

Complexity, Cryptography, and Financial Technologies

Lecture 6 – Introduction to Finite Fields and Number Theoretic Reference Problems Chan Nam Ngo

Why do we need to study Finite Fields and the Number Theoretic Reference Problems?

- To be able to
 - understand the construction
 - and prove the security
 - or at least understand the security proof
- of the
 - upcoming cryptographic primitives
- because they are based on Finite Fields and the Number Theoretic Reference Problems

Informally, Finite Field is

- A <u>finite set</u> of <u>numbers</u>
- in which
 - the addition, subtraction, multiplication and division
 - can be carried out without any error
- Finite field is useful for crypto because
 - all arithmetic operations
 - must work without error for cryptography
- Stepping stones to Finite Field
 - Group
 - Ring

Group

- Denoted as {G, +}
 - G is the group
 - + is the binary operation (not necessarily addition)
- As an example,
 - the set of all integers N
 - and the addition operation +
 - is a group, denoted as {N,+}

Group Properties

closure

- if a, b \in G, and c = a + b then c \in G
- $\{N,+\}$ satisfies this? e.g. 3 = 1 + 2; 1,2,3 ∈ N

commutativity (Abelian Group)

- a + b = b + a
- {N,+} satisfies this? e.g. 1 + 2 = 2 + 1

associativity

- (a + b) + c = a + (b + c)
- {N,+} satisfies this? e.g. (1 + 2) + 3 = 1 + (2 + 3)

identity element

- there exists an identity i s.t. for all elements a: a + i = a
- What is the identity i of {N,+}?
 - Hint: 7 + ? = 7

inverse element

- there exists an inverse element b for each element a s.t. a + b = i where i is the identity
- What is the inverse element of 9 in {G,+}?
 - Hint: 9 + ? = 0

Ring

- Denoted as {R,+,*}
 - R is the ring
 - + and * are two binary operations
 - + is normally addition
 - * is normally multiplication
 - Satisfies closure, commutativity, associativity (w.r.t. *)
- {R,+,*} <u>additionally</u> satisfies
 - distributivity (w.r.t *)
 - $a^*(b + c) = a^*b + a^*c$
- Is {N,+,*} a ring?

Field

- Denoted as {F,+,*}
 - F is a field
 - + and * are two binary operations
- A field is a ring with additional properties
 - identity element for *
 - normally denoted as 1
 - if $a \in F$, $a^*1 = a$
 - with regarding to identity element for +
 - normally we denote i as 0
 - if a*b = 0, then a = 0 or b = 0
 - multiplicative inverse
 - if $a \in F \underline{AND} \ a \neq 0$
 - then there exists b
 - such that a*b = 1
- Is {N,+,*} a field?

Modular Arithmetic

Modulo

- Given any integer a, e.g. 7
- and a <u>positive</u> integer n, e.g. 3
- we call a mod n the <u>remainder</u>, e.g. 1
 - $0 < a \mod n < n 1 (0 < 1 < 2)$

• if a mod n is 0 (e.g. a = 6 and n = 3)

- we call n a divisor of a
- and write a | n
- this implies the existence of an integer b where a = b*n (e.g. b = 2)

Congruence

- We call a and b congruent modulo n
- If a mod n = b mod n
- We can write a = b (mod n)
- e.g. $7 = 1 \pmod{3}$, $7 = 8 \pmod{3}$

Finite Field

The modulo n arithmetic

- maps the <u>infinite</u> set of all integers
- into the <u>finite</u> set {0,...,n-1}

Additional properties of modulo n arithmetic

- (a mod n) + (b mod n) = (a + b) mod n
- $(a \mod n) (b \mod n) = (a b) \mod n$
- $(a \mod n) * (b \mod n) = (a * b) \mod n$

Finite Field (2)

- Let us denote {Z,+,*} where
 - $Z = \{0,...,n-1\}$ (the set of integers from 0 to n-1)
 - + and * are modulo n addition and multiplication
- We go ahead and check the properties
 - Commutativity? YES
 - Associativity? YES
 - Distributivity? YES
 - Identity? YES
 - Inverse? Only additive inverse
 - We denote additive inverse of a as –a
 - We denote multiplicative inverse of a as a⁻¹

Why {Z,+,*} is still not a Finite Field?

