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ABSTRACT
Open source packages have source code available on repositories for
inspection (e.g. on GitHub) but developers use pre-built packages
directly from the package repositories (such as npm for JavaScript,
PyPI for Python, or RubyGems for Ruby).

Such convenient practice assumes that there are no discrepancies
between source code and packages. These differences pose both
operational risks (e.g. making dependent projects unable to compile)
and security risks (e.g. deploying malicious code during package
installation) in the software supply chain.

Our empirical assessment of 2438 popular packages in PyPI with
an analysis of around 10M lines of code shows several differences
in the wild: modifications cannot be just attributed to malicious
injections. Yet, scanning again all and whole ‘most likely good but
modified’ packages is hard to manage for FOSS downstream users.

We propose a methodology, LastPyMile, for identifying the
differences between build artifacts of software packages and the
respective source code repository. We show how it can be used to
extend current package scanning practices for malware injection
(which only covers less than 1% of the code of deployed packages).

CCS CONCEPTS
• Software and its engineering → Software configuration
management and version control systems; Software libraries
and repositories; Software verification and validation; Software ver-
sion control; Software defect analysis; • Security and privacy →
Software security engineering.
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1 INTRODUCTION
The expression software supply chain refers to “anything that goes
into or affects your code from development, through your CI/CD
pipeline, until it gets deployed into production" [22]. In the past
decade, Free and Open-Source Software (FOSS) has become an
integral part of the software supply chain: as much as 99% of code-
bases contain open-source code [43], and 85% [41] to 97% [47] of
enterprise codebases comes from open source.

One benefit of FOSS is that source code and additional metadata
is publicly available for audit, review, and even modification. Devel-
opers rely on this information (e.g., number of GitHub stars, num-
ber of downloads from libraries.io) to decide whether to add a
FOSS project as a software dependency into their projects [25, 35].
Organizations with high security requirements, e.g., government
organizations or vendors of commercial enterprise software, com-
monly establish vetting processes to ensure the quality and security
of 3rd party software and services [9, 31]. In the case of FOSS, this
evaluation is performed mostly by manual reviews and automated
scans of the source code repository of each dependency [10].

In theory, once code is checked, developers could download
software dependencies as source files in tarballs, and build them
in-house. Yet, this process can be time-consuming and requires
knowledge of the build systems [21].

In practice, developers download pre-built packages from repos-
itories (such as npm for JavaScript, PyPI for Python, or RubyGems
for Ruby) under the comfortable assumption that no discrepancies are
introduced in the last mile between the source code and their respective
packages. Yet, such discrepancies might be introduced by manual or
automated build tools (e.g., metadata, Python bytecode files) [18]
or for evil purposes. For example, a backdoor was inserted into the
PyPI package ssh-decorate to collect the users’ SSH credentials
and exfiltrate them to a remote server [7].

Reproducible builds could be a solution. For it to be practical,
modifications need to be the exception rather than the norm. Un-
fortunately, the opposite is true on the field. Indeed, in the npm
ecosystem, packages are not easily reproducible from the source
code [18]. The same applies to the PyPI ecosystem (see Section 6).

https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1145/3468264.3468592
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Figure 1: Current Development, Build, Publication and Security Review pipeline of PyPI packages

In the absence of reproducible builds, a vetting process must be
extended to cover the risk of malicious code injection in the last mile.
Since applications have many direct and transitive dependencies,
and because every new version has to be verified, scalability and
integration with existing security review pipelines are key.

These requirements clash with the resources at hand for FOSS
repositories: less than ten PyPI administrators oversee 400 000 pack-
age owners. At the time of writing, for every new upload, PyPI’s
vetting pipeline only checks a script called setup.py for malicious
code that would execute upon package installation [52]. Although
setup.py is commonly targeted by attackers, malicious code is also
injected other locations. Other approaches also require a significant
effort to reduce false positives [13] and to improve the quality of
hand-crafted signatures [32]. While suspicious packages or updates
might be flagged, too many false alerts are generated for benign
packages [29]. In 2020, the administrators had to evaluate 1874 new
updates per day, with an average of 3500 files generated by more
than 76 997 developers [6]. Thus, the cost of even a single false
positive in the evaluation must be multiplied by those numbers.

A key observation is that in code injection attacks, only aminimal
part of the codebase is modified [49]. One could simply focus on
the last mile differences between the source code and the submitted
packages. Hence our first question:
• RQ1: Can we effectively and efficiently identify differences?

A basic solution already exists: git log. For each line in an artifact,
we check whether it is (or at least was) in the repository at some
point. By iterating over all commits (revisions), we ensure that we
collect everything in the source code repository, and we eliminate
the need for identifying the pair of Git release/tag and PyPI release
to be compared. Unfortunately, that does not scale as git log needs
to loop over all revisions and spawns a heavy git process each time
it is invoked. We could also use diffing techniques [2, 18], but they
require a mapping of each PyPI release onto the corresponding Git
tag or release, which does always exist.

Our algorithm LastPyMile is a feasible alternative to this prob-
lem. By cleverly combining package scraping and artifact hashing,
we can extract these differences in a scalable way. Then, we can
analyze how big is the gap in the field:
• RQ2: How big are the ‘normal’ differences between source code
and package repositories?

We show that for more than 2000 popular packages in the PyPI
ecosystem, such differences are pervasive. If a package code differs
from the published source code, one cannot assume that it has been
maliciously modified. Differences are too many (65% of artifacts and
22% of files in our sample) and too diverse for reproducible builds to
be a solution. Yet, only few modifications happen in Python source
files (2.6% of files) so that vetting might be a feasible alternative.

Finally, we can try to determine whether this solution can make
a difference on the end goal: improving the vetting and coverage
of scanners while keeping the number of false alerts manageable
for PyPI maintainers given the imbalance ratio between the PyPI
maintainers and the number of packages [50].
• RQ3: Can LastPyMile be combined with package scanners
while keeping the number of alerts manageable by a human?

To be effective in the field, we should allow developers and devel-
opment organizations to use the same tools to scan the source code
repository of a package as part of their vetting process. Without
protecting their investments in licenses, workflows, and developer
education, an excellent technical solution would be doomed to fail.
We show that such an approach is possible with LastPyMile.

