can cause
catastrophic errors, and for rare phenomenon we are
measuring a signal weaker than the noise in which it
is embedded pose a serious threat. In this paper we
show that the estimates we have of cyber-crime come
from surveys that suffer from all three of these sources
of error. Cyber-crime losses follow very concentrated
distributions where a representative sample of the pop-
ulation does not necessarily give an accurate estimate of
the mean. They are self-reported numbers which have
no robustness to any embellishment or exaggeration.
They are surveys of rare phenomena where the signal is
overwhelmed by the noise of misinformation. In short
they produce estimates that cannot be relied upon. The
difficulties presented have long been recognized in the
areas of Robust Statistics [33] and Survey Science [25].
However safeguards against producing erroneous results
seem largely ignored in cyber-crime surveys.

2. SEX AND LIES
We begin with an example which illustrates one of

the major sources of error. Surveys of sexual behavior
consistently show a large gender discrepancy. Men re-
port having had more female sex partners than women
report having had male sex partners. The difference
ranges from a factor of 3 to 9 (see Wiederman [34] and
references therein). This discrepancy is repeated across
many different surveys and countries (e.g., US, Britain,
France, New Zealand and Norway). In a closed popula-
tion with equal numbers of men and women, of course,
this is impossible. The average lifetime number of het-
erosexual partners for men and women is the same.

Thus, the surveys of men and women give indepen-
dent estimates of the same quantity, yet those estimates
are mutually inconsistent. Clearly, there are sources of
significant error in one, other or both of the estimates.
Further, since men reliably report more partners than
women, in surveys performed in different countries at
different times and using different methodologies, those
errors appear to pull consistently in one direction. This
strongly suggests that each of the surveys has the same
source of error. There are various possibilities. Selec-
tion bias which excludes women who have had many
male partners might occur for this difference. Response
bias, where women under- and men over-report their
number of sexual partners, might also account for this
error.

Morris [27] points out that the data has a heavytail
distribution and most of the discrepancy is generated by
a very small fraction of respondents who report large
numbers of partners. Among the 90% of respondents
who report having fewer than 20 partners the discrep-
ancy between the reports of men and women all but
disappears. This suggests a very simple explanation
which accounts for most of the bias. The majority of
women tell the truth, but perhaps under-report by a
little. The majority of men also tell the truth, but per-
haps over-report by a little. However, a small fraction
of men tell whoppers: they exaggerate the number of
partners they have had, not by a little, but by a lot. A
man who claims to have had 100 lifetime sex partners
(as about 1% in the dataset that Morris examines do)
when the actual number is 50, adds enormous response
error. It would take 16 men with the median number
of partners understating by 2× to cancel this single 2×
overstatement. Thus there is great asymmetry in the
response error.

What has this to do with cyber-crime? Cyber-crime,
like sexual behavior, defies large-scale direct observa-
tion and the estimates we have of it are derived almost
exclusively from surveys. The sexual partner surveys
are unique in that, while we don’t know the correct an-
swer, we have a cross-check (i.e., the result from the
women) that shows that the estimate procedure is pro-
ducing inaccurate answers. These surveys serve to il-
lustrate two of the problems that are present also in
cyber-crime surveys: the difficulty of achieving a repre-
sentative sample of heavytail distributions, and the dif-
ficulty of telling representative outliers, which should be
included, from unrepresentative ones (e.g., lies and ex-
aggerations) which should not. A third difficulty, that
of surveying very rare phenomenon amplifies both of
these difficulties.

2.1 Sources of Error in Survey Research
When we wish to estimate any numerical quantity,

x, over a large population we select some portion of
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Figure 1: Venn Diagram. X is the whole pop-
ulation, Y is the contacted population, and R is
the achieved sample.

the population. Call X the whole population and Y
the contacted population (i.e., the set of people who
are asked to respond). However, some of those who
are contacted refuse, so we end up with a smaller re-
sponding population R. Clearly, R ⊂ Y ⊂ X. We call
the averages over these populations x, y, and r. When
surveying a self-reported numerical quantity (such as
salary, or hours of exercise per week) the observed an-
swer is not necessarily the the true answer. Thus, the
true mean of those who respond is r but we observe
f [r].