- Let us denote {Z,+,*} where
 - $Z = \{0,...,n-1\}$ (the set of integers from 0 to n-1)
 - + and * are modulo n addition and multiplication
- {Z,+,*} is not a field ..., let's look at Z₆

a	0	1	2	3	4	5
-a	0	5	4	3	2	1
a ⁻¹	X	1	X	5	2	3

Prime Finite Field

- To make Z_n a finite field, we must
 - guarantee there is a multiplicative inverse
 - for every elements in Z_n
- Multiplicative inverse only exists for elements that are relatively prime to n
 - which means gcd(a,n) = 1
 - where gcd is short for Greatest Common Divisor
 - we can also say a and n are coprimes
 - Euclid's (extended) GCD algorithm for finding gcd(a,n) (Homework!!!)
- We make n a prime, normally we denote such prime finite field as F_p
 - {F_p,+,*} where p is prime is a finite field
 - because all elements in F_p are relatively prime to p
 - To find multiplicative inverse, see Bezout's Identity (Homework!!!)

Primality Testing

- To generate a large prime,
 - randomly pick a large number
 - then run the Miller-Rabin primality test
- Miller-Rabin Primality Test
 - Most commonly used due to practical performance
 - Only a probabilistic assessment of primality
 - if output "not a prime" ("composite") → 100%
 - if output "prime" → may be a prime (probability > ½)
 - Based on Fermat's Little Theorem
 - Let p be a prime
 - If an integer a coprimes p
 - then $a^{p-1} = 1 \pmod{p}$
 - Algorithm
 - Randomly pick a large number n
 - {"composite", "probably prime"} ← Miller-Rabin(n)

{"composite", "probably prime"} ← Miller-Rabin(n)

- Randomly pick an integer a in [1,n-1]
- If a does not coprime n, i.e. gcd(a,n) ≠ 1
 - (e.g. test with Euclid's GCD algorithm)
 - Return "composite"
- Otherwise, write n 1 in the form of 2^rd with d odd
- If a^d = 1 (mod n)
 - Return "probably prime"
- For all i = 0 to r-1 do
 - $\text{ If } (a^{2^i m}) = -1 \pmod{n}$
 - Return "probably prime"
- Return "composite"

{"composite", "probably prime"} ← Miller-Rabin(252601)

- Pick a = 85132
- gcd(85132,252601) = 1
- $252601 1 = 252600 = 2^331575$
- $85132^{31575} = 191102 \neq 1$
- $85132^{2*31575} = 184829 \neq -1$
- $85132^{4*31575} = 1$
- Return "composite"

{"composite", "probably prime"} ← Miller-Rabin(280001)

- Pick a = 105532
- gcd(105532,280001) = 1
- 280001 1 = 280000 = 264375
- $105532^{4375} = 236926 \neq 1$
- $105532^{2*4375} = 168999 \neq -1$
- $105532^{4*4375} = 280000 = -1$
- Return "probably prime"

Discrete Logarithms (DLOG)

- Fix a prime p and a group Z_p
- Let g be a generator of Z_p
 - all elements of Z_p can be obtained from a power of g
 - Z_{11} has a generator g = 2 because
 - $\{2^0 = 1, 2^1 = 2, 2^8 = 3, 2^2 = 4, 2^4 = 5, 2^9 = 6, 2^7 = 7, 2^3 = 8, 2^6 = 9, 2^5 = 10\}$
- Given y, find x s.t. g^x = y
- DLOG solving algorithms
 - p is small, very easy, by exhaustive search
 - p is very large ($\sim 2^{512}$)
 - multiplicative group, hard (sub-exponential)
 - elliptic curve group, very hard (exponential)
 - this is why elliptic curve is important in crypto
 - we will introduce elliptic curve in an upcoming lecture
- Related cryptographic primitives
 - Diffie-Hellman Key Exchange
 - El-Gamal Cryptosystem