2 TERMINOLOGY
Source code are human-readable instructions that others could check

to understand the functionality of a software project.
Artifact is a software entity that contains all necessary items (e.g.,

files) to run the software and can be installed or directly used
by project consumers. Typically, they are produced by the build
process [24]. In Python, built distributions (e.g., Wheels) are
generated from the source distributions (e.g., tarballs).1

Package ‘exists to be installed (or deployed)’2, and is a collection of
pre-built and versioned artifacts for one or more target envi-
ronments that is made available to consumers as an entity.

Repository is a cloud provider with a versioning system to store
and access several versions of a software project. A source code
repository stores and maintains the project source code, and a
package repository distributes pre-built packages to consumers.
An artifact present in a package available from a package repos-
itory is a published artifact.

1https://packaging.python.org/glossary/#term-Source-Distribution-or-sdist
2https://packaging.python.org/overview/

https://packaging.python.org/glossary/#term-Source-Distribution-or-sdist
https://packaging.python.org/overview/
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Phantom is a software entity (e.g., files, lines of code) present in
an artifact but does not match the one submitted to the source
code repository. We use phantom lines to refer to lines of code
and phantom files to refer to entire files.

3 BACKGROUND
3.1 The last mile from source to package
Figure 1 shows a typical package process of releasing a Python
package in PyPI that consists of three main stages: development,
build and distribution, and security review.

The primary activities of the development stage mainly happen
at a source code repository (e.g., GitHub, GitLab, Bitbucket, etc.).
At this stage, developers write all the code of a project. Developers
may run various tools to test the functionality of the project and the
absence of security vulnerabilities. If a project is open-source, other
people could access the code, check it, and suggest improvements.
The source code repository is often an essential source of infor-
mation for the developers to decide on the quality of a software
artifact [35].

When developers decide to make the software version available
for other people (i.e., make a release), they move the code to the
build stage. At this stage, automated tools such as Travis CI, Jenkins,
AppVeyor, or GitHub Actions use the information stored in the
project configuration files to build it. These tools fetch the source
code of the package and execute the build scripts that collect all
the necessary dependencies, add package metadata, generate code
(e.g., Swagger Codegen), and create artifacts that are ready to be
distributed, like source archives, Linux, or Windows binaries, test
coverage logs, and documentation.

At the publication stage, developers upload the artifacts to a
package repository (e.g., PyPI, npm,Maven Central) eithermanually
or automatically by using the build tool from the packaging stage.
Most consumers will actually use the version of the software stored
and published via package repositories. Uploaded artifacts need to
go through the security review stage of a package repository. In PyPI,
PyPI administrators run multiple checks (see Subsection 3.4) on
uploaded artifacts. The checks will generate a verdict if an uploaded
artifact contains suspicious behavior. The administrators are then
reviewing the verdicts to decide to keep the artifact.

The match between the source code version of a project and the
packages that correspond to that version is taken for granted [35].
However, several tools (and humans) are involved at different stages
of the pipeline, and some actions may result in a published artifact
containing code that is not present in the source code repository.

During the packaging stage, building tools add metadata files and
augment existing code files (e.g., setup.py) with information [3],
such as license, timestamp3, release version, etc. Developers also
use tools such as Swagger Codegen that automatically generate
code files (e.g., server stubs and client SDKs for APIs). Developers
may also change the code of a published artifact directly to backport
a bug or a vulnerability fix [50].

Developers’ actions might create difficulties to connect the dis-
tributed artifacts and their source code repositories (Figure 2).

3https://github.com/pypa/wheel/issues/248
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When developers move stuff around repositories with different names the auto-
matic traceability between package and source code repositories becomes hard as
links in packages (solid lines) can point to the latest but possibly wrong source
repository. A human must read the docs to find the correct Github repository.

Figure 2: GitHub tags and PyPI releases of SeleniumLibrary

Example 1. The robotframework-selenium2library PyPI page
points to the robotframework/SeleniumLibrary GitHub reposi-
tory that contains the code for the releases before v1.8.0 and after
v3.0.0a1. The code for other releases is stored in a different GitHub
repository robotframework/Selenium2Library.

In this example, comparing a specific package version on PyPI
with the corresponding GitHub tag for the releases in between
v1.8.0 and v3.0.0a1 does not work as the corresponding code is not
present in the referenced source code repository. One could only
find the correct mapping between source and package repositories
by manually inspecting repository descriptions.
Summary: Differences between the source and package reposito-
ries may be due to ‘normal’ activities.

3.2 Software supply chain attacks
Software supply chain attacks occur when malicious or vulnera-
bility is injected into differnt stages of the software development
chain [20, 26]. Ohm et al. studied several attacks on different ecosys-
tems [33] and found hijacking and typosquatting attacks to be
the most common. Compromising the package owner’s creden-
tials would allow attackers to inject malicious payloads into the
existing artifacts so that users will download and install them.
Some examples of attacks are the injection of backdoors into PyPI
ssh-decorate package [1], Ruby rest-client package, or npm
even-stream package [19]. Attackers can commit malicious code
into a source code repository [17, 37].