If the goal of the survey is to estimate x, the mean of
X, the survey error is x−f [r]. This error can be broken
down into sampling error and non-sampling error [9].
The sampling error is x − y, or the difference between
the mean of the whole population and that of the con-
tacted population. The non-sampling error, y−f [r], re-
flects the difference between the mean of the contacted
population and that observed of the responding popu-
lation. This in turn is generally split into non-response
error and response error. Non-response error, y − r, is
the difference between the mean of the contacted pop-
ulation and that of the responding population. Finally,
response error, r − f [r], is the difference between the
true mean of the responding population and the ob-
served mean. The total survey error is then [9]:

x− f [r] = (x− y) + (y − r) + (r − f [r]).

Non-response error, (y − r), is known to be particu-
larly important where the refusal rate is high (i.e., the
number of people in R is small relative to the number
in Y ). This has long been known in the crime survey
literature. If the refusal rate is high there is a possibil-
ity that victims respond at a much higher or lower rate

than the rest of the population which causes over- or
under-estimation. For example if 10% of non-victims,
and 50% of victims respond then R contains 5× as many
victims as Y. We examine this in Section 3.3.1.

Response error, (r − f [r]), is especially problematic
when dealing with self-reported numbers. When there
is no ability to verify the reported answers then there
is no protection against lying or mis-statement, and the
potential error can dwarf sampling error. We examine
the role that this plays in Section 3.2. Sampling error
is examined next.

3. LIES AND CYBER-CRIME

3.1 The survey mean need not approximate
the true mean, even when the survey is
representative

3.1.1 Heavytail distributions
Many qualities are very unevenly distributed across

the population. Some of them, such as height, weight,
etc, are well-approximated by the familiar bell-curve,
or normal, distribution. Of course, non-negative quan-
tities such as height cannot precisely follow a normal
distribution as the distribution has tails that extend
infinitely in both directions: neither negative nor infi-
nite heights are admissible. Heights nonetheless follow
a normal pattern fairly closely. In particular, heights
are more or less symmetrically distributed about the
mean.

For some qualities the distribution is much more un-
even. For height, even a factor of two difference is ex-
treme. Wealth, income, fame etc, by contrast, are obvi-
ous examples where the quality is heavily concentrated
among a small fraction of the population. A small num-
ber of people have a great deal (e.g., wealth or fame)
and most have very little or none. These qualities are
much better captured by heavytail distributions such
as Pareto or Log-normal. Heavytail distributions have
infinite tails that contain a large fraction of the prob-
ability mass. Because of the large mass in the tail the
mean is generally much higher than the median. These
are also know as distributions with positive skew.

The Pareto is a family of concentrated distributions,
containing for example the well-known 80/20 distribu-
tion, which indicates that 80% of the phenomenon is
concentrated among 20% of the samples. It is used, for
example, to model the wealth distribution of households
in the US [25, 12]. In the Pareto distribution the prob-
ability of a randomly chosen individual having amount
x is:

p(x) = Cx−α, for α > 2.

The fraction of the phenomenon accounted for by the
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top fraction P of the population is

W = P (α−2)/(α−1). (1)

Observe that as α → 2, an arbitrarily small fraction
P will control and arbitrarily large fraction W of the
wealth. That is, W → 1 : more and more of the phe-
nomenon will be held by a small fraction P of the pop-
ulation. For US wealth α ≈ 2.32. We now show that
as the concentration increases even representative sam-
ples of the population will fail to give a representative
picture of its statistics.

3.1.2 Representative sampling gives an unrepresen-
tative estimate

Quantities that are unevenly distributed across the
population are harder to survey than those that are
evenly distributed. For a uniform distribution, every in-
dividual has an equally important contribution to make
to the survey. Concentrated distributions are at the
other extreme: a representative sample of the popula-
tion gives a very unrepresentative picture of the quan-
tity of interest. If we uniformly sample the population
we end up with many samples from the part of the pop-
ulation that has little or no wealth, and very few sam-
ples from the part that has most of the wealth. Figure
2 shows the distribution of wealth among households in
the US. The top 1% control approximately 33% of the
wealth. In a sample of 1000 where all households re-
spond with equal likelihood we’ll end up estimating one
third of the wealth from the answers of ten households.
If the average of those ten is not the true average of the
upper 1% we end up with a misleading estimate.

The problem does not end there. The third that is
held by the top 1% is just as unevenly distributed as
the overall wealth [29]. Approximately a third of one
third is held by the top 1% of 1%. That is 0.01% of the
population holds 11% of the wealth. Table 1 summa-
rizes the wealth concentration in the upper tail for the
Pareto that closely models US wealth [25]. As can be
seen, the concentration continues at different scales.

