
Large-Scale Analysis of Style Injection
by Relative Path Overwrite

Sajjad Arshad
Northeastern University
arshad@ccs.neu.edu

Seyed Ali Mirheidari
University of Trento

seyedali.mirheidari@unitn.it

Tobias Lauinger
Northeastern University

p672@tobias.lauinger.name

Bruno Crispo
University of Trento
bruno.crispo@unitn.it

Engin Kirda
Northeastern University

ek@ccs.neu.edu

William Robertson
Northeastern University

wkr@ccs.neu.edu

ABSTRACT
Relative Path Overwrite (RPO) is a recent technique to inject style
directives into sites even when no style sink or markup injection
vulnerability is present. It exploits differences in how browsers
and web servers interpret relative paths (i.e., path confusion) to
make a HTML page reference itself as a stylesheet; a simple text
injection vulnerability alongwith browsers’ leniency in parsing CSS
resources results in an attacker’s ability to inject style directives that
will be interpreted by the browser. Even though style injection may
appear less serious a threat than script injection, it has been shown
that it enables a range of attacks, including secret exfiltration.

In this paper, we present the first large-scale study of the Web
to measure the prevalence and significance of style injection using
RPO. Our work shows that around 9% of the sites in the Alexa
Top 10,000 contain at least one vulnerable page, out of which more
than one third can be exploited. We analyze in detail various im-
pediments to successful exploitation, and make recommendations
for remediation. In contrast to script injection, relatively simple
countermeasures exist to mitigate style injection. However, there
appears to be little awareness of this attack vector as evidenced by
a range of popular Content Management Systems (CMSes) that we
found to be exploitable.

KEYWORDS
Relative Path Overwrite; Scriptless Attack; Style Injection
ACM Reference Format:
Sajjad Arshad, Seyed Ali Mirheidari, Tobias Lauinger, Bruno Crispo, Engin
Kirda, and William Robertson. 2018. Large-Scale Analysis of Style Injection
by Relative Path Overwrite. In WWW 2018: The 2018 Web Conference, April
23–27, 2018, Lyon, France. ACM, New York, NY, USA, 10 pages. https://doi.
org/10.1145/3178876.3186090

1 INTRODUCTION
Cross-Site Scripting (XSS) [37] attacks are one of the most common
threats on the Web. While XSS has traditionally been understood
as the attacker’s capability to inject script into a site and have it
executed by the victim’s web browser, more recent work has shown

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04.
https://doi.org/10.1145/3178876.3186090

that script injection is not a necessary precondition for effective
attacks. By injecting Cascading Style Sheet (CSS) directives, for
instance, attackers can carry out so-called scriptless attacks [14]
and exfiltrate secrets from a site.

The aforementioned injection attacks typically arise due to the
lack of separation between code and data [11], and more specifically,
insufficient sanitization of untrusted inputs in web applications.
While script injection attacks are more powerful than those based
on style injection, they are also more well-known as a threat, and
web developers are comparatively more likely to take steps to make
themmore difficult. From an attacker’s point of view, style injection
attacks may be an option in scenarios where script injection is not
possible.

There are many existing techniques of how style directives could
be injected into a site [14, 18]. A relatively recent class of attacks
is Relative Path Overwrite (RPO), first proposed in a blog post
by Gareth Heyes [17] in 2014. These attacks exploit the semantic
disconnect between web browsers and web servers in interpreting
relative paths (path confusion). More concretely, in certain settings
an attacker can manipulate a page’s URL in such a way that the
web server still returns the same content as for the benign URL.
However, using the manipulated URL as the base, the web browser
incorrectly expands relative paths of included resources, which can
lead to resources being loaded despite not being intended to be
included by the developer. Depending on the implementation of
the site, different variations of RPO attacks may be feasible. For
example, an attacker could manipulate the URL to make the page
include user-generated content hosted on the same domain [48].
When an injection vulnerability is present in a page, an attacker
could manipulate the URL such that the web page references itself
as the stylesheet, which turns a simple text injection vulnerability
into a style sink [17]. Among these attack instantiations, the latter
variant has preconditions that are comparatively frequently met by
sites. Our work focuses on this variant of RPO.

To date, little is known about how widespread RPO vulnerabili-
ties are on the Web. Especially since the attack is more recent and
less well-known than traditional XSS, we believe it is important
to characterize the extent of the threat and quantify its enabling
factors. In this paper, we present the first in-depth study of style
injection vulnerability using RPO. We extract pages using relative-
path stylesheets from the Common Crawl dataset [9], automatically
test if style directives can be injected using RPO, and determine
whether they are interpreted by the browser. Out of 31 million
pages from 222 thousand Alexa Top 1M sites [3] in the Common

https://doi.org/10.1145/3178876.3186090
https://doi.org/10.1145/3178876.3186090
https://doi.org/10.1145/3178876.3186090

Crawl that use relative-path stylesheets, we find that 377 k pages
(12 k sites) are vulnerable; 11 k pages on 1 k sites can be exploited
in Chrome, and nearly 55 k pages on over 3 k sites can be exploited
in Internet Explorer. We analyze a range of factors that prevent a
vulnerable page from being exploited, and discuss how these could
be used to mitigate these vulnerabilities.

The contributions of this paper are summarized as follows:

• We present the first automated and large-scale study of the
prevalence and significance of RPO vulnerabilities in the
wild.

• We discuss a range of factors that prevent a vulnerability
from being exploited, and find that simple countermeasures
exist to mitigate RPO.

• We link many exploitable pages to installations of Content
Management Systems (CMSes), and notify the vendors.

2 BACKGROUND & RELATEDWORK
The general threat model of Relative Path Overwrite (RPO) resem-
bles that of Cross-Site Scripting (XSS). Typically, the attacker’s goal
is to steal sensitive information from a third-party site or make
unauthorized transactions on the site, such as gaining access to
confidential financial information or transferring money out of a
victim’s account.

The attacker carries out the attack against the site indirectly, by
way of a victim that is an authorized user of the site. The attacker
can trick the victim into following a crafted link, such as when the
victim visits a domain under the attacker’s control and the page
automatically opens the manipulated link, or through search engine
poisoning, deceptive shortened links, or through means of social
engineering.

2.1 Cross-Site Scripting
Many sites have vulnerabilities that let attackers inject malicious
script. Dynamic sites frequently accept external inputs that can be
controlled by an attacker, such as data in URLs, cookies, or forms.
While the site developer’s aim would have been to render the input
as text, lack of proper sanitization can result in the input being
executed as script [40]. The inclusion of unsanitized inputs could
occur on the server side or client side, and in a persistent stored or
volatile reflected way [37]. To the victim’s web browser, the code
appears as originating from the first-party site, thus it is given full
access to the session data in the victim’s browser. Thereby, the
attacker bypasses protections of the Same-Origin Policy.

2.2 Scriptless Attacks
Cross-Site Scripting is perhaps the most well-known web-based
attack, against which many sites defend by filtering user input.
Client-side security mechanisms such as browser-based XSS fil-
ters [5] and Content Security Policy [45, 50] also make it more
challenging for attackers to exploit injection vulnerabilities for XSS.
This has led attackers (and researchers) to investigate potential
alternatives, such as scriptless attacks. These attacks allow sniffing
users’ browsing histories [19, 29], exfiltrating arbitrary content [23],
reading HTML attributes [16, 24], and bypassing Clickjacking de-
fenses [16]. In the following, we highlight two types of scriptless

attacks proposed in the literature. Both assume that an attacker can-
not inject or execute script into a site. Instead, the attacker abuses
features related to Cascading Style Sheets (CSS).