Package name *-squatting attacks are more prevalent than pack-
age hijacking [33]. In typo- and combosquatting attacks [33, 50]
adversaries inject a malicious payload into the code of a popular
package. Then they release this new package with a name nearly
identical to the name of the original package to trick package users
who mistype the package name and install the malicious one. This
attack becomes especially attractive considering the limited auto-
matic controls integrated into the package publishing process, and
the certain unbalance concerning the number of package users and
PyPI Administrators/Moderators (40K to 1) [53].4 Several attempts
were made to identify the typo- and combosquatting packages
present in the package managers [4, 42, 45, 50].
4Data collected on Feb 2020 from https://pypi.org/

https://github.com/pypa/wheel/issues/248
https://pypi.org/
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Table 1: Discrepancies in files of legitimate and malicious
typosquatting packages
Distrib shows the number of lines of code that are not present in the source code reposi-
tory for the requests and Flask legitimate packages as well as the difference between
the malicious packages request and urlib3 from the original legitimate source code
repositories of the benign packages (the targets) reported at [40]

Filename #Lines of code
Source +Distrib

requests-1.2.2/requests/models.py 687 +5
Flask-0.5.2/flask/templating.py 88 +2
urlib3-1.21.1/setup.py 174 +23
request-1.0.117/hmatch.py 27 +81

Example 2. A typosquatting PyPI package urlib3 [40] imperson-
ated the popular package urllib3.5 urlib3 contains malicious code
to exfiltrate user information to a remote server. urlib3 has a single
release urlib3-1.21.1.tar and the same Github URL as urllib3.6

Table 1 shows the modified files in both legitmate packages:
requests and Flask and malicious packages request and urlib3.
Both kinds of packages differ from the source code repositories.
Summary: Discrepancies can also be due to malicious reasons.
Attackers can inject malicious code or restore vulnerable code for
later exploitation when a package is installed.

3.3 Reproducible builds as an ideal solution
Reproducible builds [11] is a set of development practices that create
an independently verifiable path from source to published artifacts.
They could be the ideal solution to verify that no vulnerabilities or
backdoors have been introduced during the build process.

However, to achieve the reproducibility of the build process, we
must eliminate varying elements in release pipelines. For example,
builds should not include any CPU, timestamp, or locale information
in distributed artifacts [18]. Hence, reproducible builds require a
significant overhaul in the language-based package managers such
as PyPI or npm [3, 18] because current release pipelines augment
packages with more information, such as metadata, debug data, or
automatically generated code files (See Section 3.1).

Some free software distributions, such as Debian, have proce-
dures to identify the original source code and a difference file that
includes all changes made specifically for Debian, including all files
related to packaging [23]. However, after trying for seven years,
Debian states that “it is a stretch to say that Debian is reproducible".7

Summary: Reproducible builds are challenging to achieve given
the diversity of packaging tools and current implementations of
the release pipeline (e.g., embedding timestamp into artifacts).

3.4 Current PyPI packages scanners
Table 2 summarizes the existing tools that support identifying
malicious code injections in Python packages. Several scanning
tools [5, 13] parse files into abstract syntax trees (AST) and perform
rule-based searches on their nodes. ApplicationInspector [28] and
OSSGadget [29] use regular expressions to identify suspicious code

5https://pypi.org/project/urllib3/
6https://github.com/urllib3/urllib3
7https://wiki.debian.org/ReproducibleBuilds

Table 2: Existing tools for analyzing PyPI packages
Regex (Regular Expression) bases on the raw lines of code while AST (Abstract Syntax
Tree) requires transforming the code into a tree. The hybrid analysis consists of metadata,
AST, and dynamic execution of an artifact
Tool name Input Technique
Malware Checks [52] setup.py file Static (Regex)
MalOSS [13] Package Hybrid analysis
Application
Inspector [28] Artifact Regex

OSSGadget [29] Package & Arti-
fact

Static (Regex)

Ohm et al. [32] Artifact Static (AST)
Bertu [5] setup.py file Static (AST)

lines. However, the tool authors mention that their tools generate
many false positives if run on the entire package code [29]. This
high number of false positives is to be expected.

1 # Establishing a socket connection to a remote server
2 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
3 rip = 'M' + 'TIxL' + 'jQyL' + 'jIx' + 'N' + 'y4' + '0NA' + '=='
4 # Sending the encoded data via the established socket
5 s.connect((base64.b64decode(rip), 017620))

Listing 1: Malicious code snippet opening of a socket to an
encoded network address.

1 # Decoding a bundle of certs in PEM format
2 der_certs = [
3 base64.b64decode(match.group(1)) for match in _PEM_CERTS_RE.

↩→ finditer(pem_bundle)]

Listing 2: Legitimate b64decode call in the urllib3 package

Consider the code snippets from Listing 1 and Listing 2. Both
code snippets use b64decode function from base64 library. List-
ing 1 is a malicious fragment that collects the user information and
sends it to a remote server via a network socket, while the code in
Listing 2 simply decodes a (benign) certificate. A package checking
tool that consider b64decode function as suspicious since it is often
used in malicious packages will produce a true positive for Listing 1
and a false positive for Listing 2. Unfortunately b64decode function
is widely used for benign purposes, and the tool will generate many
false positive alerts as it has no way to distinguish between benign
and malicious usage without further analysis.

To avoid being overwhelmed by false positives, the current PyPI
security review calledMalwareChecks [52] scans only the installa-
tion script setup.py. Unfortunately, several known attacks [27, 40]
had malicious code injected into different files. Hence, the review
of only setup.py files is not enough.

Example 3. The typosquatting package jeIlyfish [27] mim-
icked the popular package jellyfish (the first L is an I) to steal
SSH and GPG keys [8]. There are two injected files: setup.py, and
_jellyfish.py in the typosquatting package. The malicious code
is stored in the _jellyfish.py as shown Listing 4 and then being
implicitly called by the package installer via the packages option in
the setup.py file (Listing 3).

1 # process all pure Python modules found in 'jeIlyfish'
2 packages=['jeIlyfish']

Listing 3: The file jeIlyfish-0.7.1/setup.py

https://pypi.org/project/urllib3/
https://github.com/urllib3/urllib3
https://wiki.debian.org/ReproducibleBuilds
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Table 3: Number of source code repositories found by loca-
tions
Metadata of a package contains multiple fields such as Homepage, Codepage. Package
Homepage is the main page which contains additional information about a package (e.g.,
documentation)

Location #GitHub Repos Percentage (%)

Homepage (Metadata) 2618 77.9
Codepage (Metadata) 68 2
Package Homepage 1418 42.2
PyPI Homepage 1974 58.7
Total GitHub Repos 3662 100

1 ZAUTHSS = PAYLOAD
2 # Decoding and executing the obfuscated payload
3 ZAUTHSS = base64.b64decode(ZAUTHSS)
4 ZAUTHSS = zlib.decompress(ZAUTHSS)
5 exec(ZAUTHSS)

Listing 4: The file jeIlyfish-0.7.1/jeIlyfish/_jellyfish.py

Summary: If scanning one file in a package is feasible but not
enough and reviewing an entire package is unfeasible due to the
high number of false positives, a different solution is needed.