DLOG Algorithms - Baby-step Giant-step

- Given y = g^x
- Set m = \sqrt{n} where n is the order of Z_p
 - n is the number of elements in Z_p
- We can write $x = i^*m+j$ ($0 \le i < m$, $0 \le j < m$)
- Hence $g^x = g^{i^*m+j}$
- Construct a table (j, g^j) for 0 ≤ j < m, sorted by g^j
- Set z = y
- For i from 0 to m 1 do
 - If $z = g^j$ for a j in the table (j,g^j)
 - Return x = i*m+j
 - Set $z = z^*g^{-m}$ and continue

DLOG Algorithms - Baby-step Giant-step (2)

- Set m = \sqrt{n} where n is the order of $Z_{\rm p}$
- \rightarrow runtime is $O(\sqrt{n})$ but also requires $O(\sqrt{n})$ storage
- \rightarrow n = 2^{512} 1 \leftarrow runtime is exponential
- Example

$$- p = 113, g = 3, n = 112, y = g^{x} = 57$$

$$- m = \sqrt{112} = 11$$

j	0	1	8	2	5	9	3	7	8	9	10
3 j	1	3	7	9	17	21	27	40	51	63	81

$-z = yg^{-mi}$	i	0	1	2	3	4	5	6	7	8	9
	Z	57	29	100	37	112	55	26	39	2	3

$$\rightarrow$$
 x = 9*11+1 = 100

DLOG Algorithms - Others

Pollard's rho algorithm ← Preferable

- Randomized algorithm based on cycle finding
- Same runtime as Baby-Step Giant-Step but less storage

Pohlig-Hellman algorithm

- Take advantage of factorization of n
- Only efficient if n can be factored to relatively small primes

Index-calculus ← Most powerful

- Only for certain groups
- Algorithm is sophisticated
- Runtime is sub-exponential

Diffie-Hellman (DH) Key Exchange

- Alice and Bob wants to obtain a shared secret key for secure communication
- but Eve can see every information exchanged between Alice and Bob
- Can we construct a protocol such that Eve cannot derive the secret key from the public transcript?
- Based on problems related to DLOG
 - Computational DH
 - Given $a = g^x$, $b = g^y$, find $c = g^{xy}$
 - Decisional DH
 - Given $a = g^x$, $b = g^y$ and $c = g^z$, determine if z = xy

Alice

- Pick random x
- Send g^x to Bob
- Receive g^y
- Compute (g^y)^x

- Pick random y
- Send g^y to Alice
- Receive g^x
- Compute (g^x)^y

Diffie-Hellman (DH) Key Exchange (2)

- Eve sees g^x and g^y
- But Eve cannot compute g^{xy} or g^{yx}
 - Computational DH Assumption
 - Given $a = g^x$, $b = g^y$, find $c = g^{xy}$ is hard

Alice

- Pick random x
- Send g^x to Bob
- Receive g^y
- Compute (g^y)^x

- Pick random y
- Send g^y to Alice
- Receive g^x
- Compute (g^x)^y

Diffie-Hellman (DH) Key Exchange - Example

•
$$p = 23, g = 5$$

Alice

$$- x = 4$$

$$-g^x = 4 \rightarrow To Bob$$

$$- (g^y)^x = 10^4 = 18$$

$$- y = 3$$

- To Alice ←
$$g^y = 10$$

$$-(g^{x})^{y} = 4^{3} = 18$$

Man In The Middle Attack

MITM Attack

- Eve intercepts g^x and g^y
- Eve picks random z and sends g^z to both Alice and Bob
- Eve can compute both g^{yz} and g^{xz}
- Eve can use g^{yz} and g^{xz} to "bridge" the communication between Alice and Bob so they don't find out about the attack
- Alice and Bob can use digital signature to guarantee message authenticity
 - Alice and Bob can tell if the message is indeed from the other party
- but require a Public Key Infrastructure