Heiderich et al. [14] consider scenarios where an attacker can
inject CSS into the context of the third-party page so that the style
directives are interpreted by the victim’s browser when displaying
the page. That is, the injection sink is either located inside a style
context, or the attacker can inject markup to create a style context
around the malicious CSS directives. While the CSS standard is in-
tended for styling and layout purposes such as defining sizes, colors,
or background images and as such does not contain any traditional
scripting capabilities, it does provide some context-sensitive fea-
tures that, in combination, can be abused to extract and exfiltrate
data. If the secret to be extracted is not displayed, such as a token
in a hidden form field or link URL, the attacker can use the CSS
attribute accessor and content property to extract the secret and
make it visible as text, so that style directives can be applied to it.
Custom attacker-supplied fonts can change the size of the secret
text depending on its value. Animation features can be used to cycle
through a number of fonts in order to test different combinations.
Media queries or the appearance of scrollbars can be used to imple-
ment conditional style, and data exfiltration by loading a different
URL for each condition from the attacker’s server. Taken together,
Heiderich et al. demonstrate that these techniques allow an attacker
to steal credit card numbers or CSRF tokens [39] without script
execution.

Rather than using layout-based information leaks to exfiltrate
data from a page, Huang et al. [18] show how syntactically lax pars-
ing of CSS can be abused to make browsers interpret an HTML page
as a “stylesheet.” The attack assumes that the page contains two
injection sinks, one before and one after the location of the secret
in the source code. The attacker injects two CSS fragments such as
{}*{background:url(’//attacker.com/? and ’);}, whichmake
the secret a part of the URL that will be loaded from the attacker’s
server when the directive is interpreted. It is assumed that the
attacker cannot inject markup, thus the injected directive is not
interpreted as style when the site is conventionally opened in a
browser. However, the CSS standard mandates that browsers be
very forgiving when parsing CSS, skipping over parts they do not
understand [49]. In practice, this means that an attacker can set up
a site that loads the vulnerable third-party site as a stylesheet. When
the victim visits the attacker’s site while logged in, the victim’s
browser loads the third-party site and interprets the style directive,
causing the secret to be sent to the attacker. To counter this attack,
modern browsers do not load documents with non-CSS content
types and syntax errors as stylesheets when they originate from
a different domain than the including page. Yet, attacks based on
tolerant CSS parsing are still feasible when both the including and
the included page are loaded from the same domain. Relative Path
Overwrite attacks can abuse such a scenario [55].

2.3 Relative Path Overwrite
Relative Path Overwrite vulnerabilities can occur in sites that use
relative paths to include resources such as scripts or stylesheets.
Before a web browser can issue a request for such a resource to the
server, it must expand the relative path into an absolute URL. For

example, assume that a web browser has loaded anHTML document
from http://example.com/rpo/test.php which references a remote
stylesheet with the relative path dist/styles.css. Web browsers treat
URLs as file system-like paths, that is, test.php would be assumed
to be a file within the parent directory rpo/, which would be used
as the starting point for relative paths, resulting in the absolute
URL http://example.com/rpo/dist/styles.css.

However, the browser’s interpretation of the URL may be very
different from how the web server resolves the URL to determine
which resource should be returned to the browser. The URL may
not correspond to an actual server-side file system structure at
all, or the web server may internally rewrite parts of the URL. For
instance, when a web server receives a request for http://example.
com/rpo/test.php/ with an added trailing slash, it may still return
the same HTML document corresponding to the test.php resource.
Yet, to the browser this URL would appear to designate a directory
(without a file name component), thus the browser would request
the stylesheet from http://example.com/rpo/test.php/dist/styles.css.
Depending on the server configuration, this may either result in
an error since no such file exists, or the server may interpret dist/
styles.css as a parameter to the script test.php and return the HTML
document. In the latter case, the HTML document includes itself as
a stylesheet. Provided that the document contains a (text) injection
vulnerability, attackers can carry out the scriptless attacks; since the
stylesheet inclusion is same-origin, the document load is permitted.

The first account of RPO is attributed to a blog post by Gareth
Heyes [17], introducing self-referencing a PHP script with server-
side URL rewriting. Furthermore, the post notes that certain ver-
sions of Internet Explorer allow JavaScript execution from within a
CSS context in the Compatibility View mode [34], escalating style
injection to XSS [54]. Another blog post by Dalili [10] extends the
technique to IIS and ASP.Net applications, and shows how URL-
encoded slashes are decoded by the server but not the browser,
allowing not only self-reference but also the inclusion of differ-
ent resources. Kettle [22] coins the term Path Relative StyleSheet
Import (PRSSI) for a specific subset of RPO attacks, introduces a
PRSSI vulnerability scanner for Burp Suite [7], and proposes coun-
termeasures. Terada [48] provides more exploitation techniques for
various browsers or certain web applications, and [55] discusses an
example chaining several vulnerabilities to result in a combination
of RPO and a double style injection attack. Gil shows how attackers
can deceive web cache servers by using RPO [12, 13]. Some of the
attacks discussed in the various blog posts are custom-tailored to
specific sites or applications, whereas others are more generic and
apply to certain web server configurations or frameworks.

2.4 Preconditions for RPO Style Attacks
For the purpose of this paper, we focus on a generic type of RPO
attack because its preconditions are less specific and are likely met
by a larger number of sites. More formally, we define a page as
vulnerable if:

• The page includes at least one stylesheet using a relative
path.

• The server is set up to serve the same page even if the URL
is manipulated by appending characters that browsers inter-
pret as path separators.

• The page reflects style directives injected into the URL or
cookie. Note that the reflection can occur in an arbitrary
location within the page, and markup or script injection are
not necessary.

• The page does not contain a <base> HTML tag before rela-
tive paths that would let the browser know how to correctly
expand them.

This attack corresponds to style injection by means of a page
that references itself as a stylesheet (PRSSI). Since the “stylesheet”
self-reference is, in fact, an HTML document, web servers would
typically return it with a text/html content type. Browsers in
standards-compliant mode do not attempt to parse documents with
a content type other than CSS even if referenced as a stylesheet,
causing the attack to fail. However, web browsers also support
quirks mode for backwards compatibility with non-standards com-
pliant sites [44]; in this mode, browsers ignore the content type
and parse the document according to the inclusion context only.

We define a vulnerable page as exploitable if the injected style is
interpreted by the browser–that is, if an attacker can force browsers
to render the page in quirks mode. This can occur in two alternative
ways:

• The vulnerable HTML page specifies a document type that
causes the browser to use quirks mode instead of standards
mode. The document type indicates the HTML version and
dialect used by the page; Section 4.3.1 provides details on
how the major web browsers interpret the document types
we encountered during our study.

• Even if the page specifies a document type that would usually
result in standards mode being used, quirks mode parsing
can often be enforced in Internet Explorer [22]. Framed doc-
uments inherit the parsing mode from the parent document,
thus an attacker can create an attack page with an older doc-
ument type and load the vulnerable page into a frame. This
trick only works in Internet Explorer, however, and it may
fail if the vulnerable page uses any anti-framing technique,
or if it specifies an explicit value for the X-UA-Compatible
HTTP header (or equivalent).

Our measurement methodology in Section 3 tests how often
these preconditions hold in the wild in order to quantify the vul-
nerability and exploitability of pages with respect to RPO attacks.