In fact, a representative sample of the population does
not guarantee that the sample mean approximates well
the true mean. That is, when things are very skewed we
have r 6≈ x. This is so, since it is hard to achieve a rep-
resentative sample with very few samples. And when a
large portion of the wealth is concentrated among few
hands the sample-size in that fraction of the wealth is
tiny. Table 1 shows that for US wealth an N = 1000
survey should expect ten and one respondents respec-
tively for the top 33% and 19% of the wealth. Further,
there is only a one in ten, and one in a hundred chance
respectively of having a respondent from the top 11%
and 6% of the wealth.

It is not possible to get a representative picture of
that portion of the wealth with minuscule sample-sizes.
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Figure 2: Fraction of the wealth controlled by
segments of the population [25]. The top 1%
and bottom 90% each control about one third
of the wealth. A survey that is representative
of the population will be very unrepresentative
of the wealth (having 90× fewer samples for the
top third than the bottom).

While we can gather survey responses and average them,
this can fail to give a representative picture of the wealth.
If we repeat the trial we can get a very different answer.
Figure 3 shows 100 trials of the sample mean of 1000
representative samples of a Pareto (α = 2.32, i.e., US
wealth) distribution. As can be seen the sample mean
varies considerably from the true mean (which is 4.125).
This picture is simply for the Pareto that approximates
US wealth distribution. If the concentration increases
(i.e., α → 2) or the sample-size decreases the varia-
tions become more extreme. We will see that both of
these conditions apply in the case of cyber-crime sur-
veys (Sections 3.1.3 and 3.3.1). The great variability
is simply an artifact of the unreliability of the sample
mean. As Newman writes [29]: “while we can quote a
figure for the average of the samples we measure, that
figure is not a reliable guide to the typical size of the
samples in another instance of the same experiment.”

The concentration is a problem for two main reasons.
First, since so much of the phenomenon is in the tail it is
difficult to adequately sample it unless a truly enormous
survey is conducted. Second, the estimate is extremely
brittle. An inordinate fraction of the estimate is coming
from the answers of a handful of respondents. If those
respondents are not representative, mis-remember, ex-
aggerate, or entirely invent their answers the effect on
the overall estimate is catastrophic. As, the 1983 Con-
sumer Finances [10] and 2006 ID Theft [14] surveys
show, an error or two can cause enormous increase. Ex-
pressed differently, since the majority of the estimate
comes from a handful of people, great faith is being
placed in their answers. The estimate is reliable to the
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degree that their answers are both representative and
reliable.

The extreme difficulty of surveying heavytail phe-
nomena has long been recognized. In the US the Sur-
vey of Consumer Finances a multi-layer sampling ap-
proach is used [25]. A first sample of 3824 households
were selected with equal probability, which gave a broad
overview of wealth and finances in the overall popu-
lation. A second sample of 438 households from two
higher strata was conducted (the median net worth of
households in these two strata were $50 million and
$300 million). This allows formation of a far more accu-
rate picture of the upper tail of the wealth distribution
than is possible from a uniform sample. Considerable
effort was taken to keep the refusal rate among those in
the upper strata low (not surprisingly wealthy individ-
uals have a far higher refusal rate than the population
average).

3.1.3 Concentration in cyber-crime surveys
Concentration in cyber-crime surveys is not merely a

possibility. In fact those surveys that give enough in-
formation make clear that the distribution of losses is
enormously concentrated, with a small fraction of re-
spondents accounting for the bulk of the losses. For ex-
ample, the Gartner 2007 phishing survey finds a median
loss of $200, but a mean of $857. A factor 4.5× differ-
ence between mean and median is indicative of greater
concentration than even the US wealth distribution. A
Pareto distribution with this skew concentrates 59% of
the wealth in the hands of the top 1%.

The FTC in 2006 report [14] great differences between
mean and median, both of money and time lost, and the
value the thief obtained. Even with the exclusion of the
two outliers mentioned in the introduction the survey
found a mean loss of $1876 and median of $500, which
is roughly comparable to the degree of concentration of
US wealth. “The median value for the number of hours
spent resolving problems by all victims was 4. However,
10 percent of all victims spent at least 55 hours resolving
their problems. The top 5 percent of victims spent at
least 130 hours.”

The IC3 survey [5] finds a 9.7× ratio of mean/median:
“Of those complaints reporting monetary loss that were
referred to law enforcement, the mean dollar loss was
$5,580 and the median was $575. The significant differ-
ence between the mean and median losses is reflected
by a small number of cases in which hundreds of thou-
sands of dollars were reported to have been lost by the
complainant.” This is simply an eye-popping level of
concentration, indicating that almost all the losses were
endured by a tiny number of complainants. In a Pareto
distribution with this level of skew the top 1% controls
78% of the wealth.

