
39

Comparing vulnerability severity and exploits using case-control
studies.

LUCA ALLODI, University of Trento
FABIO MASSACCI, University of Trento

(U.S) Rule-based policies to mitigate software risk suggest using the CVSS score to measure the risk of an
individual vulnerability and “act” accordingly. A key issue is whether the “danger” score does actually match
the risk of exploitation in the wild, and if and how such score can be improved.

To address this question we propose to use a case-control study methodology similar to the procedure
used to link lung cancer and smoking in the 1950s. A case-control study allows the researcher to draw
conclusions on the relation between some risk factor (e.g. smoking) and an effect (e.g. cancer) by looking
backward at the cases (e.g. patients) and comparing them with controls (e.g. randomly selected patients with
similar characteristics). The methodology allows to quantify (statistically) the risk reduction achievable by
acting on the risk factor. We illustrate the methodology by using publicly available data on vulnerabilities,
exploits and exploits in the wild to (1) evaluate the performances of the current risk factor in the industry,
the CVSS base score; (2) determine whether it can be improved by considering additional factors such the
existence of a proof-of-concept exploit, or of an exploit in the black markets. Our analysis reveals that (a)
fixing a vulnerability just because it was assigned a high CVSS score is equivalent to randomly picking
vulnerabilities to fix; (b) the existence of proof of concept exploits is a significantly better risk factor; (c)
fixing in response to exploit presence in black markets yields the largest risk reduction.

Categories and Subject Descriptors: D.2.9 [Software Engineering]: Management

General Terms: Security, Management, Measurement

Additional Key Words and Phrases: Software vulnerability, exploitation, CVSS, patching, compliance

ACM Reference Format:
Luca Allodi and Fabio Massacci, 2013. Comparing vulnerability severity and exploits using case-control
studies. ACM Trans. Embedd. Comput. Syst. 9, 4, Article 39 (March 2013), 21 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Software security configuration managers (e.g. Tripwire Enterprise, HP SCAP Scan-
ner, QualysGuard FDCC Module, Rapid 7 Nexpose) usually rely on the National (US)
Vulnerability Database1 (NVD for short). Each vulnerability is reported alongside a

1http://nvd.nist.gov

This work was partly supported by the EU-SEC-CP-SECONOMICS and MIUR-PRIN-TENACE Projects.
We would like to thank Tudor Dimitras and Viet H. Nguyen for the many useful discussions. Viet actually
wrote the second script used for cross-checking the SYM dataset. We also thank Julian Williams for his very
useful feedback. Further thanks go to the anonymous TISSEC reviewers that greatly helped us in making
this paper a better one. No statement in this paper should be interpreted as an endorsement by Symantec.
Author’s addresses: Luca Allodi and Fabio Massaci, Department of Information Engineering and Computer
Science (DISI), University of Trento, Italy.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1539-9087/2013/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

http://nvd.nist.gov

39:2 L. Allodi et al.

‘technical assessment’ given by the Common Vulnerability Scoring System2 (CVSS),
which evaluates different technical aspects of the vulnerability [Mell et al. 2007].

The CVSS score is often used as a metric for risk, despite it not being designed for
this purpose. For example, the US Federal government with QTA0-08-HC-B-0003 ref-
erence notice requires all IT products for the US Government to manage and assess
the security of IT configurations with the NIST certified S-CAP protocol [Quinn et al.
2010], which explicitly says: “Organizations should use CVSS base scores to assist in
prioritizing the remediation of known security-related software flaws based on the rel-
ative severity of the flaws.”. Another notable example is PCI DSS, the standard for
security of credit card data, that states a similar rule: “Risk rankings should be based
on industry best practices. For example, criteria for ranking High risk vulnerabilities
may include a CVSS base score of 4.0 or above [..].” [Council 2010]. As a result, the
CVSS base score is now commonly used in industry to identify ‘high risk’ vulnerabili-
ties that must be fixed with the highest priority. As of the date of publication it is not
clear to what degree the CVSS score correlates with attacks in the wild. Acknowledg-
ing the problem, different tools in the industry (e.g. Rapid7’s, Qualy’s, Symantec’s and
Tripwire’s) consider risk factors other than the sole CVSS when evaluating a system’s
security. However, a sound comparison between different security policies is hard to
provide in this context as the security community still lacks of a scientific methodology
to compare the effectiveness of policies that account for different risk factors.