2.5 Related Work
In the previous sections, we surveyed a number of style-based
attacks in the scientific literature, and several blog posts discussing
special cases of RPO. We are not aware of any scholarly work about
RPO, or any research about how prevalent RPO vulnerabilities are
on the Web. To the best of our knowledge, Burp Suite [7] is the first
and only tool that can detect PRSSI vulnerabilities based on RPO
in web applications. However, in contrast to our work, it does not
determine if the vulnerability can be exploited. Furthermore, we
are the first to provide a comprehensive survey of how widespread
RPO style vulnerabilities and exploitabilities are in the wild.

http://example.com/rpo/test.php
dist/styles.css
test.php
rpo/
http://example.com/rpo/dist/styles.css
http://example.com/rpo/test.php/
http://example.com/rpo/test.php/
test.php
http://example.com/rpo/test.php/dist/styles.css
dist/styles.css
dist/styles.css
test.php

The separate class of script-based attacks has been studied ex-
tensively, such as systematic analysis of XSS sanitization frame-
works [53], detecting XSS vulnerabilities in Rich Internet Applica-
tions [2], large-scale detection of DOM-based XSS [27, 30], and by-
passing XSS mitigations by Script Gadgets [25, 26]. An array of XSS
preventionmechanisms have been proposed, such as XSS Filter [41],
XSS-Guard [6], SOMA [36], BluePrint [31], Document Structure
Integrity [35], XSS Auditor [5], NoScript [32], Context-Sensitive
Auto-Sanitization (CSAS) [43], DOM-based XSS filtering using run-
time taint tracking [46], preventing script injection through soft-
ware design [20], Strict CSP [52], and DOMPurify [15]. However,
the vulnerability measurements and proposed countermeasures of
these works on script injection do not apply to RPO-based style
injection.

3 METHODOLOGY
Ourmethodology consists of threemain phases.We seed our system
with pages from the Common Crawl archive to extract candidate
pages that include at least one stylesheet using a relative path.
To determine whether these candidate pages are vulnerable, we
attempt to inject style directives by requesting variations of each
page’s URL to cause path confusion and test whether the generated
response reflects the injected style directives. Finally, we test how
often vulnerable pages can be exploited by checking whether the
reflected style directives are parsed and used for rendering in a web
browser.

3.1 Candidate Identification
For finding the initial seed set of candidate pages with relative-path
stylesheets, we leverage the Common Crawl from August 2016,
which contains more than 1.6 billion pages. By using an existing
dataset, we can quickly identify candidate pages without creating
any web crawl traffic.We use a Java HTML parser to filter any pages
containing only inline CSS or stylesheets referenced by absolute
URLs, leaving us with over 203 million pages on nearly 6 million
sites. For scalability purposes, we further reduce the set of candidate
pages in two steps:

(1) We retain only pages from sites listed in the Alexa Top 1
million ranking, which reduces the number of candidate
pages to 141 million pages on 223 thousand sites. In doing so,
we bias our result toward popular sites–that is, sites where
attacks could have a larger impact because of the higher
number of visitors.

(2) We observed thatmany sites use templates customized through
query strings or path parameters. We expect these templates
to cause similar vulnerability and exploitability behavior for
their instantiations, thus we can speed up our detection by
grouping URLs using the same template, and testing only
one random representative of each group.
In order to group pages, we replace all the values of query
parameters with constants, and we also replace any number
identifier in the path with a constant. We group pages that
have the same abstract URL as well as the same document
type in the Common Crawl dataset. For example, we would
group example.com/?lang=en and example.com/?lang=fr.

Since our methodology contains a step during which we actively
test whether a vulnerability can be exploited, we remove from the
candidate set all pages hosted on sites in .gov, .mil, .army, .navy,
and .airforce. The final candidate set consists of 137 million pages
(31 million page groups) on 222 thousand sites.

3.2 Vulnerability Analysis
To determine whether a candidate page is vulnerable, we imple-
mented a lightweight crawler based on the Python Requests module.
At a high level, the crawler simulates how a browser expands rela-
tive paths and tests whether style directives can be injected into
the resources loaded as stylesheets using path confusion.

For each page group from the candidate set, the crawler randomly
selects one representative URL andmutates it according to a number
of techniques explained below. Each of these techniques aims to
cause path confusion and taints page inputs with a style directive
containing a long unique, random string. The crawler requests the
mutated URL from the server and parses the response document,
ignoring resources loaded in frames. If the response contains a
<base> tag, the crawler considers the page not vulnerable since the
<base> tag, if used correctly, can avoid path confusion. Otherwise,
the crawler extracts all relative stylesheet paths from the response
and expands them using the mutated URL of the main page as the
base, emulating how browsers treat relative paths (see Section 2.3).
The crawler then requests each unique stylesheet URL until one
has been found to reflect the injected style in the response.

The style directive we inject to test for reflection vulnerabilities
is shown in the legend of Figure 1. The payload begins with an
encoded newline character, as we observed that the presence of a
newline character increases the probability of a successful injection.
We initially use %0A as the newline character, but also test %0C and
%0D in case of unsuccessful injection. The remainder of the payload
emulates the syntax of a simple CSS directive and mainly consists
of a randomly generated string used to locate the payload in the
body of the server response. If the crawler finds a string match of
the injected unique string, it considers the page vulnerable.

In the following, we describe the various URL mutation tech-
niques we use to inject style directives. All techniques also use
RPO so that instead of the original stylesheet files, browsers load
different resources that are more likely to contain an injection vul-
nerability. Conceptually, the RPO approaches we use assume some
form of server-side URL rewriting as described in Section 2.3. That
is, the server internally resolves a crafted URL to the same script
as the “clean” URL. Under that assumption, the path confusion
caused by RPO would result in the page referencing itself as the
stylesheet when loaded in a web browser. However, this assump-
tion is only conceptual and not necessary for the attack to succeed.
For servers that do not internally rewrite URLs, our mutated URLs
likely cause error responses since the URLs do not correspond to
actual files located on these servers. Error responses are typically
HTML documents and may contain injection sinks, such as when
they display the URL of the file that could not be found. As such,
server-generated error responses can be used for the attack in the
same way as regular pages.

example.com/?lang=en
example.com/?lang=fr

/page.asp
/page.asp/PAYLOAD //
/page.asp/PAYLOAD/style.css

(a) Path Parameter (Simple)

/page.php/param1/param2
/page.php/PAYLOAD param1/PAYLOAD param2 //
/page.php/PAYLOAD param1/PAYLOAD param2/style.css

(b) Path Parameter (PHP or ASP)

/page.jsp;param1;param2
/page.jsp;PAYLOAD param1;PAYLOAD param2 //
/page.jsp;PAYLOAD param1;PAYLOAD param2/style.css

(c) Path Parameter (JSP)

/dir/page.aspx
/PAYLOAD /..%2Fdir/PAYLOAD /..%2Fpage.aspx//
/PAYLOAD /..%2Fdir/PAYLOAD /..%2Fpage.aspx/style.css

(d) Encoded Path

/page.html?k1=v1&k2=v2
/page.html%3Fk1=PAYLOAD v1&k2=PAYLOAD v2//
/page.html%3Fk1=PAYLOAD v1&k2=PAYLOAD v2/style.css

(e) Encoded Query

/page.php?key=value
/page.php//?key=value
/page.php/style.css

Original Cookie: k1=v1; k2=v2
Crafted Cookie: k1=PAYLOAD v1; k2=PAYLOAD v2

(f) Cookie

Figure 1: Various techniques of path confusion and style in-
jection. In each example, the first URL corresponds to the
regular page, and the second one to the page URL crafted
by the attacker. Each HTML page is assumed to reference
a stylesheet at ../style.css, resulting in the browser expand-
ing the stylesheet path as shown in the third URL. PAY-
LOAD corresponds to %0A{}body{background:NONCE} (simpli-
fied), where NONCE is a randomly generated string.