The US Bureau of Justice Statistics produce bi-annual

Top Fraction of population
Percent of wealth

(α = 2.32)
1% 32.7%

0.1% 18.7%
0.01% 10.7%
0.001% 6.1%

Table 1: Concentration of Pareto distribution
that approximates US wealth.

Figure 3: Instances of sample mean for a Pareto
(α = 2.32, i.e., US wealth) distribution. There
are 100 trials each with N = 1000 samples.
Even though there is no measurement error and
the sampling is representative the sample mean
shows considerable variance. This problem gets
worse as concentration increases or sample-size
decreases.

reports of Identity Theft [11]. The mean/median ratio
varies across different theft categories, with 10× being
typical. In some categories the ratio of the mean out-
of-pocket loss to the median is as high as 14, indicating
that almost the entire reported loss for the survey is
derived from the answer of a single respondent.

Unfortunately, the majority of cyber-crime surveys
give only the mean, x, or total estimate |X| · x. While
they refer to the concentration of the losses, failure to
provide the median makes it impossible to do further
analysis.

3.2 The survey mean need not approximate
the true mean when there is measurement
error

The average response of the responding population R
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is:

f [r] =
1

|R|
∑
i∈R

f [ri]. (2)

If f [r] ≈ r and r ≈ x then we can approximate the
mean response of the responding population for that of
x over the overall population.

As we saw above, for heavytail distributions, we can’t
assume that r ≈ x. This, it turns out is only the begin-
ning of our difficulties. Neither can we assume that
f [r] ≈ r. Unfortunately the sample mean is an ex-
tremely non-robust quantity: a single outlier is suffi-
cient to distort the value.

There are various reasons that can produce measure-
ment error (i.e., f [ri] 6= ri). Transcription error was the
cause of a massive error in the 1983 consumer finance
survey. It’s possible that respondents mis-remember,
or misunderstand the survey question. And, of course,
not everyone tells the truth. The discrepancy in sex-
ual partner reports emphasizes the lack of robustness
when forming estimates of self-reported numbers. Mor-
ris’ work shows that even when the majority of self-
reports are accurate, the sample mean can be wildly
inaccurate. A respondent who lies (i.e., f [ri] 6= ri) af-
fects the average by (f [ri]−ri)/|R|. Since answers must
be positive, the erroneous contribution to the mean is
bounded below by −ri/|R|, but is unbounded above.
The larger (f [ri]− ri)/|R| the larger the response error
introduced. For example, if an individual has wealth ri
but it is incorrectly recorded as f [ri] = 10ri no other in-
dividual understatement cancels this error. We needn’t
stop there, with self-reported numbers exaggerations by
100×, 1000× or more are not merely feasible, but have
been observed. Recall that the FTC 2006 survey ex-
cludes answers from two respondents who appear to be
relating fictitious losses which (if included) would have
added $37.3 billion to the estimate. Since $10k in a sur-
vey of N = 1000 people translate into $2 billion when
applied to a population of 200 million (see Section 4.1)
the estimates are extremely fragile.

The extreme concentration of distributions of wealth
(and cyber-crime losses) raises the stakes considerably.
Since so much of the phenomenon is concentrated among
a small fraction of respondents the accuracy of the esti-
mate depends on the accuracy of their answers. Indeed,
when concentration is high enough, most of the esti-
mate is coming from a tiny fraction of the responding
population. Just how much is coming from the high-
est reporting respondents is tabulated in Table 2. This
shows the factor difference made to the entire estimate
by the fraction P with the highest reports. That is,
for example, how much higher the estimate is for in-
clusion of the top 1% as opposed to an estimate based
solely on the other 99%. When α = 2.05 for example
(the concentration found in the IC3 survey [5]) the top

Percent α = 2.32 α = 2.13 α = 2.05
1% 1.5× 2.4× 5.1×
5% 1.9× 3.4× 7.5×
10% 2.4× 4.3× 9.6×

Table 2: Factor difference that misrepresenta-
tion by a small fraction of respondents can make.
For α = 2.32, approximating the concentration of
US wealth, invented numbers from the top 5%
result in a 1.9× increase in the overall estimate.