Alice

- Pick random x
- Send g^x to Eve
- Receive g^z from Eve
- Compute (g^z)^x

- Pick random y
- Send g^y to Eve
- Receive g^z from Eve
- Compute (g^z)^y

El-Gamal Cryptosystem – Public Key Encryption

- (pk,sk) ← KeyGen()
 - Fix a large prime p, a group Z_p and a generator g
 - Randomly pick x in Z_p
 - Compute $y = g^x$
 - Return pk = (p,g,y) and sk = (x)
- $c \leftarrow Enc(pk,m)$
 - Randomly pick r in Z_p
 - Compute $R = g^r$ and $M = my^r = mg^{xr}$
 - Return c = (R,M)
- m = Dec(sk,c)
 - Return $m = M/R^x = mg^{xr}/g^{rx}$

El-Gamal Cryptosystem – Public Key Encryption (2)

- (pk,sk) ← KeyGen()
 - Fix a large prime p, a group Z_p and a generator g
 - Randomly pick x in Z_p
 - Compute $y = g^x$
 - Return pk = (p,g,y) and sk = (x) \leftarrow Eve sees only y = g^x
- $c \leftarrow Enc(pk,m)$
 - Randomly pick r in Z_p
 - Compute $R = g^r$ and $M = my^r = mg^{xr}$
 - Return c = $(R,M) \leftarrow$ Eve sees only g^r and mg^{xr}
- m = Dec(sk,c)
 - Return m = M/R^x = mg^{xr}/g^{rx} ← cannot decrypt without x

El-Gamal Cryptosystem – Public Key Encryption - Example

- (pk,sk) ← KeyGen()
 - p = 809, g = 16
 - x = 68
 - $y = g^{x} = 46$
 - Return pk = (809,16,46) and sk = (68)
- c \leftarrow Enc(pk,100)
 - r = 89
 - $-R = 16^{89} = 342$ and $M = 100*46^{89} = 745$
 - Return c = (342,745)
- m = Dec(sk,c)
 - Return m = $745/342^{68}$ = 100

El-Gamal Cryptosystem – Digital Signature

- (vk,sk) ← KeyGen()
 - Fix a large prime p, a group Z_p and a generator g
 - Randomly pick x in Z_p
 - Compute $y = g^x$
 - Return vk = (p,g,y) and sk = (x)
- $s \leftarrow Sign(sk,m)$
 - Pick k in Z_p s.t. gcd(k,p-1) = 1
 - Compute $R = g^k \pmod{p}$
 - Compute S = $(m-xR)/k \pmod{p-1} = (m-xg^k)/k \rightarrow m = Sk + xR$
 - Return s = (R,S)
- {0,1} ← Verify(vk,s,m)
 - Return 1 if $g^m = y^R R^S \pmod{p-1}$
 - $g^{m} = g^{Sk + xR} = g^{xR} g^{kS} = y^{R} R^{S}$

El-Gamal Cryptosystem – Digital Signature (2)

- (vk,sk) ← KeyGen()
 - Fix a large prime p, a group Z_p and a generator g
 - Randomly pick x in Z_p
 - Compute $y = g^x$
 - Return vk = (p,g,y) and sk = (x) \leftarrow Eve sees only y = g^x
- s ← Sign(sk,m)
 - Pick k in Z_p s.t. gcd(k,p-1) = 1
 - Compute $R = g^k \pmod{p}$
 - Compute $S = (m-xR)/k \pmod{p-1} = (m xg^k)/k$
 - → Eve cannot sign without x
 - Return s = (R,S)
- {0,1} ← Verify(vk,s,m)
 - Return 1 if $g^m = y^R R^S \pmod{p-1}$