Our URLmutation techniques differ in how they attempt to cause
path confusion and inject style directives by covering different URL
conventions used by a range of web application platforms.

Path Parameter. A number of web frameworks such as PHP,
ASP, or JSP can be configured to use URL schemes that encode script
input parameters as a directory-like string following the name of the
script in the URL. Figure 1a shows a generic example where there is
no parameter in the URL. Since the crawler does not know the name
of valid parameters, it simply appends the payload as a subdirectory
to the end of the URL. In this case, content injection can occur if the
page reflects the page URL or referrer into the response. Note that in
the example, we appended two slashes so that the browser does not
remove the payload from the URL when expanding the stylesheet
reference to the parent directory (../style.css). In the actual crawl,
we always appended twenty slashes to avoid having to account for
different numbers of parent directories. We did not observe relative

paths using large numbers of ../ to reference stylesheets, thus we
are confident that twenty slashes suffice for our purposes.

Different web frameworks handle path parameters slightly dif-
ferently, which is why we distinguish a few additional cases. If
parameters are present in the URL, we can distinguish these cases
based on a number of regular expressions that we generated. For
example, parameters can be separated by slashes (Figure 1b, PHP or
ASP) or semicolons (Figure 1c, JSP). When the crawler detects one
of these known schemes, it injects the payload into each parameter.
Consequently, in addition to URL and referrer reflection, injection
can also be successful when any of the parameters is reflected in
the page.

Encoded Path. This technique targets web servers such as IIS
that decode encoded slashes in the URL for directory traversal,
whereas web browsers do not. Specifically, we use %2F, an encoded
version of ‘/’, to inject our payload into the URL in such a way that
the canonicalized URL is equal to the original page URL (see Fig-
ure 1d). Injection using this technique succeeds if the page reflects
the page URL or referrer into its output.

Encoded Query. Similar to the technique above, we replace the
URL query delimiter ‘?’ with its encoded version %3F so that web
browsers do not interpret it as such. In addition, we inject the
payload into every value of the query string, as can be seen in
Figure 1e. CSS injection happens if the page reflects either the URL,
referrer, or any of the query values in the HTML response.

Cookie. Since stylesheets referenced by a relative path are lo-
cated in the same origin as the referencing page, its cookies are
sent when requesting the stylesheet. CSS injection may be possible
if an attacker can create new cookies or tamper with existing ones
(a strong assumption compared to the other techniques), and if the
page reflects cookie values in the response. As shown in Figure 1f,
the URL is only modified by adding slashes to cause path confu-
sion. The payload is injected into each cookie value and sent by the
crawler as an HTTP header.

3.3 Exploitability Analysis
Once a page has been found to be vulnerable to style injection
using RPO, the final step is to verify whether the reflected CSS in
the response is evaluated by a real browser. To do so, we built a
crawler based on Google Chrome, and used the Remote Debugging
Protocol [1] to drive the browser and record HTTP requests and re-
sponses. In addition, we developed a Chrome extension to populate
the cookie header in CSS stylesheet requests with our payload.

In order to detect exploitable pages, we crawled all the pages from
the previous section that had at least one reflection. Specifically, for
each page we checked which of the techniques in Figure 1 led to
reflection, and crafted the main URL with a CSS payload. The CSS
payload used to verify exploitability is different from the simple
payload used to test reflection. Specifically, the style directive is
prefixed with a long sequence of } and] characters to close any
preceding open curly braces or brackets that may be located in
the source code of the page, since they might prevent the injected
style directive from being parsed correctly. The style directive uses
a randomly-generated URL to load a background image for the
HTML body. We determine whether the injected style is evaluated

../style.css
../style.css
../

by checking the browser’s network traffic for an outgoing HTTP
request for the image.

OverridingDocument Types. Reflected CSS is not always inter-
preted by the browser. One possible explanation is the use of a mod-
ern document type in the page, which does not cause the browser
to render the page in quirks mode. Under certain circumstances, In-
ternet Explorer allows a parent page to force the parsing mode of a
framed page into quirks mode [22]. To test how often this approach
succeeds in practice, we also crawled vulnerable pages with Inter-
net Explorer 11 by framing them while setting X-UA-Compatible
to IE=EmulateIE7 via a meta tag in the attacker’s page.

3.4 Limitations
RPO is a class of attacks and our methodology covers only a subset
of them. We target RPO for the purpose of style injection using an
HTML page referencing itself (or, accidentally, an error page) as
the stylesheet. In terms of style injection, our crawler only looks
for reflection, not stored injection of style directives. Furthermore,
manual analysis of a site might reveal more opportunities for style
injection that our crawler fails to detect automatically.

For efficiency reasons, we seed our analysis with an existing
Common Crawl dataset. We do not analyze the vulnerability of
pages not contained in the Common Crawl seed, which means that
we do not cover all sites, and we do not fully cover all pages within
a site. Consequently, the results presented in this paper should be
seen as a lower bound. If desired, our methodology can be applied
to individual sites in order to analyze more pages.

3.5 Ethical Considerations
One ethical concern is that the injected CSS might be stored on
the server instead of being reflected in the response, and it could
break sites as a result. We took several cautionary steps in order to
minimize any damaging side effects on sites we probed. First, we did
not try to login to the site, and we only tested RPO on the publicly
available version of the page. In addition, we only requested pages
by tainting different parts of the URL, and did not submit any forms.
Moreover, we did not click on any button or link in the page in
order to avoid triggering JavaScript events. These steps significantly
decrease the chances that injected CSS will be stored on the server.
In order to minimize the damaging side effects in case our injected
CSS was stored, the injected CSS is not a valid style directive, and
even if it is stored on the server, it will not have any observable
effect on the page.

In addition, experiment resulted in the discovery of vulnerable
content management systems (CMSes) used world-wide, and we
contacted them so they can fix the issue. We believe the real-world
experiments that we conducted were necessary in order to measure
the risk posed by these vulnerabilities and inform site owners of
potential risks to their users.

4 ANALYSIS
For the purposes of our analysis, we gradually narrow down the
seed data from the Common Crawl to pages using relative style
paths in the Alexa Top 1M, reflecting injected style directives under
RPO, and being exploitable due to quirks mode rendering.

Table 1: Narrowing down the Common Crawl to the candi-
date set used in our analysis (from left to right).

Relative CSS Alexa Top 1M Candidate Set

All Pages 203,609,675 141,384,967 136,793,450
Tested Pages 53,725,270 31,448,446 30,991,702
Sites 5,960,505 223,212 222,443
Doc. Types 9,833 2,965 2,898

Table 1 shows a summary of our dataset. Tested Pages refers to the
set of randomly selected pages from the page groups as discussed
in Section 3.1. For brevity, we are referring to Tested Pages wherever
we mention pages in the remainder of the paper.

4.1 Relative Stylesheet Paths
To assess the extent to which our Common Crawl-seeded candidate
set covers sites of different popularity, consider the hatched bars
in Figure 2. Six out of the ten largest sites according to Alexa are
represented in our candidate set. That is, they are contained in the
Common Crawl, and have relative style paths. The figure shows
that our candidate set contains a higher fraction of the largest sites
and a lower fraction of the smaller sites. Consequently, our results
better represent the most popular sites, which receive most visitors,
and most potential victims of RPO attacks.