A major obstacle in having a clear understanding on this is the nature of the data
at hand. Vulnerability-database information is rife with problems and its use to clas-
sify risks of exploit is often inappropriate (see e.g [Frei et al. 2006; Shahzad et al.
2012; Houmb et al. 2010] as some examples). For example, a common problem is to use
proof-of-concept exploit data to measure software security or vendor performances.
While proof-of-concept exploit data is much easier to collect than data on actual at-
tacks, the former says little about the workability of the exploit and the state of secu-
rity of the vulnerable software: on the contrary, a proof-of-concept exploit is merely a
byproduct of the so-called responsible vulnerability disclosure process, whereby a secu-
rity researcher that finds a vulnerability discloses it to the vendor alongside a proof-of-
concept exploitation code that proves the existence of the vulnerability itself [Miller
2007].

Software and vulnerability risk measures should be based on factual evidence of ex-
ploitation rather than on security researchers’s participation in bug bounty programs.
For example, in [Shahzad et al. 2012] the authors compare the security of different
vendors’ products by comparing CVSS scores and “zero-day” exploits3 by subtracting
two dates in a public database of proof-of-concept exploits. Given the nature of the
analyzed data, conclusions on the security of different vendors and their respective
products may be misleading. Software vulnerability data is often unreliable as well;
for example, vulnerability timing data in public databases such as the National Vul-
nerability Database may “contain errors of unknown size” [Schryen 2009]. This is again
due to the nature of the disclosure mechanism. In conclusion, a major problem when
assessing software security and vulnerability exploits is to identify workable data on
vulnerabilities and vulnerability exploitation (whether attempted or successful) and
handle it properly by means of a methodology that accounts for the data’s inherent
limitations.

To address these problems, in this paper we:

2http://www.first.org/cvss
3A zero-day exploit is present when the exploit is reported before or on the date that the vulnerability is
disclosed.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

http://www.first.org/cvss

Comparing vulnerability severity and exploits using case-control studies 39:3

(1) Present our datasets of vulnerabilities, proof-of-concept exploits, exploits traded in
the black markets and exploits detected in the wild.

(2) Introduce the case-control study as a fully-replicable methodology to soundly ana-
lyze vulnerability and exploit data.

(3) Check the suitability of the current use of the CVSS score as a risk metric by com-
paring it against actual exploits recorded in the wild and by performing a break-
down analysis of its characteristics and values.

(4) We use the case-control study methodology to show how one can improve the cur-
rent practice of “Base CVSS” by considering other risk factors and quantitatively
assess their performance in terms of risk reduction. The risk factors considered in
our study are:
(a) The CVSS base score as reported by the National Vulnerability Database.
(b) Existence of a public proof-of-concept exploit.
(c) Existence of an exploit traded in the cybercrime black markets.
Any other risk factors, like software popularity, CVSS subscores, or other measur-
able values may be considered when replicating our methodology.

An important facet of our methodology is its reproducibility and extensibility to
many practical scenarios. In order to illustrate these advantageous properties we a)
provide an exhaustive description of the analytical procedure and the rationale behind
the specific decisions needed to operationalise it; b) make our datasets available for
replication and robustness checks beyond the scope of this paper.

The remainder of this paper is organised as follows. We first introduce our four
datasets (§2), illustrate the problem with the current CVSS-based best practice (§2.1)
and provide a breakdown of the issue (§3). In the core of the paper we propose a
methodology to precisely assess the performances of the CVSS score and other risk
factors (§4). We then discuss our results (§5) and this study’s threats to validity (§6).
We finally review related work (§7) and conclude (§8).

2. DATASETS
We base our analysis on four datasets:

— NVD (National Vulnerability Database): the “universe” of vulnerabilities. NVD is
the reference database for disclosed vulnerabilities held by NIST. It has been widely
used and analyzed in previous vulnerability studies [Massacci et al. 2011; Shahzad
et al. 2012; Scarfone and Mell 2009]. Our copy of the NVD dataset contains data on
49599 vulnerabilities reported until June 2012.

— EDB (Exploit-db4): proof-of-concept exploits. EDB includes information on proof-of-
concept exploits and references the respective CVE. Our EDB copy contains data on
8122 proof-of-concept exploits and affected CVEs.

— EKITS: black-marketed exploits. EKITS is our dataset of vulnerabilities bundled
in Exploit Kits. Exploit Kits are malicious web sites that the attacker deploys on
some public webserver he/she controls. Their purpose is to attack and infect systems
that connect to them. For further details refer to [Kotov and Massacci 2013; Grier
et al. 2012]. EKITS is based on Contagio’s Exploit Pack Table5 and, at the time of
writing, represents a substantial expansion over it in terms of reported exploit kits.
EKITS reports exploits for 103 unique CVEs bundled in 90+ exploit kits. A sample
of notable names of those are: Elenonore, Blackhole, Crimepack, Fragus, Sakura,
Icepack.