4 RQ1: LASTPYMILE TO IDENTIFY CODE
INJECTION

The upper part of Figure 3 shows the typical process of the security
review process of package repositories (e.g., PyPI) for identifying
suspicious artifacts that might occur during the release of a soft-
ware project. First, the code in the published artifact is undergoing
code review and scanning by the PyPI Administrators by running
security checks [52]. Currently, they are using two checks called
SetupPatternCheck and PackageTurnoverCheck (see Section 7).

Depending on the automated tool used by the maintainers, this
scanning could be done on the entire artifact for backdoor injection
(e.g., Bandit) or on its files (e.g., Malware Checks [52]). Then the
output of the scan is used to decide whether the artifact should be
uploaded to the package repository.

The bottom part of Figure 3 shows how LastPyMile can aug-
ment the traditional security process. As a preliminary, LastPyMile
looks for the GitHub URLs of a PyPI package in various places, in-
cluding package metadata, PyPI, and package homepage. Table 3
shows the number of GitHub URLs we found. Most of the packages
declare their GitHub repositories in the metadata available on PyPI.

In Step 1, LastPyMile iterate all commits to compute all file
hashes and collect line contents from a source code repository. To
ensure that all the files and lines are collected, LastPyMile pro-
cesses commits from all branches and tags in the GitHub repository.
LastPyMile supports processing the GitHub repository in parallel
so that multiple commits can be processed simultaneously. Besides,
to avoid processing the same commits in different branches, Last-
PyMile maintains a shared set of already processed commits for
synchronizing the processing tasks.

Example 4. 18 distributed artifacts nameko-3.0.0.rcX contain the
source code that is stored in the v3.0.0-rc branch.

Step 1 Hashing files and lines from source code repository
Require: The Github URL of the package: GithubURL
1: Set of file hashes in the repository Hs : []
2: Set of lines of files in the repository Ls : []
3: Cloned_Dir = CloneRepositoryToDisk(GithubURL)
4: Commits = GetCommitsFromRepo(Cloned_Dir)
5: for each c ∈ 𝐶𝑜𝑚𝑚𝑖𝑡𝑠 do
6: Fs ← CheckoutFilesInCommit (c)
7: for each f ∈ 𝐹𝑠 do
8: H ← H ∪ SHA256(f )
9: L← L ∪ ReadFile(f )
10: return Set of file hashes, lines: Hs , Ls

Table 4: Running time comparison between LastPyMile and
git-log approaches
Both approaches had been run in the same environment. The differences obtained by both
the approaches are the same (e.g., number of phantom files and lines)

Package git log (seconds) LastPyMile (seconds)
certifi 1244 48
idna 408 34
six 315 145
s3transfer 1095 44

After collecting all the file hashes and lines from the Github
repository, in Step 2 LastPyMile processes a package artifact to
calculate file hashes and collect file lines. Finally, LastPyMile com-
pares file hashes and lines of distributed artifacts and those in the
source code repository to report the phantom files and lines (Step 3).

LastPyMiletakes only 0.04 seconds for scanning jellyfish arti-
fact that consists of 530 unique files and 28104 lines on a laptop with
four CPU cores and 8 GB RAM. Considering the top four most down-
loaded packages six, idna, python-certifi and s3transfer as
shown in Table 4, LastPyMile is 16x faster than the default itera-
tive approach that relies on calling git log command for every line
of an artifact because LastPyMile preproceses all commits in a
repository and require only a single pass over all code, while git log
have to iterate over all revisions each time it is invoked.

Table 5 compares the number of total files and lines present in
the analyzed files with the phantom files and lines reported by
LastPyMile. We observe that more than half of setup.py files
are phantom, while the number of phantom lines of code in the
setup.py files is six times smaller compared to the total number
of lines in setup.py files. Globally the number of phantom lines
of code is 16 times smaller. Table 6 shows that a median artifact
contains two phantom lines that include at least one API call (e.g.,
execute some function) and two lines that import some library.
Summary: LastPyMile enables checking the entire codebase of a
published artifact 16x faster than the baseline git log approach
as LastPyMilerequires only a single pass over all commits.

5 DATA COLLECTION
To select the sample of Python packages for our study, we start
with the list of the top 4000 most downloaded packages [46], which
is the established approach to study the Python ecosystem, adopted
both in academia [6] and industry [30] and [12].
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Figure 3: LastPyMile in the context of the overall security review pipeline

Step 2 Hashing files and lines from an artifact
Require: A, the PyPI package artifact to be evaluated
1: Set of file hashes in an artifact Hp : []
2: Set of lines of files in an artifact Lp : []
3: Artifact URLs: As = ObtainArtifactURLs(p)
4: Local_Artifact ← DownloadArtifactFromPyPI (A)
5: Fs ← UncompressArtifact (Local_Artifact)
6: for each f ∈ 𝐹𝑠 do
7: H ← H ∪ SHA256(f )
8: Ls ← ReadLinesFromFile(f )
9: for each l ∈ Ls do
10: Lp ← L ∪ l
11: return Set of file hashes, lines: Hp , Lp

Step 3 Identifying phantom files and lines in distributed artifacts
Require: Hs, Ls,Hp, Lp
1: Set of phantom files: Hd : []
2: Set of phantom lines: Ld : []
3: for each h ∈ 𝐻𝑝 do
4: if h ∉ Hs then
5: Hd ← Hd ∪ h
6: for each l ∈ 𝐿𝑝 do
7: if l ∉ Ls then
8: Ld ← Ld ∪ l
9: end if
10: end if
11: return Set of phantom files hashes, lines: Hd , Ld

We identify 3662 packages (>91% of the selected Python pack-
ages) that use GitHub to maintain their source code. Among these
packages, 3336 are unique repositories (83%). For simplicity, here
we focus only on packages that claim their source code is on GitHub.
Table 7 shows the characteristics of the collected repositories. Three

Table 5: Number of unique phantom files and lines versus
total
The columns in the left are the files and lines that are processed by the PyPI Malware
Checks and existing scanning tools while LastPyMile only processes the phantom files
and lines on the right. Phantom files are counted by their unique hashes

#Total #Different
setup.py All setup.py All

#Files 4056 90 143 2532 16 170

#Lines 38 750 14 027 895 7236 939 772

Table 6: Statistics about lines not in the repo

Mean Min Q25% Median Q75% Max

#APIs 4 1 1 2 3 946
#Imports 2 1 1 2 3 12

repositories contain only two commits8, while several repositories
had tens of thousands of commits (e.g., pip has 10 730 commits9).