While all the pages in the candidate set contain at least one
relative stylesheet path, Figure 3 shows that 63.1 % of them contain
multiple relative paths, which increases the chances of finding a
successful RPO and style injection point.

4.2 Vulnerable Pages
We consider a candidate page vulnerable if one of the style injec-
tion techniques of Section 3.2 succeeds. In other words, the server’s
response should reflect the injected payload. Furthermore, we con-
servatively require that the response not contain a base tag since a
correctly configured base tag can prevent path confusion.

Table 2 shows that 1.2 % of pages are vulnerable to at least one
of the injection techniques, and 5.4 % of sites contain at least one
vulnerable page. The path parameter technique is most effective
against pages, followed by the encoded query and the encoded path
techniques. Sites that are ranked higher according to Alexa are more
likely to be vulnerable, as shown in Figure 2, where vulnerable and
exploitable sites are relative to the candidate set in each bucket.
While one third of the candidate set in the Top 10 (two out of six
sites) is vulnerable, the percentage oscillates between 8 and 10%
among the Top 100 k. The candidate set is dominated by the smaller
sites in the ranks between 100 k and 1M, which have a vulnerability
rate of 4.9 % and push down the average over the entire ranking.

A base tag in the server response can prevent path confusion
because it indicates how the browser should expand relative paths.
We observed a number of inconsistencies with respect to its use.
At first, 603 pages on 60 sites contained a base tag in their re-
sponse; however, the server response after injecting our payload
did not contain the tag anymore, rendering these pages potentially
exploitable. Furthermore, Internet Explorer’s implementation of
the base tag appears to be broken. When such a tag is present,
Internet Explorer fetches two URLs for stylesheets—one expanded

0-10 10-100 100-1K 1K-10K 10K-100K 100K-1M

Alexa Rank

0

10

20

30

40

50

60

70

%
o

f
S

it
es

Candidate Set

Vulnerable

Exploitable

Figure 2: Percentage of the Alexa site
ranking in our candidate set (exponen-
tially increasing bucket size).

100 101 102

of Relative Stylesheets

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Pages

Sites

Figure 3: CDF of total and maximum
number of relative stylesheets per web
page and site, respectively.

100 101 102 103

Doc. Type Rank

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

#
o

f
S

it
es

Quirks Mode

Standard Mode

Figure 4: Number of sites containing at
least one page with a certain document
type (ordered by doctype rank).

Table 2: Vulnerable/exploitable pages and sites in the candidate set (IE using framing).

Technique Vulnerable Exploitable (Chrome) Exploitable (Internet Explorer)

Pages Sites Pages Sites Pages Sites

Path Parameter 309,079 (1.0%) 9,136 (4.1%) 6,048 (<0.1%) 1,025 (0.5%) 52,344 (0.2%) 3,433 (1.5%)
Encoded Path 53,502 (0.2%) 1,802 (0.8%) 3 (<0.1%) 2 (<0.1%) 24 (<0.1%) 5 (<0.1%)
Encoded Query 89,757 (0.3%) 1,303 (0.6%) 23 (<0.1%) 20 (<0.1%) 137 (<0.1%) 43 (<0.1%)
Cookie 15,656 (<0.1%) 1,030 (0.5%) 4,722 (<0.1%) 81 (<0.1%) 2,447 (<0.1%) 238 (0.1%)

Total 377,043 (1.2%) 11,986 (5.4%) 10,781 (<0.1%) 1,106 (0.5%) 54,853 (0.2%) 3,645 (1.6%)

Table 3: Quirks mode document types by browser.

Browser Version Operating System Doc. Types

Chrome 55 Ubuntu 16.04 1,378 (31.9 %)
Opera 42 Ubuntu 16.04 1,378 (31.9 %)
Safari 10 macOS Sierra 1,378 (31.9 %)

Firefox 50 Ubuntu 16.04 1,326 (30.7 %)

Edge 38 Windows 10 1,319 (30.5 %)
Internet Explorer 11 Windows 7 1,319 (30.5 %)

according to the base URL specified in the tag, and one expanded
in the regular, potentially “confused” way of using the page URL
as the base. In our experiments, Internet Explorer always applied
the “confused” stylesheet, even when the one based on the base
tag URL loaded faster. Consequently, base tags do not appear to be
an effective defense against RPO in Internet Explorer (They seem
to work as expected in other browsers, including Edge).

4.3 Exploitable Pages
To test whether a vulnerable page was exploitable, we opened it in
Chrome, injected a style payloadwith an image reference (randomly
generated URL), and checked if the image was indeed loaded. This
test succeeded for 2.9 % of vulnerable pages; 0.5 % of sites in the
candidate set had at least one exploitable page (Table 2).

In the following, we explore various factors that may impact
whether a vulnerable page can be exploited, and we show how
some of these partial defenses can be bypassed.

Table 4: Most frequent document types causing all browsers
to render in quirksmode, as well as the sites that use at least
one such document type.

Doc. Type (shortened) Pages Sites

(none) 1,818,595 (5.9 %) 56,985 (25.6 %)
"-//W3C//DTD HTML 4.01 Transitional//EN" 721,884 (2.3 %) 18,648 (8.4 %)
"-//W3C//DTD HTML 4.0 Transitional//EN" 385,656 (1.2 %) 11,566 (5.2 %)
"-//W3C//DTD HTML 3.2 Final//EN" 22,019 (<0.1 %) 1,175 (0.5 %)
"-//W3C//DTD HTML 3.2//EN" 10,839 (<0.1 %) 927 (0.4 %)

All 3,046,449 (9.6 %) 71,597 (32.2 %)

4.3.1 Document Types. HTML document types play a signifi-
cant role in RPO-based style injection attacks because browsers
typically parse resources with a non-CSS content type in a CSS
context only when the page specifies an ancient or non-standard
HTML document type (or none at all). The pages in our candidate
set contain a total of 4,318 distinct document types. However, the
majority of these unique document types are not standardized and
differ from the standardized ones only by small variations, such as
forgotten spaces or misspellings.

To determine how browsers interpret these document types
(i.e., whether they cause them to render a page in standards or
quirks mode), we designed a controlled experiment. For each unique
document type, we set up a local page with a relative stylesheet path
and carried out an RPO attack to inject CSS using a payload similar
to what we described in Section 3.2. We automatically opened
the local page in Chrome, Firefox, Edge, Internet Explorer, Safari,
and Opera, and we kept track of which document type caused the

Table 5: Summary of document type usage in sites.

Doc. Type At Least One Crawled Page All Crawled Pages

None 56,985 (25.6%) 19,968 (9.0%)
Quirks 27,794 (12.5%) 7,720 (3.5%)
None or Quirks 71,597 (32.2%) 30,040 (13.5%)

Standards 192,403 (86.5%) 150,846 (67.8%)

injected CSS to be parsed and the injected background image to be
downloaded.

Table 3 contains the results of this experiment. Even though
the exact numbers vary among browsers, roughly a third of the
unique document types we encountered result in quirks mode ren-
dering. Not surprisingly, both Microsoft products Edge and Internet
Explorer exhibit identical results, whereas the common Webkit
ancestry of Chrome, Opera, and Safari also show identical results.
Overall, 1,271 (29.4 %) of the unique document types force all the
browsers into quirks mode, whereas 1,378 (31.9 %) of them cause at
least one browser to use quirks mode rendering. Table 4 shows the
most frequently used document types that force all the browsers
into quirks mode, which includes the absence of a document type
declaration in the page.