4http://www.exploit-db.com/
5http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.html

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

http://contagiodump.blogspot.it/2010/06/overview-of-exploit-packs-update.html

39:4 L. Allodi et al.

Table I. Summary of our datasets

DB Content Collection method #Entries
NVD CVEs XML parsing 49599
EDB Publicly ex-

ploited CVEs
Download and web
parsing to correlate
with CVEs

8122

SYM CVEs exploited
in the wild

Web parsing to corre-
late with CVEs

1277

EKITS CVEs in the
black market

ad-hoc analysis + Con-
tagio’s Exploit table

103

NVD

CVSS score

F
re

qu
en

cy

0 2 4 6 8 10

0
50

00
15

00
0

EDB

CVSS score

F
re

qu
en

cy

0 2 4 6 8 10

0
10

00
30

00

EKITS

CVSS score

F
re

qu
en

cy

0 2 4 6 8 10

0
20

40
60

SYM

CVSS score

F
re

qu
en

cy

0 2 4 6 8 10

0
20

0
40

0
60

0

Fig. 1. Distribution of CVSS scores per dataset.

— SYM: vulnerabilities exploited in the wild. SYM reports vulnerabilities that have
been exploited in the wild as documented in Symantec’s AttackSignature6 and
ThreatExplorer7 public datasets. SYM contains 1277 CVEs identified in viruses (lo-
cal threats) and remote attacks (network threats) by Symantec’s commercial prod-
ucts. This has of course some limitation as direct attacks by individual motivated
hackers against specific companies are not considered in this metric. The SYM
dataset can be seen as an “index” of the wider WINE dataset [Dumitras and Shou
2011] where actual volumes of attacks are reported. We do not use it here as we are
trying to characterize a worst case scenario where “one exploit is too many”.

Table I summarizes the content of each dataset and their respective collection
methodologies. For further details see [Allodi and Massacci 2012], all of the datasets
used in this study are available from the authors on request8.

2.1. A coarse-grained overview of the datasets
The CVSS score is represented by a number in [0..10], where 0 is the lowest criticality
level and 10 the maximum (for further reference see [Mell et al. 2007]). We report in
Figure 1 the histogram distribution of the CVSS base scores. Three clusters of vulner-
abilities are visually identifiable throughout our datasets:

6http://www.symantec.com/security response/attacksignatures/
7http://www.symantec.com/security response/threatexplorer/
8http://securitylab.disi.unitn.it/doku.php?id=datasets

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

http://www.symantec.com/security_response/attacksignatures/
http://www.symantec.com/security_response/threatexplorer/
http://securitylab.disi.unitn.it/doku.php?id=datasets

Comparing vulnerability severity and exploits using case-control studies 39:5

Dimensions are proportional to data size. In red vulnerabilities with CVSS≥9 score. Medium score vulner-
abilities are orange, and cyan represents vulnerability with CVSS lower than 6. The two small rectangles
outside of NVDspace are vulnerabilities whose CVEs were not present in NVD at the time of sampling.

Fig. 2. Relative Map of vulnerabilities per dataset

(1) HIGH: CVSS ≥ 9
(2) MEDIUM: 6 ≤ CVSS < 9
(3) LOW: CVSS < 6

The role of the CVSS score is, in the context of our analysis, to discern dangerous
vulnerabilities from non-dangerous ones. Therefore an important analysis at this stage
is to understand the overlap between the datasets, in order to grasp whether they and
the CVSS score are capturing the same phenomenon.

In Figure 2 we report a Venn diagram of our data. Area size is proportional to the
number of vulnerabilities that belong to it; the color is an indication of the CVSS score.
Red, orange and cyan areas represent HIGH, MEDIUM and LOW score vulnerabilities
respectively. This map gives a first intuition of the problem with the CVSS base score
as a risk metric for exploitation: the “red area” located outside of SYM corresponds
to CVSS false positives (i.e. HIGH “risk” vulnerabilities that are not exploited), while
within SYM about half the vulnerabilities are false negatives (i.e. LOW and MEDIUM
“risk” vulnerabilities that are exploited). In other words the CVSS score misses a high
rate of exploited vulnerabilities and erroneously marks as HIGH risk a high rate of
non-exploited vulnerabilities.