As we aimed to have a tool to be runnable “as you wait" [39],
we set a timeout period of five minutes for analyzing all artifacts
of a given package. As a result, the selected packages resulted in
109 062 artifacts. We had to exclude 15 810 artifacts (14%) belonging
to ‘surviving’ packages with early versions being developed on
versioning control systems other than Git and/or with the commit
history not being included when moving to GitHub. We could not
use them in our analysis as there was no source code to compare.
The final dataset comprises 93 252 artifacts from 2438 packages,
65% of them are gzip, 29% are wheel, 4% are zip, and 2% are eggs.

After checking the differences between the number of differ-
ent files and code lines between source and package repositories
(Figure 4), we observed that 66 artifacts featured a huge number

8For example, https://github.com/datamade/probableparsing
9At the time of data collection

https://github.com/datamade/probableparsing
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Table 7: Descriptive statistics of GitHub repositories for the
selected packages
Tags includes Github tags and branches of a Github repository. Unique files and lines are
determined by their hashes and contents, respectively

Number of Mean Min Q25% Median Q75% Max

Tags 29 1 9 19 36 678
Commits 477 2 91 232 548 10 730
Unique files 97 3 14 29 68 17 000
Unique lines 53 1 6 17 43 8732

Table 8: Number of processed packages and artifacts
The processing time threshold is set for a package. We exclude artifacts that predate the
creation time of a Github repository

Step Result

Top-most downloaded packages 4000
Processed #artifacts (processing time < 5 min) 109 062
Artifacts in GitHub (excluded very early artifacts) 15 810
Final #artifacts (automatically linkable to source) 93 252

of changes (>1000 different files). We manually analyzed those ar-
tifacts and found that the explanation lies in ‘developers moving
stuff around’ across repositories, making it close to impossible to
identify source code repositories by automatic means. The example
in Figure 2 requires one to actually read the documentation.

Besides the robotframework-selenium2library in Example 1,
we found that sas7bdat package first hosted its source code on
GitHub but then was moved to BitBucket. The other reason for not
being able to locate the corresponding source code of a package
automatically is the usage of submodules [54] by developers. We
removed such artifacts from our analysis as their source code could
not be found automatically. Hence, the final list of analyzed arti-
facts comprises 93 252 artifacts. Table 8 summarises the number of
analyzed packages and corresponding artifacts.

Example 5. The gsutil package refers to a GitHub repository
GoogleCloudPlatform/gsutil with two submodules. For both
Pyrogram-0.8.0-py3-none-any.whl and Pyrogram-1.0.3-py3-
none-any.whl artifacts, we could not find the related GitHub tag
or release. Our manual analysis of these packages did not reveal
malicious injections.

6 RQ2: DIFFERENCES BETWEEN SOURCE
CODE AND PACKAGE REPOSITORIES

To answer RQ2, first, we compared the code distributed in PyPI
artifacts with the corresponding source code repositories. Figure 5
shows that 65% of artifacts and 22% of files present in PyPI have
changes with respect to the source code repository. I.e., they might
have malicious code injected during the package release process.
However, only 5.8% of artifacts and 2.6% of files have changes in
Python files, while 59% of artifacts and 19% of files have changes
in other files. These findings suggest that it might be promising to
limit the process checking for malicious injections to those artifacts
and files that have discrepancies, as the other artifacts cannot have
malicious injections during the release process. In this paper, we

Table 9: Differences between package artifacts and their
source code repositories
Unique files are the files having different hashes while number of lines are the total
number of lines in an artifact

#Files Mean Min Q25% Median Q75% Max

Number of Unique Files
Python 9 1 1 1 6 994
Metadata 4 1 3 4 5 19

Number of Lines
Python 19 2 2 4 12 1988
Metadata 8 2 6 8 10 38

focus on the changed Python files as they might be the target of
attackers for injecting executable malicious commands.

Metadata files have a great impact on the number of differences
between source code and package repositories: Table 9 shows that
a median artifact has four metadata files10 and nine Python files
(twice more). This difference is also visible at code line level: a
median artifact has 2-8 lines in phantom metadata files and 18 lines
in phantom Python files.

We observe that nearly 15% of Python files that have differences
with respect to the source code repository are __init__.py and
setup.py files (Table 10). Most likely, this happens since the build-
ing tools introduce some additional information (e.g., timestamps,
versions, etc.) into these files during the packaging process. Simi-
larly, the _version.py and version.py files are used to identify
the package version from a Git tag or release automatically.

Table 11 shows the top ten regular and API calls related to net-
working and system in the Python files that differ from the source
code repository. Many files have calls to such functions as urlopen,
socket.socket, request to open URLs and make HTTP requests,
subprocess.Popen and exec to open files. Usage of these functions
could be harmful. At the same time, these functions are often used
for legitimate operations, and one cannot simply mark all lines that
include a call to ‘possibly suspicious’ APIs as ‘actually suspicious’ –
there would be an unmanageable number of false alerts.
Summary: The code distributed via package repositories has many
changes with respect to the code stored in the corresponding source
code repository. On average there are 5.8% of artifacts and 2.6% of
files have changes in Python files.

7 RQ3: LASTPYMILE COMBINEDWITH
OTHER PACKAGE SCANNERS

The combination of LastPyMile with existing security scanners is
essential for two reasons: First, it allows to reuse mature detection
techniques of FOSS and commercial security scan tools. Second, by
doing so, developers and development organizations can use the
very same tools in different stages of the security review process,
which protects their investments into software licenses, the design
and implementation of review workflows, and developer education.