To test how often Internet Explorer allows a page’s document
type to be overridden when loading it in an iframe, we created
another controlled experiment using a local attack page framing the
victim page, as outlined in Section 3.3. Using Internet Explorer 11,
we loaded our local attack page for each unique document type
inside the frame, and tested if the injected CSS was parsed. While
Internet Explorer parsed the injected CSS for 1,319 (30.5 %) of the
document types in the default setting, the frame override trick
caused CSS parsing for 4,248 (98.4 %) of the unique document types.

While over one thousand document types result in quirks mode,
and around three thousand document types cause standards mode
parsing, the number of document types that have been standardized
is several orders of magnitude smaller. In fact, only a few (standard-
ized) document types are used frequently in pages, whereas the
majority of unique document types are used very rarely. Figure 4
shows that only about ten standards and quirks mode document
types are widely used in pages and sites. Furthermore, only about
9.6 % of pages in the candidate set use a quirks mode document
type; on the remaining pages, potential RPO style injection vulner-
abilities cannot be exploited because the CSS would not be parsed
(unless Internet Explorer is used). However, when grouping pages
in the candidate set by site, 32.2 % of sites contain at least one page
rendered in quirks mode (Table 5), which is one of the preconditions
for successful RPO.

4.3.2 Internet Explorer Framing. We showed above that by load-
ing a page in a frame, Internet Explorer can be forced to disregard
a standards mode document type that would prevent interpretation
of injected style. To find out how often this technique can be applied
for successful RPO attacks, we replicated our Chrome experiment
in Internet Explorer, this time loading each vulnerable page inside
a frame. Around 14.5 % of vulnerable pages were exploitable in
Internet Explorer, five times more than in Chrome (1.6 % of the sites
in the candidate set).

Figure 2 shows the combined exploitability results for Chrome
and Internet Explorer according to the rank of the site. While our
methodology did not find any exploitable vulnerability on the six
highest-ranked sites in the candidate set, between 1.6 % and 3.2 %
of candidate sites in each remaining bucket were found to be ex-
ploitable. The highest exploitability rate occurred in the ranks 1 k
through 10 k.

Broken down by injection technique, the framing trick in Internet
Explorer results in more exploitable pages for each technique except
for cookie injection (Table 2). One possible explanation for this
difference is that the Internet Explorer crawl was conducted one
month after the Chrome crawl, and sites may have changed in the
meantime. Furthermore, we observed two additional impediments
to successful exploitation in Internet Explorer that do not apply
to Chrome. The framing technique is susceptible to frame-busting
methods employed by the framed pages, and Internet Explorer
implements an anti-MIME-sniffing header that Chrome appears to
ignore. We analyze these issues below.

4.3.3 Anti-Framing Techniques. Some sites use a range of tech-
niques to prevent other pages from loading them in a frame [42].
One of these techniques is the X-Frame-Options header. It accepts
three different values: DENY, SAMEORIGIN, and ALLOW-FROM followed
by a whitelist of URLs.

In the vulnerable dataset, 4,999 pages across 391 sites use this
header correctly and as a result prevent the attack. However, 1,900
pages across 34 sites provide incorrect values for this header, and
we successfully attack 552 pages on 2 sites with Internet Explorer.

A related technique is the frame-ancestors directive provided
by Content Security Policy. It defines a (potentially empty) whitelist
of URLs allowed to load the current page in a frame, similar to
ALLOW-FROM. However, it is not supported by Internet Explorer,
thus it cannot be used to prevent the attack.

Furthermore, developers may use JavaScript code to prevent
framing of a page. Yet, techniques exist to bypass this protec-
tion [38]. In addition, the attacker can use the HTML 5 sandbox
attribute in the iframe tag and omit the allow-top-navigation
directive to render JavaScript frame-busting code ineffective. How-
ever, we did not implement any of these techniques to allow framing,
which means that more vulnerable pages could likely be exploited
in practice.

4.3.4 MIME Sniffing. A consequence of self-reference in the
type of RPO studied in this paper is that the HTTP content type
of the fake “stylesheet” is text/html rather than the expected
text/css. Because many sites contain misconfigured content types,
many browsers attempt to infer the type based on the request
context or file extension (MIME sniffing), especially in quirks mode.
In order to ask the browser to disable content sniffing and refuse
interpreting data with an unexpected or wrong type, sites can set
the header X-Content-Type-Options: nosniff [4, 21, 33].

To determine whether the injected CSS is still being parsed and
executed in presence of this header while the browser renders in
quirks mode, we ran an experiment similar to Section 4.3.1. For
each browser in Table 3, we extracted the document types in which
the browser renders in quirks mode, and for each of them, we set
up a local page with a relative stylesheet path. We then opened the

page in the browser, launched an RPO attack, and monitored if the
injected CSS was executed.

Only Firefox, Internet Explorer, and Edge respected this header
and did not interpret injected CSS in any of the quirks mode docu-
ment types. The remaining browsers did not block the stylesheet
even though the content type was not text/css. With an addi-
tional experiment, we confirmed that Internet Explorer blocked our
injected CSS payload when nosniff was set, even in the case of
the framing technique.

Out of all the vulnerable pages, 96,618 pages across 232 sites had
a nosniff response header; 23 pages across 10 sites were confirmed
exploitable in Chrome but not in Internet Explorer, since the latter
browser respects the header while the former does not.

4.4 Content Management Systems
While analyzing the exploitable pages in our dataset, we noticed
that many appeared to belong to well-known CMSes. Since these
web applications are typically installed on thousands of sites, fixing
RPO weaknesses in these applications could have a large impact.

To identify CMSes, we visited all exploitable pages using Wappa-
lyzer [51]. Additionally, we detected two CMSes that were not sup-
ported by Wappalyzer. Overall, we identified 23 CMSes on 41,288
pages across 1,589 sites. Afterwards, we manually investigated
whether the RPO weakness stemmed from the CMS by installing
the latest version of each CMS (or using the online demo), and
testing whether exploitable paths found in our dataset were also
exploitable in the CMS. After careful analysis, we confirmed four
CMSes to be exploitable in their most recent version that are being
used by 40,255 pages across 1,197 sites.

Out of the four exploitable CMSes, one declares no document
type and one uses a quirks mode document type. These two CMSes
can be exploited in Chrome, whereas the remaining two can be
exploited with the framing trick in Internet Explorer. Beyond the
view of our Common Crawl candidate set, Wappalyzer detected
nearly 32 k installations of these CMSes across the Internet, which
suggests that many more sites could be attacked with RPO. We
reported the RPO weaknesses to the vendors of these CMSes using
recommended notification techniques [8, 28, 47]. Thus far, we heard
back from one of the vendors, who acknowledged the vulnerability
and are going to take the necessary steps to fix the issue. However,
we have not received any response from the other vendors.

5 MITIGATION TECHNIQUES
Relative path overwrites rely on theweb server and theweb browser
interpreting URLs differently. HTML pages can use only absolute (or
root-relative) URLs, which removes the need for the web browser
to expand relative paths. Alternatively, when the HTML page con-
tains a <base> tag, browsers are expected to use the URL provided
therein to expand relative paths instead of interpreting the current
document’s URL. Both methods can remove ambiguities and render
RPO impossible if applied correctly. Specifically, base URLs must
be set according to the server’s content routing logic. If develop-
ers choose to calculate base URLs dynamically on the server side
rather than setting them manually to constant values, there is a risk
that routing-agnostic algorithms could be confused by manipulated
URLs and re-introduce attack opportunities by instructing browsers

to use an attacker-controlled base URL. Furthermore, Internet Ex-
plorer does not appear to implement this tag correctly.