El-Gamal Cryptosystem – Digital Signature - Example

(vk,sk) ← KeyGen()

- p = 467, g = 2
- x = 127
- $y = 2^{127} = 132$
- Return vk = (467,2,132) and sk = 127

• $s \leftarrow Sign(sk,100)$

- k = 213 and gcd(213,466) = 1
- $-R = 2^{213} = 29 \pmod{467}$
- $-S = (m-xR)/k = (100-127*29)/213 = 51 \pmod{466}$
- Return s = (29,51)

• {0,1} ← Verify(vk,s,m)

$$-2^{100} = 132^{29} * 29^{51} \pmod{466}$$

Quadratic Residuosity Problem

- Let p be a prime and a be an integer
- Determine if x² = a (mod p) has a solution x
 - a is called a quadratic residue (QR) modulo p if x exists
 - otherwise a is called quadratic non-residue (QNR)
- The Legendre symbol is defined as

$$- \binom{a}{p} = \begin{cases} 1 & \text{if } a \text{ is } a \text{ } QR \\ -1 & \text{if } a \text{ is } a \text{ } QNR \\ 0 & \text{if } a = 0 \text{ } mod \text{ } p \end{cases}$$

- Deciding on QR/QNR
 - p is small, very easy, by exhaustive search
 - p is large, infeasible
 - p is an odd prime,
 - $x^2 = a \pmod{p}$ has a solution x only if $a^{(p-1)/2} = 1 \pmod{p}$

Quadratic Residuosity Problem (2)

- Let N = pq, where p and q are large and <u>unknown</u> primes
- An integer a is QR modulo N if and only if a is QR modulo p and QR modulo q
- The Jacobi symbol is defined as

$$-\binom{a}{N} = \binom{a}{p} \binom{a}{q}$$

- If $\binom{a}{N}$ = 1, a is
 - either a QR modulo p and q ($\binom{a}{p} = \binom{a}{q} = 1$)
 - or QNR modulo p and q ($\binom{a}{p} = \binom{a}{q} = -1$)

Quadratic Residuosity Problem (2)

- Let N = pq where p and q are large and <u>unknown</u> primes
- Given an integer a where $\binom{a}{N}$ = 1, determine whether a is a QR modulo N or not
 - p and q are known, very easy
 - p and q are unknown, very hard
 - The Integer Factorization Problem
- Related cryptographic primitives
 - Goldwasser-Micali Cryptosystem
 - Blum Blum Shub Pseudo Random Generator

Integer Factorization Problem

- also called Factoring
 - Knowing that N = pq with large prime numbers p and q. Find p and q
- Algorithm
 - Trial Division
 - Try small primes up to \sqrt{N}
 - Pollard's rho Factorization algorithm
 - Make use of Floyd's cycle finding algorithm
 - Pollard's p-1 Factorization algorithm
 - Find M s.t. $d = gcd(N,M) \neq 1$, N. Then d will be p.
 - Difference of Squares
 - Find a and b s.t. $N = a^2 b^2$
 - etc.

Difference of Squares

- N = 25217
- b = 1, N + b² = 25217 + 1² = 25218, not a perfect square
- 25217 + 2² = 25221, not a perfect square
- $25217 + 3^2 = 25226$, not a perfect square
- $25217 + 4^2 = 25233$, not a perfect square
- •
- $25217 + 8^2 = 25281 = 159^2$
- 25217 = (159+8)(159-8) = 167*151

Goldwasser-Micali Cryptosystem

UNIVERSITY OF TRENTO

Public Key Bit Encryption

- (pk,sk) ← KeyGen()
 - Fix two large primes p and q
 - Compute N = pq
 - Find a QNR x s.t. $\binom{x}{p} = \binom{x}{q} = -1$ (hence $\binom{x}{N} = 1$)
 - Return pk = (N, x) and sk = (p,q)
- c ← Enc(pk,b)
 - Pick a random r s.t. gcd(r,N) = 1
 - Return $c = r^2x^b$
- b = Dec(sk,c)
 - Return b = 0 if c is QR modulo N (c = $r^2x^0 = r^2$)
 - Otherwise return b = 1 (c = $r^2x^1 = r^2x$)