1% increased the estimate by 5.1 × . Here we tabulate
1/(1−W ), where W is as defined in (1). For increasing
concentration a very small fraction of the population
has an outsized influence. For example, when the sur-
vey size is small, and the phenomenon is rare a single
respondent can be 5% of the response pool (and thus
account for a 1.9, 3.4 or 7.5× increase).

Of course whether 1% of the survey is 100 people,
ten, one or (in expectation) less than one depends on
the sample-size. We’ll see in Section 3.3.2 how 1% of
the sample-size, on which 80% or so of the estimate is
depending can be as little as one person.

The essential problem we face, that, for non-negative
quantities, the sample mean can be increased (but not
decreased) by an arbitrary amount by the answer of a
single respondent has long been known in Robust Statis-
tics. In the best of circumstances (measurement error is
rare, the phenomenon is evenly distributed and errors
cancel) Tukey writes [33]: “If contamination is a real
possibility (and when is it not?), neither the mean nor
variance is likely to be a wisely chosen basis for making
estimates from a large sample.” However cyber-crime
surveys are far from the best of circumstances. Sam-
pling of heavytail distributions is far less robust than
the normal distributions of which Tukey was writing.

Further evidence of the upward rather than downward
bias of sample mean is found in a recent examination
of the wisdom of the crowd effect by Lorenz et al. [20].
They find that the median gave a more accurate mea-
sure than the arithmetic mean of answers from a crowd.
Of the six phenomena surveyed, the mean of the crowd
answers always over-estimated, by an amount ranging
from 59% to 1365%.

3.2.1 Self-reported numbers
If we had no measurement or reporting errors (i.e.,

we always have f [ri] = ri) things would be relatively
simple. We would then merely have sampling error,
(x − y), and non-response error, (y − r), to contend
with. However, self-reported numbers are known to be
generally inaccurate.

Self-reported numbers on calorie consumption and ex-
ercise are known to generally err on the optimistic side.
In a weight loss survey [26]: “subjects under-reported
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their actual food intake by an average (± SD) of 47±16
percent and over-reported their physical activity by an
average of 51± 75 percent.”

The problem is twofold. First, that we have no ability
to check the accuracy of any of the responses offered.
Second, in concentrated phenomena most of the effect
is reported by a handful of people. If the answers of
those at the top are exaggerated or inaccurate we pro-
duce wildly inaccurate answers. There are numerous
reasons why people may report inaccurately. In sev-
eral cyber-crime surveys [14, 16] it appears the total
estimate was based on how much respondents believe
the thief obtained (rather than how much the victim
lost). For example the median answer for the former
was $500 but the latter was $0 in the FTC 2006 survey.
Since respondents are being asked something of which
they have no direct knowledge, over-estimation is highly
likely. Vague and unclear categories may encourage re-
spondents to “throw in” experiences that were not part
of the survey intent. For example, an unsatisfactory
online auction experience or dispute with a merchant
might easily be conflated with “online fraud.” The FTC
survey which finds an individual respondent trying to
report a claimed loss of $999999 “theft of intellectual
property” as ID theft is just such an example. Victims
may be angry, and when offered an opportunity to com-
plain be tempted to over-state rather than under-state
their true losses. Finally, some percent of the popula-
tion just lies and make things up.

3.3 Surveying Rare Phenomena
We’ve seen some of the difficulties of surveying un-

evenly distributed phenomena such as wealth. There is
one further complication that makes accurate estima-
tion of cyber-crime losses even harder: surveying rare
phenomena is hard. Wealth and income may be un-
evenly distributed, but most of the population is in-
volved and most responses can be used (although some
answers are many times more useful than others in
forming the overall estimate). If 1000 people respond
to a survey on wealth the answers of all of them will
be useful in forming an estimate. For rare phenomena
this isn’t the case. For a phenomenon that affects 5% of
people, 95% of the population will have nothing useful
to say: their answers contribute nothing to the esti-
mate. This complicates things in three respects. First,
non-response bias can be high. When the phenomenon
is rare there is a real risk that those who are affected
respond at a much higher or lower rate than the overall
population. Second, there is a raw reduction of sample-
size. Third, some fraction of the population routinely
lies and fabricates answers. This can cause our signal
to be lost in the noise.

3.3.1 Achieving a representative sample

Suppose a small fraction of the population, X, are
affected by phenomenon V. That is |V |/|X| is small.
Let’s call the members of V victims, and all others
non-victims. In doing a survey it is of paramount im-
portance that the percent of victims in the responding
population, R, be similar to that in X. It is not hard
to imagine that people affected by phenomenon V may
respond at a higher or lower rate than the rest of the
population. Gamblers may be more likely than non-
gamblers to respond to a survey on gambling, for ex-
ample. People who have been victimized by a certain
type of crime may be significantly more likely (or less)
to respond to a survey on that crime.