Web developers can reduce the attack surface of their sites by
eliminating any injection sinks for strings that could be interpreted
as a style directive. However, doing so is challenging because in
the attack presented in this paper, style injection does not require a
specific sink type and does not need the ability of injecting markup.
Injection can be accomplished with relatively commonly used char-
acters, that is, alphanumeric characters and (){}/". Experience
has shown that despite years of efforts, even context-sensitive and
more special character-intensive XSS injection is still possible in
many sites, which leads us to believe that style injection will be
similarly difficult to eradicate. Even when all special characters
in user input are replaced by their corresponding HTML entities
and direct style injection is not possible, more targeted RPO attack
variants referencing existing files may still be feasible. For instance,
it has been shown that user uploads of seemingly benign profile
pictures can be used as “scripts” (or stylesheets) [48].

Instead of preventing RPO and style injection vulnerabilities,
the most promising approach could be to avoid exploitation. In
fact, declaring a modern document type that causes the HTML
document to be rendered in standards mode makes the attack fail
in all browsers except for Internet Explorer. Web developers can
harden their pages against the frame-override technique in Inter-
net Explorer by using commonly recommended HTTP headers:
X-Content-Type-Options to disable “content type sniffing” and
always use the MIME type sent by the server (which must be con-
figured correctly), X-Frame-Options to disallow loading the page
in a frame, and X-UA-Compatible to turn off Internet Explorer’s
compatibility view.

6 CONCLUSION
This paper presented a systematic study of CSS injection by RPO
in the wild. We showed that over 5 % of sites in the intersection
of the Common Crawl and the Alexa Top 1M are vulnerable to at
least one injection technique. While the number of exploitable sites
depends on the browser and is much smaller in relative terms, it
is still consequential in absolute terms with thousands of affected
sites. RPO is a class of attacks, and our automated crawler tested
for only a subset of conceivable attacks. Therefore, the results of
our study should be seen as a lower bound; the true number of
exploitable sites is likely higher.

Compared to XSS, it is much more challenging to avoid injection
of style directives. Yet, developers have at their disposal a range
of simple mitigation techniques that can prevent their sites from
being exploited in modern browsers.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation (NSF)
under grant CNS-1703454 award, and Secure Business Austria.

REFERENCES
[1] 2017. Chrome Remote Debugging Protocol. https://chromedevtools.github.io/

devtools-protocol/. (2017).
[2] Steven Van Acker, Nick Nikiforakis, Lieven Desmet, Wouter Joosen, and Frank

Piessens. 2012. FlashOver: Automated Discovery of Cross-site Scripting Vul-
nerabilities in Rich Internet Applications. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS).

https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/

[3] Alexa. 2016. Top Sites. http://www.alexa.com/topsites. (2016).
[4] Adam Barth, Juan Caballero, and Dawn Song. 2009. Secure Content Sniffing

for Web Browsers, or How to Stop Papers from Reviewing Themselves. In IEEE
Symposium on Security and Privacy (S&P).

[5] Daniel Bates, Adam Barth, and Collin Jackson. 2010. Regular Expressions Con-
sidered Harmful in Client-Side XSS Filters. In International World Wide Web
Conference (WWW).

[6] Prithvi Bisht and V. N. Venkatakrishnan. 2008. XSS-GUARD: Precise Dynamic
Prevention of Cross-Site Scripting Attacks. In Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA).

[7] Burp Suite. 2017. https://portswigger.net/burp/. (2017).
[8] Orcun Cetin, Carlos Ganan, Maciej Korczynski, andMichel van Eeten. 2017. Make

Notifications Great Again: Learning How to Notify in the Age of Large-Scale
Vulnerability Scanning. In Workshop on the Economics of Information Security
(WEIS).

[9] Common Crawl. 2016. https://commoncrawl.org/. (August 2016).
[10] Soroush Dalili. 2015. Non-Root-Relative Path Overwrite (RPO) in

IIS and .Net Applications. https://soroush.secproject.com/blog/2015/02/
non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/. (2015).

[11] AdamDoupe,Weidong Cui, Mariusz H. Jakubowski, Marcus Peinado, Christopher
Kruegel, and Giovanni Vigna. 2013. deDacota: Toward Preventing Server-Side
XSS via Automatic Code and Data Separation. In ACM Conference on Computer
and Communications Security (CCS).

[12] Omer Gil. 2017. Web Cache Deception Attack. In Black Hat USA.
[13] Omer Gil. 2017. Web Cache Deception Attack. http://omergil.blogspot.com/2017/

02/web-cache-deception-attack.html. (2017).
[14] Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg

Schwenk. 2012. Scriptless Attacks - Stealing the Pie Without Touching the
Sill. In ACM Conference on Computer and Communications Security (CCS).

[15] Mario Heiderich, Christopher Späth, and Jörg Schwenk. 2017. DOMPurify: Client-
Side Protection Against XSS and Markup Injection. In European Conference on
Research in Computer Security (ESORICS).

[16] Gareth Heyes. 2009. The Sexy Assassin: Tactical Exploitation using
CSS. https://docs.google.com/viewer?url=www.businessinfo.co.uk/labs/talk/
The_Sexy_Assassin.ppt. (2009).

[17] Gareth Heyes. 2014. RPO. http://www.thespanner.co.uk/2014/03/21/rpo/. (2014).
[18] Lin-Shung Huang, ZackWeinberg, Chris Evans, and Collin Jackson. 2010. Protect-

ing Browsers from Cross-Origin CSS Attacks. In ACM Conference on Computer
and Communications Security (CCS).

[19] Artur Janc and Lukasz Olejnik. 2010. Feasibility and Real-World Implications of
Web Browser History Detection. InWeb 2.0 Security and Privacy (W2SP).

[20] Christoph Kern. 2014. Securing the Tangled Web. Commun. ACM 57, no. 9 (2014),
38–47.

[21] Christoph Kerschbaumer. 2016. Mitigating MIME Confusion At-
tacks in Firefox. https://blog.mozilla.org/security/2016/08/26/
mitigating-mime-confusion-attacks-in-firefox/. (2016).

[22] James Kettle. 2015. Detecting and Exploiting Path-Relative Stylesheet Import
(PRSSI) Vulnerabilities. http://blog.portswigger.net/2015/02/prssi.html. (2015).

[23] Masato Kinugawa. 2015. CSS based Attack: Abusing Unicode-Range of @font-
face. http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.
html. (2015).

[24] Sebastian Lekies. 2016. How to bypass CSP nonces with DOM XSS. http:
//sirdarckcat.blogspot.com/2016/12/how-to-bypass-csp-nonces-with-dom-xss.
html. (2016).

[25] Sebastian Lekies, Krzysztof Kotowicz, Samuel Grob, Eduardo A. Vela Nava, and
Martin Johns. 2017. Code-Reuse Attacks for the Web: Breaking Cross-Site Script-
ing Mitigations via Script Gadgets. In ACM Conference on Computer and Commu-
nications Security (CCS).

[26] Sebastian Lekies, Krzysztof Kotowicz, and Eduardo Vela Nava. 2017. Breaking
XSS mitigations via Script Gadgets. In Black Hat USA.

[27] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 Million Flows Later -
Large-scale Detection of DOM-based XSS. In ACM Conference on Computer and
Communications Security (CCS).

[28] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey,
Damon McCoy, Stefan Savage, and Vern Paxson. 2016. You’ve Got Vulnerability:
Exploring Effective Vulnerability Notifications. In USENIX Security Symposium.