10We identified metadata files as generated by packaging tools (e.g., WHEEL), de-
pendency declaration files (e.g., requirements.txt), and documentation files (e.g.,
README.md)
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Table 10: Top different phantom Python files in our sample.
Phantom files are present in the package source code but have different content than the
omonimous file in the source code repository. The same file name might occur multiple
times in the same package with different paths. __init.py__ and setup.py are the
most common phantom files.

Filename #Phantoms Percentage (%)

__init__.py 36 480 14.5
setup.py 7414 3
_version.py 4152 1.7
version.py 3260 1.3
utils.py 2354 1
v1.py 1498 0.6
v2.py 1498 0.6
base.py 1404 0.6
client.py 1050 0.4
exceptions.py 1008 0.4

Table 11: Top ten API calls in modified Python files
API calls are grep from the line contents using a set of regular expressions. We exclude
some internal calls of the packages.

Top occurences Networking & system occurences

__init__ 72 413 urlopen 793
isinstance 55 115 socket.socket 711
datetime 37 393 subprocess.Popen 670
ttinfo 37 258 exec 580
len 36 325 request 541
read 31 582 http.request 511
getattr 21 575 s.setsockopt 413
super 16 760 requests.post 323
hasattr 16 358 request.get 317
join 13 869 os.chmod 303
append 12 548 platform.system 292

As shown in Figure 3, PyPI Administrators can achieve the reuse
by filtering either the input or the output of such security scanners.
They can feed tools operating on single files (Malware Checks),
modules, or procedures (Bandit Checks) with input containing
phantom lines, which is expected to reduce both the number of
findings and the tool’s runtime. Scanning tools performing the
whole program or inter-procedural analyses continue to work on
the package’s entire code base. Still, their output can be filtered to
only show findings in phantom lines.

In this paper, we focus on input filtering and show the results of
combining LastPyMile with two well-known malware checking
tools that are broadly used in the PyPI ecosystem:
• Warehouse Malware Checks [52] tool is used by PyPI to
check the suspicious code lines in every package uploaded
to PyPI. At the time of writing, the tool supports two checks:



LastPyMile: Identifying the Discrepancy between Sources and Packages ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 12: LastPyMile on Malware Checks and Bandit alerts
Malware Checks Alerts (X rules on Lines), while Suspicious Bandit Alerts (Y rules on Files). The setup.py column of Malware Checks Alerts is what happens now in PyPI [52]

Artifact Type

In
se
tu
p.
py Problem Size Malware Checks Alerts Suspicious Bandit Alerts

#Files #LoCs
(all files)

#LoCs
(setup.py)

Coverage
(setup.py) setup.py whole

pkg
LastPy
Mile setup.py whole

pkg
LastPy
Mile

urllib3-1.26.3

Be
nig
n 80 25 348 97 0, 4% 1 260 0 8 1398 0

requests-2.25.1 32 9325 112 1, 2% 3 57 0 9 505 0
setuptools-53.0.0 244 70 794 162 0, 2% 4 2932 0 5 762 0
urlib3-1.21.1

Ma
lic
iou
s Y 72 20 448 197 1% 4 177 3 20 1044 12

request-1.0.117 N 3 166 52 31, 3% 2 8 2 5 27 20
setup-tools-36.0.1 Y 112 31 245 304 1% 8 1289 3 21 489 12

SetupPatternCheck11 for performing regular-expression
based checks of the content of setup.py files on package
upload and PackageTurnoverCheck12 for performing daily
scans for suspicious behavior about package ownership. Con-
ceptually Malware Checks is close to other open-source
tools for auditing FOSS packages [28, 29] that rely on regular
expressions to the whole artifact.
• Bandit [38] is a tool supported by the Python Code Quality
Authority. Bandit was designed to find common security
issues in Python code by scanning all the files included in a
software artifact. For each file in the artifact, the tool creates
an abstract syntax tree (AST) representation and performs
rule-based analysis (plugins) of the AST nodes. Most of the
Bandit rules focus on the vulnerabilities in Python code (e.g.,
Start a process with a function vulnerable to shell injection)

For theMalware Check tool we focus on SetupPatternCheck.
Even though this tool currently only checks setup.py files, we
have extended it to scan all files of a software artifact.

For the Bandit tool, we have used the default set of Bandit rules
and then extended them with additional rules so that the tool is
capable of findings all malicious lines of code injected into Python
packages known to be used in typosquatting attacks [33, 50]. Our
rule set checks for suspicious API calls (e.g., exec), imports (e.g.,
socket), and strings (e.g., an URL). Our rules can be obtained at [48].

To illustrate how the malware checking tools perform on the
artifacts without malicious payloads, we compare their outcome
on three example benign artifacts that correspond to the following
malicious artifacts. We collected the malicious artifacts from the
real attacks by contacting the researchers who reported the attacks.
• urlib3-1.21.1 –malicious codewas injected into the setup.py
file. It triggered automatic extraction of data and sending it
to a remote server using the socket library.13
• request-1.0.117 – while the setup.py file contains the
code to trigger the malicious execution from the hmatch.py
file, the actual malicious functionality was implemented in
the hmatch.py file: scanning the computer network and
sending results to the remote server using urllib3 library.14

11https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/
setup_patterns
12https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/
package_turnover
13https://docs.python.org/3/library/socket.html
14https://urllib3.readthedocs.io/en/latest/

• setup-tools-36.0.1 – the malicious code injected into the
setup.py file triggered automatic extraction of sensitive
data and sending it to the remote server via socket library.

Table 12 presents the results of Malware Checks and Bandit
tools’ scans of the selected artifacts. Since theMalware Checks
tool was primarily designed to scan only setup.py files, we report
the number of findings the tools produced on the setup.py. Then
we present the number of alerts when we run the tools on the
whole package. Finally, we show the number of alerts the tools
produced on the lines of phantom code as reported by LastPyMile.
The replication package for Table 12 can be obtained at [51].