The victimization rate is V/(V + N). But if only a
fraction Vr and Nr of victims and non-victims respec-
tively respond we estimate the rate as

V · Vr
V · Vr +N ·Nr

.

When the overall victimization rate is low (i.e. V � N
so that V · (Vr/Nr) +N ≈ V +N ≈ N) we get [17]:

V · Vr
V · Vr +N ·Nr

≈ V

V +N
· Vr
Nr

.

Thus, our estimate of the victimization rate is the true
rate, multiplied by Vr/Nr. Any difference in the vic-
tim and non-victim response rates enormously influ-
ences the estimate. So, if Vr = 5Nr (victims are 5×
more likely to respond) then the estimated victimiza-
tion rate is about 5× the true rate. Exactly such a bias
appears to occur in the Gartner 2007 phishing survey
which estimates the victimization rate a full factor of
ten higher than the non-survey estimates of Florêncio
and Herley [17], Clayton and Moore [32] and Trustseer
[6].

3.3.2 Sample-size reduction
A further difficulty comes from the sheer reduction in

effective sample size that surveying a rare phenomenon
brings. If a phenomenon affects 5% of the population
then in a representative sample of 1000 people we expect
only 50 answers that are of interest.

In Sections 3.1 we saw the difficulty of surveying quan-
tities that are unevenly distributed. It is almost impos-
sible to avoid under-sampling the tail in a concentrated
distribution. In addition we now find that rare phenom-
ena are hard to survey, as most of the responses are
wasted and cannot contribute to the estimate. How-
ever, cyber-crime losses suffer from both these prob-
lems: they are rare phenomena that are also extremely
concentrated. That is, only a few percent of people
suffer from ID theft. Even among those that do suf-
fer from it the losses are extremely concentrated as we
saw in Section 3.1.3. Thus cyber-crime losses are both
confined to a small segment of the population, but also,
have very uneven distribution within that segment. The
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rareness gives a reduction in the sample size. The con-
centration adds to the fragility of the sample.

To be concrete, consider a N = 1000 survey of a phe-
nomenon that affects 2% of the population. Our effec-
tive sample-size is now 20, not 1000. A single individual
counts for 5% of the response pool. Further suppose
that the phenomenon is concentrated to the same de-
gree as US wealth (i.e., Pareto with α = 2.32). In this
case 48% of the phenomenon is concentrated in the top
5%. Thus, we expect that fully one half of our estimate
will be coming from a single individual.

Let’s examine examples from actual surveys. The
FTC 2006 survey [14] reached 4917 respondents and
found 3.7%, 1.4% and 0.8% rates of all ID theft, misuse
of existing accounts, and misuse of new accounts respec-
tively. However, these appear to correspond to sample
sizes of 181, 68 and 39 respectively. Thus, for new ac-
count fraud the top 1% of respondents is less than one
person. From Table 2, if these losses are as concentrated
as US wealth, the top 5% (i.e., approximately 2 people)
double the entire estimate.

As we move on from the FTC survey things only get
worse. Gartner’s 2006 survey [16] found a 3.2% phish-
ing victimization rate. In a survey of 4000 people this
means approximately 128 claimed to be victims (recall
we argue in Section 3.3.1 above that they over-estimate
the true victimization rate by 10×). Thus the top 1%
(which at the concentration level that Gartner finds ac-
counts for 59% of losses) is about one person. Javelin
in a survey of 4000 [22] finds 4.25% have been ID theft
victims and 1.7% of those have been phishing victims.
This gives an effective sample size of three individuals!

3.3.3 Liars
Finally, in surveying rare phenomena it is hard to

avoid the subject of liars [18]. There can be little doubt
that some fraction of the population embellish, exagger-
ate and tell whoppers, even when there is no clear mo-
tive for doing so. We examined the difficulty that out-
liers present in Section 3.2. There, however, we tackled
the general problem, where people report f [ri] = 10ri or
so (i.e., multiply their real wealth or number of sexual
partners by 10). If there are a percent or two of liars in
the population, they affect the estimate modestly unless
any of them are outliers in the tail.