[29] Bin Liang, Wei You, Liangkun Liu, Wenchang Shi, and Mario Heiderich. 2014.
Scriptless Timing Attacks on Web Browser Privacy. In IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN).

[30] Nera W. C. Liu and Albert Yu. 2014. Ultimate DOM Based XSS Detection Scanner
On Cloud. In Black Hat Asia.

[31] Mike Ter Louw and V.N. Venkatakrishnan. 2009. BLUEPRINT: Robust Prevention
of Cross-site Scripting Attacks for Existing Browsers. In IEEE Symposium on
Security and Privacy (S&P).

[32] Giorgio Maone. 2009. NoScript. https://noscript.net/. (2009).
[33] MDN. 2018. X-Content-Type-Options. https://developer.mozilla.org/en-US/docs/

Web/HTTP/Headers/X-Content-Type-Options. (2018).
[34] Microsoft. 2015. Understanding the Compatibility View List. https://msdn.

microsoft.com/en-us/library/gg699485(v=vs.85).aspx. (2015).
[35] Yacin Nadji, Prateek Saxena, and Dawn Song. 2009. Document Structure Integrity:

A Robust Basis for Cross-site Scripting Defense. InNetwork and Distributed System
Security Symposium (NDSS).

[36] Terri Oda, Glenn Wurster, P. C. van Oorschot, and Anil Somayaji. 2008. SOMA:
Mutual Approval for Included Content in Web Pages. In ACM Conference on
Computer and Communications Security (CCS).

[37] OWASP. 2016. Cross-site Scripting (XSS). https://www.owasp.org/index.php/
Cross-site_Scripting_(XSS). (2016).

[38] OWASP. 2017. Clickjacking Defense Cheat Sheet. https://www.owasp.org/index.
php/Clickjacking_Defense_Cheat_Sheet. (2017).

[39] OWASP. 2017. Cross-Site Request Forgery (CSRF) Prevention Cheat
Sheet. https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
_Prevention_Cheat_Sheet. (2017).

[40] OWASP. 2017. XSS (Cross Site Scripting) Prevention Cheat Sheet. https://www.
owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet.
(2017).

[41] David Ross. 2008. IE 8 XSS Filter Architecture / Imple-
mentation. https://blogs.technet.microsoft.com/srd/2008/08/19/
ie-8-xss-filter-architecture-implementation/. (2008).

[42] Gustav Rydstedt, Elie Bursztein, Dan Boneh, and Collin Jackson. 2010. Busting
Frame Busting: a Study of Clickjacking Vulnerabilities on Popular Sites. In IEEE
Oakland Web 2.0 Security and Privacy (W2SP).

[43] Mike Samuel, Prateek Saxena, and Dawn Song. 2011. Context-Sensitive Auto-
Sanitization in Web Templating Languages Using Type Qualifiers. In ACM Con-
ference on Computer and Communications Security (CCS).

[44] Henri Sivonen. 2013. Activating Browser Modes with Doctype. https://hsivonen.
fi/doctype/. (2013).

[45] Sid Stamm, Brandon Sterne, and GervaseMarkham. 2010. Reining in theWebwith
Content Security Policy. In International World Wide Web Conference (WWW).

[46] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns.
2014. Precise Client-side Protection against DOM-based Cross-Site Scripting. In
USENIX Security Symposium.

[47] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael
Backes. 2016. Hey, You Have a Problem: On the Feasibility of Large-Scale Web
Vulnerability Notification. In USENIX Security Symposium.

[48] Takeshi Terada. 2015. A Few RPO Exploitation Techniques. https://www.mbsd.
jp/Whitepaper/rpo.pdf. (2015).

[49] W3C. 2011. CSS Syntax and Basic Data Types. http://www.w3.org/TR/CSS2/
syndata.html. (2011).

[50] W3C. 2015. Content Security Policy Level 2. https://www.w3.org/TR/CSP2/.
(2015).

[51] Wappalyzer. 2017. Identify technologies on websites. https://www.wappalyzer.
com/. (2017).

[52] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.
CSP Is Dead, Long Live CSP! On the Insecurity of Whitelists and the Future of
Content Security Policy. In ACM Conference on Computer and Communications
Security (CCS).

[53] Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter, Richard
Shin, and Dawn Song. 2011. An Empirical Analysis of XSS Sanitization in Web
Application Frameworks. In European Conference on Research in Computer Security
(ESORICS).

[54] XSS Jigsaw. 2015. CSS: Cascading Style Scripting. http://blog.innerht.ml/
cascading-style-scripting/. (2015).

[55] XSS Jigsaw. 2016. RPO Gadgets. http://blog.innerht.ml/rpo-gadgets/. (2016).

http://www.alexa.com/topsites
https://portswigger.net/burp/
https://commoncrawl.org/
https://soroush.secproject.com/blog/2015/02/non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/
https://soroush.secproject.com/blog/2015/02/non-root-relative-path-overwrite-rpo-in-iis-and-net-applications/
http://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
http://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
https://docs.google.com/viewer?url=www.businessinfo.co.uk/labs/talk/The_Sexy_Assassin.ppt
https://docs.google.com/viewer?url=www.businessinfo.co.uk/labs/talk/The_Sexy_Assassin.ppt
http://www.thespanner.co.uk/2014/03/21/rpo/
https://blog.mozilla.org/security/2016/08/26/mitigating-mime-confusion-attacks-in-firefox/
https://blog.mozilla.org/security/2016/08/26/mitigating-mime-confusion-attacks-in-firefox/
http://blog.portswigger.net/2015/02/prssi.html
http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
http://sirdarckcat.blogspot.com/2016/12/how-to-bypass-csp-nonces-with-dom-xss.html
http://sirdarckcat.blogspot.com/2016/12/how-to-bypass-csp-nonces-with-dom-xss.html
http://sirdarckcat.blogspot.com/2016/12/how-to-bypass-csp-nonces-with-dom-xss.html
https://noscript.net/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://msdn.microsoft.com/en-us/library/gg699485(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/gg699485(v=vs.85).aspx
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://blogs.technet.microsoft.com/srd/2008/08/19/ie-8-xss-filter-architecture-implementation/
https://blogs.technet.microsoft.com/srd/2008/08/19/ie-8-xss-filter-architecture-implementation/
https://hsivonen.fi/doctype/
https://hsivonen.fi/doctype/
https://www.mbsd.jp/Whitepaper/rpo.pdf
https://www.mbsd.jp/Whitepaper/rpo.pdf
http://www.w3.org/TR/CSS2/syndata.html
http://www.w3.org/TR/CSS2/syndata.html
https://www.w3.org/TR/CSP2/
https://www.wappalyzer.com/
https://www.wappalyzer.com/
http://blog.innerht.ml/cascading-style-scripting/
http://blog.innerht.ml/cascading-style-scripting/
http://blog.innerht.ml/rpo-gadgets/

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Cross-Site Scripting
	2.2 Scriptless Attacks
	2.3 Relative Path Overwrite
	2.4 Preconditions for RPO Style Attacks
	2.5 Related Work

	3 Methodology
	3.1 Candidate Identification
	3.2 Vulnerability Analysis
	3.3 Exploitability Analysis
	3.4 Limitations
	3.5 Ethical Considerations

	4 Analysis
	4.1 Relative Stylesheet Paths
	4.2 Vulnerable Pages
	4.3 Exploitable Pages
	4.4 Content Management Systems

	5 Mitigation Techniques
	6 Conclusion
	Acknowledgments
	References