Goldwasser-Micali Cryptosystem

UNIVERSITY OF TRENTO

Public Key Bit Encryption (2)

- (pk,sk) ← KeyGen()
 - Fix two large primes p and q
 - Compute N = pq
 - Find a QNR x s.t. $\binom{x}{p} = \binom{x}{q} = -1$ (hence $\binom{x}{N} = 1$)
 - Return pk = (N, x) and sk = $(p,q) \leftarrow Eve cannot see p, q$
- c ← Enc(pk,b)
 - Pick a random r s.t. gcd(r,N) = 1
 - Return $c = r^2x^b$
- b = Dec(sk,c)
 - Return b = 0 if c is QR modulo N (c = $r^2x^0 = r^2$)
 - Otherwise return b = 1 (c = r²x¹ = r²x) ← Cannot decide QR modulo p and q without sk

Goldwasser-Micali Cryptosystem

UNIVERSITY OF TRENTO

Example

- (pk,sk) ← KeyGen()
 - -p = 7, q = 11, N = 7*11 = 77
 - -x = 6 and $\binom{6}{7} = \binom{6}{11} = -1$ (hence $\binom{6}{77} = 1$)
 - pk = (77,6) and sk = (7,11)
- c ← Enc(pk,1)
 - r = 2 and gcd(2,77) = 1
 - $-c = 2^{2}6^{1} = 24$
- **b** = **Dec**(**sk**,**c**)
 - $-24^{(7-1)/2}=-1$
 - Return 1

Blum Blum Shub Pseudo Random Generator

- To generate a pseudo random bit sequence b₁, b₂, ... b_n
- Fix two large and secret primes p and q
 - s.t. p = q = 3 (mod 4)
 - guarantee a QR has a square root that is also a QR
- Compute N = pq
- Select a random seed s s.t. gcd(s,N) = 1
- Compute $x_0 = s^2$
- For i from 1 to n do
 - $x_i = (x_{i-1})^2$
 - Set b_i = the least significant bit of x_i
- To predict bit b_{i+1}?
 - Difficult, see the proof in the original paper

Blum Blum Shub Pseudo Random Generator - Example

$$\cdot$$
 n = 5

•
$$p = 11, q = 9$$

•
$$N = 11*9 = 99$$

- s = 3 and gcd(3,99) = 1
- $x_0 = 3^2 = 9$
- $x_1 = 81$, $x_2 = 82$, $x_3 = 36$, $x_4 = 42$, $x_5 = 92$
- Output 110000

Suggested Readings

- Handbook of Applied Cryptography Book by Menezes, C. van Oorschot and Vanstone
 - See
 - Chapter 2 for Finite Fields
 - Chapter 3 for Number Theoretic Reference Problems
 - Chapter 5 for Pseudo Random Generators
 - Chapter 8 for Public Key Cryptosystems
 - Chapter 11 for Digital Signature Schemes
 - Also available on the <u>author's website</u>

Lab on Finite Fields and others

- libsnark will be our main crypto library
 - https://github.com/scipr-lab/libsnark
 - At the beginning we will only make use of libsnark's dependency
 - GMP for arithmetics
 - Boost for multi-threading, etc.
 - Built in Finite Field and Elliptic Curve lib
 - At the end we will use libsnark for implementing zk-SNARK
- Students TODO:
 - Register on Google Classroom
 - Obtain invitation to a private github repo created by instructors
 - Watch for announcement on Google Classrom
 - Pull project templates or some codes (prepared by instructors) from the private github repo
 - e.g. Repo/Lab1/Template
 - Implement something during lab session
 - Submit into a submission folder for each lab session
 - e.g. Repo/Lab1/Student/FirstName_LastName/