However, when surveying rare phenomena most of the
population are unaffected, that is they have nothing to
report. If the phenomenon affects 1% of the population
and 1% of people are habitual liars then our survey
can have up to 50% contributions from people who are
offering pure invention by way of answers.

4. DISCUSSION

4.1 Total estimate

We’ve seen that, when estimating x, the survey error,
x− f [r], can be enormous. Often, however, it is the to-
tal, rather than the mean of X that we wish to estimate.
That is we want |X| · x rather than x. This is the case,
for example, in estimating total US household wealth
[12], and losses in all cyber-crime surveys. Now, the
response errors are amplified by backing into the over-
all population. The estimate becomes |X| · f [r]. Thus,
from (2), each respondent adds |X|/|R| · f [ri] to the es-
timate. For example, if the population size is |X| = 200
million and the survey size is |R| = 1000 then each dol-
lar of losses claimed is multiplied by |X|/|R| = 200, 000.
In other words every dollar of claimed losses translates
into $200,000 in the estimate. A respondent who claims
$50,000 in ID theft losses adds $10 billion to the over-
all loss estimate. Indeed five individuals, each of whom
claim $50,000 is all that is required to generate a $50
billion loss estimate. Similarly, a single respondent who
claims to have lost $7,500 to phishing is all it takes
to generate $1.5 billion in estimated population-wide
losses. Two such individuals is all it takes to give a loss
estimate in the $3 billion range.

4.2 Lack of Consistency
The variability of cyber-crime surveys is not merely

theoretical. The FTC estimated Identity theft at $47
billion in 2004 [13], $15.6 billion in 2006 [14] and $54
billion in 2008 [23]. Either there was a precipitous drop
in 2006, or all of the estimates are extremely noisy.

The vagueness and lack of clarity about what has been
measured allows for a large range of interpretation. In
the last two years alone we find the following claims,
which value cyber-crime at anywhere from $560 million
to $1 trillion. “The spoils of cyber crime almost doubled
in 2009. As a whole, losses totaled $560m,” Patrick Pe-
terson, Cisco Fellow [1]. “Cyber crime costs corporate
America $10 billion every year!” [2]. “Damage caused
by cyber-crime is estimated at $100 billion annually,”
said Kilian Strauss, of the Organization for Security
and Cooperation in Europe (OSCE) [3]. “Cyber-crime
revenues are worth approximately $1 trillion,” Edward
Amoroso, CSO, AT&T (written testimony to the US
Senate Commerce, Science, and Transportation Com-
mittee, March 17, 2009).

4.3 Other Analyses of Cyber-crime Surveys
Our assessment of the quality of cyber-crime surveys

is harsh: they are so compromised and biased that no
faith whatever can be placed in their findings. We
are not alone in this judgement. Most research teams
who have looked at the survey data on cyber-crime
have reached similarly negative conclusions. Ryan and
Jefferson [21], who perform a meta-study of fourteen
cyber-crime surveys, write “In the information secu-
rity arena, there is no reliable data upon which to base
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decisions. Unfortunately, there is unreliable data that
is masquerading as reliable data.” Anderson et al.[30]
find “there has long been a shortage of hard data about
information security failures, as many of the available
statistics are not only poor but are collected by parties
such as security vendors or law enforcement agencies
that have a vested interest in under- or over-reporting.”
Moitra produces a survey of various cyber-crime surveys
[31]. He observes that “a lack of reliability and validity
checks on the data that have been collected” and sin-
gles out exaggeration of losses, and self-selection bias as
major sources of error not accounted for in the method-
ology. Brenner, in arguing that accurate measures and
estimates for the incidence of computer-related crime
are necessary writes: “We have never done this, even
though the term ‘cybercrime’ and its various correlates
[...] have been in use for decades.” Herley and Florêncio
[17] say that the cyber-crime survey estimates they ex-
amine “crumble upon inspection.” Shostack and Stew-
art [7] write “today’s security surveys have too many
flaws to be useful as sources of evidence.” The lack
of faith in existing surveys is not limited to research
teams. At the keynote at Workshop on Economics of
Information Security (WEIS) 2010 Tracey Vispoli, VP
and head of CyberSecurity Infrastructure at Chubb In-
surance stated that [4] the insurance industry has “no
expected loss data and no financial impact data.”