We observe that Malware Checks produced at most three
alerts on each of the benign and malicious artifacts when only
the setup.py file was considered. While this amount of alerts is
manageable by humans, checking only the setup.py files allows
one to have coverage of around 1% of the total code base of the
analyzed artifacts, except the malicious request artifact where
scanning setup.py has generated coverage of 31.3%.

When Malware Checks was executed on all files from the
package, the number of alerts rockets to 2-3 orders of magnitude.
Notably, the tool produced more alerts on the benign artifacts than
on the malicious packages. This phenomenon corresponds to the
more extensive code base of the legitimate artifacts.

We observe similar behavior of the Bandit tool. When applied
on the setup.py, the tool generated alerts both on benign and mali-
cious artifacts. However, Bandit produced significantly more alerts
on the malicious artifacts. When looking at the alerts generated
after running the tool on the entire package, we observe a large
number of alerts. Notably, looking only at the number of alerts,
one could not distinguish between benign and malicious artifacts:
the number of alerts produced on the benign artifacts exceeds the
number of alerts on the malicious artifacts.

After applying LastPyMile to the tool results after running
them on the entire artifacts, we observe a significant reduction
of the number of alerts for both tools. For example, Bandit tool
produced only 12 alerts (out of 1044) after applying LastPyMile
on the results of the urlib3-1.21.1 scan. Similarly, the number of
alerts produced byMalware Checks on the setup-tools-36.0.1
reduced to 12 instead of 489. Looking at the outcome of the benign
packages, LastPyMile reduced the number of alerts to zero.

Being applied to setup.py files only, Malware Checks tool
generates a number of alerts manageable by humans. However,
scanning of only setup.py files does not guarantee the artifact
to be free from malicious code as the 99% of code is not checked.

https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/setup_patterns
https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/setup_patterns
https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/package_turnover
https://github.com/pypa/warehouse/tree/master/warehouse/malware/checks/package_turnover
https://docs.python.org/3/library/socket.html
https://urllib3.readthedocs.io/en/latest/
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The number of alerts that both tools produce after scanning the
entire artifacts (3249 and 2665 false alerts for Malware Checks
and Bandit respectively) demonstrates that such analysis does not
scale for an ‘on-upload’ analysis by PyPI maintainers.

In contrast, LastPyMile shows an excellent potential to im-
prove the scanning results. First, it makes the number of alerts after
running a tool on the entire artifact comparable with the current
number of alerts generated by the Malware Checks (currently
used by PyPI). Second, we do not observe any alerts for benign
artifacts, which allows us to easily distinguish benign and malicious
artifacts in our manual validation of the alerts.

When run on all malicious code packages available from the
literature, we were able to preserve all malicious alerts and did not
introduce false positives over the current scanning process.

Those properties make LastPyMile a candidate for software
vetting processes of government organizations or other OSS con-
sumers with high-security requirements. The review effort is man-
ageable, even though typical development projects have dozens of
dependencies with more or less frequent release and patch cycles.
Summary: LastPyMile reduces the number of alerts produced
by a malware checking tool to a number that a human can check.
We checked our approach against known malicious packages, and
we found that LastPyMile can detect all of them. Also, it removes
all the alerts from benign packages, allowing a clear distinction
between benign and malicious packages.

8 THREATS TO VALIDITY
The validity of results reported in this paper is impacted by several
choices made during tool and experiment design.

We only consider repositories hosted on GitHub15. However, there
are no significant obstacles to cover other version control sys-
tems and extend the current implementation to other Git service
providers (e.g. GitLab or Bitbucket) as long as they support code
commits (e.g., Apache Subversion).

The current implementation focuses on the Python packages in PyPI,
and Python files in particular. The extension to other Python ecosys-
tems (e.g., anaconda)16, and interpreted languages and other file
types seem straight-forward (e.g., Node.js/npm and Ruby/RubyGems).
Yet, we only considered the top 4000 packages hosted on PyPI, out
of more than 250 000 packages. A larger number of packages would
need to be considered for an ecosystem analysis.

In terms of design, LastPyMile checks only the code absent from
source repositories even though malicious code could also be in-
cluded in the versioned code, either directly or in tests. This was
the case of the Pillow Python framework17 that was flagged by
more than 15 Antivirus vendors. However, this situation lays out
of the scope of the paper as the test files should have been spotted
during the source code review.

We limit the line-by-line analysis to files with file extension .py.
The main reason driving this design decision is to focus attention on
files whose discrepancies, compared to what users can view in the
respective source code repository, can alter the program flow (e.g.,
15In our dataset, there are 56 packages hosted in bitbucket.org, 14 packages hosted
in Gitlab, 13 packages hosted in the sourceforge.net, 19 packages are hosted in
code.google.com, and four of them had been moved to GitHub.
16https://repo.anaconda.com/
17https://github.com/python-pillow/Pillow/issues/251

when downstream users install an artifact in their development
environment or invoke its API as part of their development project).

Other phantom files might be also be used to inject malware. For
example, the phantom files under the test directories are required by
a popular testing framework like pytest. Another source of phantom
files is the upload of modules specific to a developer development
environment. They are usually not versioned with Git.

Example 6. The phantom files in pydruid-0.5.4.tar.gz are
the manually built Python packages stored in the site-packages di-
rectory. We can verify the origin of the local installed modules by
comparing their code files with the correponding GitHub repository.
By using LastPyMile, we can check that the code files in the local
module called traitlets (e.g., https://github.com/ ipython/ traitlets)
of pydruid-0.5.4.tar.gz belong to the correponding repository.18

Moreover, PyPI packages contain other executable files, e.g.,
Windows portable executables, OSX disk image files, or C/C++
static libraries. For example, we found many Python bytecode files
(ending with .pyc). These files should not be uploaded to PyPI as
this can make the dependent package (e.g., a Debian package) fail to
compile.19 Investigating these cases would require a distinct paper.