4.4 Recommendations
What general conclusions can we draw from this?

Survey science is hard. Mistakes can be made even
when every care is taken (as the $1 trillion mistake in
the Consumer Finance survey shows). The very term
“survey” creates the impression of a broadly-based study
which gives a representative snapshot of what is going
on. When we deal with simple evenly distributed quan-
tities, such voting intentions, this is the case. When we
deal with concentrated phenomena, such as wealth, it
is very far from the case. Extreme care (such as multi-
layer sampling [25]) is required for concentrated phe-
nomena. When we deal with phenomena that are both
confined to a small segment, and concentrated within
that segment all of the difficulties are amplified.

How may we recognize the danger signs in a survey?
First, no weight can be given to surveys that fail to dis-
close methodology. The risks of catastrophic error are
great even when things are done with care. Ensuring
that the sample is representative, that concentration is
not too great, that the upper tail has been adequately
sampled and that outliers have been checked for gross
error or fabrication: these are not matters on which
benefit of the doubt can be extended. Second, evidence
of the degree of concentration is important. The ratio
of the mean to the median is a simple figure of merit
for the concentration. For US wealth this number is

about 4.12. At this level of concentration multi-layer
sampling is essential. Ratios higher than this imply
the need for infeasibly large sample-sizes. For example,
the 2008 US Department of Justice ID theft survey [11]
had a sample size of 56,480. ID theft is largely domi-
nated by low-tech means (e.g. a credit card run twice,
stolen wallet, etc.), and affects a rather large fraction
of the population (i.e., up to 5%). The survey also in-
dicates approximately 0.2% (i.e., 4% of the 5% ID theft
victims) responded to a phishing e-mail or phone call.
Thus, to achieve an estimate of phishing comparable
in accuracy to the estimate of credit-card fraud would
require a 25× larger sample size (i.e., over 1 million
people). If losses from cyber-crime are more concen-
trated than those from credit-card fraud then surveys
of several million people would be required.

Estimates which fail to disclose the median as well as
the mean, or which fail to give some measure of con-
centration, can be discarded. The reliability of the sur-
vey is inversely related to the concentration. Failure to
declare concentration is as serious a failing as failure
to state the sample size. In fact, as the concentration
(i.e., the ratio of mean to median) increases the sample
mean is not stable [29]: “while we can quote a figure for
the average of the samples we measure, the figure is not
a reliable guide to the typical size of the samples from
another instance of the same experiment.”

5. RELATED WORK
Despite their ubiquity analyses of cyber-crime sur-

veys have been relatively few. Andreas and Greenhill
[8] examine the effect that bad estimates can have on
policy and resource allocation. Ryan and Jefferson [21],
perform a meta-study of fourteen cyber-crime surveys
and are largely unimpressed with the methodologies.
Moitra produces a survey of various cyber-crime sur-
veys [31]. He observes that “a lack of reliability and
validity checks on the data that have been collected”
and singles out exaggeration of losses, and self-selection
bias as major sources of error not accounted for in the
methodology. Herley and Florêncio [17] provide an ex-
tensive study of various phishing and ID theft surveys
and conclude that all are considerable over-estimates.

The field of Robust Statistics has long studied the
problem of estimating distributions from samples. Tukey
was among the first to examine the difficulties of mea-
surement (or response) error [33]. Morris [27] appears
to have been the first to draw attention to the potential
for extreme error when dealing with heavytail distribu-
tions and self-reported numbers. A series of papers by
Kennilick and co-workers [24, 25] address the difficulties
of estimating concentrated distributions from samples.
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6. CONCLUSION
The importance of input validation has long been rec-

ognized in security. Code injection and buffer overflow
attacks account for an enormous range of vulnerabili-
ties. “You should never trust user input” says one stan-
dard text on writing secure code [19]. It is ironic then
that our cyber-crime survey estimates rely almost ex-
clusively on unverified user input. A practice that is re-
garded as unacceptable in writing code is ubiquitous in
forming the estimates that drive policy (see, e.g., [28]).
A single exaggerated answer adds spurious billions to
an estimate, just as a buffer overflow can allow arbi-
trary code to execute. This isn’t merely a possibility.
The surveys that we have exhibit exactly this pattern of
enormous, unverified outliers dominating the rest of the
data. While we can sum user responses, and divide to
get an average, the resulting calculation is not worthy
of the term “estimate” unless we can have confidence
that it reflects the underlying phenomenon. For the
cyber-crime surveys that we have, statistical difficulties
are routinely ignored and we can have no such confi-
dence. Are we really producing cyber-crime estimates
where 75% of the estimate comes from the unverified
self-reported answers of one or two people? Unfortu-
nately, it appears so. Can any faith whatever be placed
in the surveys we have? No, it appears not.
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