We only check additions of code lines in the present version, even
though a vulnerability could be introduced by deleting lines from a
software artifact (e.g., by removing a sanitizing statement). Albeit
LastPyMile does not report the deleted lines in such a case, it could
detect that the files in the uploaded artifacts are different as their
hashes would differ if compared to the hashes of the files stored in
the corresponding source code repository. Limiting the false alerts,
in this case, would require special care to avoid that the whole file
is reported as different. We leave this case for future work.

Some packages contain code automatically generated by tools like
Swagger Codegen or Python distutils. The current implementation
of LastPyMile would generate conceptually false positives as such
files do not conceptually differ from phantom files. These cases
of automatically generated files could be checked by applying the
same code generation tool on the code files in the Github repository
and comparing with the files in published artifacts.

9 RELATEDWORK
Zimmermann et al. [55] study security risks for users of npm, in-
cluding potential vulnerable and malicious code in third-party de-
pendencies. The authors showed that npm suffers from single points
of failure in which individual packages could impact large parts
of the entire ecosystem. Attackers could compromise a minimal
number of maintainers’ accounts to inject malicious code into most
packages. The paper, however, does not investigate the potentially
malicious code injection in the package artifacts. Our LastPyMile
approach provides a way to audit the popular packages by identify-
ing the delta in the code that developers consume and the original
code developed by vendors in their source code repository.

Ohm et al. [33] presents a taxonomy of attack vectors and a
dataset of malicious software packages used in real-world attacks on
open-source software supply chains on three package repositories
npm, PyPI, and RubyGems. This work highlights that typosquatting

18https://github.com/ipython/traitlets
19https://github.com/googleapis/google-auth-library-python/issues/214
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and infection of an existing package are the two most common
attacks. This work, however, does not investigate the presence of
code injections in legitimate and malicious packages. Our approach
involves developing a method to identify the discrepancies between
distributed artifacts and source code repositories that could be
attributed to the malicious code injection.

Several works ([44, 50]) study the potential impact of typosquat-
ting attacks on PyPI packages based on the Levenshtein distance
and number of downloads of the targeted package. They show a
large number of typosquatting candidates in PyPI that PyPI Ad-
ministrators should investigate. However, relying only on package
names may cause many false positives, and a more in-depth anal-
ysis of distributed artifacts is required. Our approach provides a
methodology to verify the potential typosquatting package by high-
lighting the differences between the typosquatting packages and
the GitHub repository.

Code-based approaches ([5], [34], [13], [36]) can provide more
accuracy in detecting malicious packages. Several approaches scan
the setup.py file of the package artifact to identify suspicious code.
Bertu [5] statically parses the Python installation script setup.py
as an AST tree and looks for suspicious patterns (e.g., network con-
nections). Malware Checks uses a set of Yara rules on the lines of
code on the setup.py file. Similarly, ApplicationInspector and
OSSGadget [29] check the distributed artifacts using a set of regu-
lar expressions to identify potential backdoors within a package.
Although these approaches are fast and straightforward, they can
generate many false alerts when scanning setup.py performing
legitimate behavior in the installation process (e.g., downloading a
dependency from a remote server). Our approach fills this gap by
allowing these tools to scan only the lines that are not present in
the source code repository and which were potentially introduced.

Several techniques use dynamic analysis to expose the malicious
behaviors of the package. Buildwatch [34] dynamically execute
package code in the Cuckoo sandbox [15] and captures all system
calls, such as kernel services requested by processes. Duan et al.
propose MalOSS [13], a hybrid approach, which extracts various
features of distributed artifacts using metadata, static and dynamic
analyses. These methods, however, are resource-heavy which may
be challenging to integrate into the development pipeline. Last-
PyMile uses a lightweight comparison to help these approaches by
reducing the number of files and lines that need to be scanned to
detect malicious code injections, making the existing techniques
efficiently adapt to individual developers’ development pipelines.

Garrett et al. [14, 16] use an anomaly detection based approach
on features extracted from packages’ metadata and source code to
detect suspicious package updates in npm. Themethod could reduce
the review effort by 89%. However, the approach cannot highlight
the code injections with the existing features as it analyzes only
the published artifacts. Our LastPyMile can highlight the code
injections and can be adapted to provide explanations to developers.

Gonzalez et al. [17] uses commit logs and repository metadata
to detect potential malicious commits automatically. The method
identifies 53.3% of malicious commits while flagging less than 1% of
commits in the studied dataset. Our LastPyMile instead looks for
the code injections into the source code repositories by considering
both the packages and source code repositories.

Summary: Although current approaches on auditing packages
caught some malicious examples, their focus is on detecting mali-
cious patterns in published artifacts, which may cause many false
alerts. Also, scanning the whole code of an artifact would not be ef-
fective in case of code injection attacks where only a small subset of
code is malicious. Instead, our approach focuses on detecting code
injections in distributed artifacts, thus complementing the current
techniques by reducing the number of code lines to be analyzed to
detect software supply chain attacks.

10 CONCLUSION
We investigated the discrepancies between published artifacts and
source code repositories to understand the risk of malicious injec-
tions during the software release process. Our empirical analysis of
2438 most downloaded PyPI packages shows that there exist differ-
ences between packages in PyPI and the corresponding source code
repositories at different levels of granularity (artifacts, files, and
lines). The differences are attributed to developers and automated
tools (e.g., packaging tools), and could impact the consumers, e.g.,
causing compilation issues or representing a potential for contain-
ing malicious code injections.

The flexible combination of LastPyMile (as input/output fil-
ter) with other security tools offers the possibility to reduce the
number of findings and the time required by vetting processes. We
instructedMalware Checks and Bandit to only consider phan-
tom code as input, and the resulting decrease in false alerts makes
it possible to use LastPyMile as an additional check in the PyPI
vetting processes with minimal impact on review efforts.

A replication package is available at [51] and we plan to submit
LastPyMile as a new check to PyPI.20.

Several issues still remain: malicious code can be hidden in many
other forms, such as webpages (HTML with embedded or exter-
nal JavaScript) or configuration files (requirements.txt with a
malicious dependency). We notice a high number of dependency
declaration files requirements.txt, which contain the list of de-
pendencies to be installed automatically with pip install. This
could be a potential vector for adversaries to add malicious injec-
tions worth further investigations.
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