Table II reports the likelihood of a vulnerability being in SYM if it is contained in
one of our datasets. Prima facie analysis would suggest that there is approximately a
75% probability that a vulnerability in the black markets is exploited in the wild. For
NVD and EDB the rate of exploited vulnerabilities is less than 5%. However, these con-
clusions can be grossly incorrect. For example SYM might report only vulnerabilities
of interest to Symantec’s costumers. Suppose they mostly use Windows; then all Linux
vulnerabilities listed in EDB would not be mentioned in SYM not because they are not
exploited in the wild, but simply because they are not interesting for Symantec. An-
other possible example can be that Symantec mainly detects “remote code execution”
vulnerabilities, while NVD might report lots of vulnerabilities exploitable through so-
cial engineering. We might therefore have a “selection bias” problem. In order to offer
more scientifically sound conclusions we need to (a) better understand the internals of

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:6 L. Allodi et al.

Table II. A (potentially erroneous) conditional
probability of vulnerability being a threat

vuln in SYM vuln not in SYM
EKITS 75.73% 24.27%
EDB 4.81% 95.19%
NVD 2.57% 97.43%

Note: Conditional probability that a vulnera-
bility v is listed by Symantec as threat know-
ing that it is contained in a dataset, i.e. P (v ∈
SYM | v ∈ dataset). This is a rushing compu-
tation because datasets might be constructed
with different criteria.

Table III. Possible values for the Exploitability and Impact subscores.

Impact subscore
Confidentiality Integrity Availability

Undefined Undefined Undefined
None None None

Partial Partial Partial
Complete Complete Complete

Exploitability subscore
Access Vector Access complexity Authentication

Undefined Undefined Undefined
Local High Multiple

Adjacent Net. Medium Single
Network Low None

the CVSS base score (which we do in the next subsection) and (b) propose a methodol-
ogy to make sure we are comparing apples with apples (which we do in the case-control
methodology section, §4).

3. CVSS SCORE BREAKDOWN
The Common Vulnerability Scoring System identifies three scores: the base score, the
temporal score, and the environmental score [Mell et al. 2007]. The base score identifies
“fundamental characteristics of a vulnerability that are constant over time and user
environments”; the temporal score considers assessments like existence of a patch for
the vulnerability, or the presence of an exploit in the wild; the environmental score
considers further assessments tailored around the particular system implementation
in which the vulnerability is present. However, of the three only the base score is iden-
tified, by standards and best practices alike, as the metric to rely upon for vulnerability
management [Williams and Chuvakin 2012; Quinn et al. 2010]. The base score is also
the only one commonly available in vulnerability bulletins and public datasets. We
therefore only consider the base score in our analysis.

The CVSS base score is computed as a product of two submetrics: the Impact sub-
metric and the Exploitability submetric. Therefore, the CVSS base score CV SSb is of
the following form:

CV SSb = Impact× Exploitability (1)

which closely recalls the traditional definition of risk as “impact × likelihood”. The Im-
pact submetric is an assessment of the impact the exploitation of the vulnerability has
on the system. The Exploitability subscore is defined by factors such as the difficulty
of the exploitation and reachability of the vulnerability (e.g. from the network or local
access only). For this reason it is sometimes interpreted as a measure of “likelihood of
exploit” (e.g. in [Bozorgi et al. 2010]).

3.1. The Impact and Exploitability Subscores
The Impact and Exploitability subscores are calculated on the basis of additional vari-
ables, reported in Table III. The Impact submetric is identified by three separate as-
sessments on the Confidentiality, Integrity and Availability impacts on a victim sys-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Comparing vulnerability severity and exploits using case-control studies 39:7

NVD

Impact score

F
re

qu
en

cy

0 2 4 6 8 10

0
50

00
15

00
0

EDB

Impact score

F
re

qu
en

cy

0 2 4 6 8 10

0
20

00
40

00

EKITS

Impact score

F
re

qu
en

cy

0 2 4 6 8 10

0
20

40
60

80

SYM

Impact score

F
re

qu
en

cy

0 2 4 6 8 10

0
20

0
40

0
60

0

●

●

●●

●

●●●●

●

●

●●

●

●●●●●

●

●●

●

●●

●●●

●●●●●●●

●

●

●●●●●

●●●

●

●●●●

●

●●●●

●●

●●

●●●●

●

●●

●

●●●●●

●●

●●

●

●

●●●●●●

●

●●●●●●

●

●

●

●●

●

●●●●

●●

●

●●●●

●

●●●●●●●

●

●

●

●

●

●●●●●●

●●

●

●●

●●●●●●

●●

●

●

●●●●

●●

●●●●●●●●●●

●

●●

●

●●●●●

●●●●●

●

●●●●●●●●

●

●

●●●

●●

●

●

●●●●●●

●

●

●

●

●●

●●

●●

●●

●

●

●

●●●

●

●

●●

●●

●

●●●●●

●

●

●

●

●

●

●●●●

●●●●●●●

●

●

●

●●●

●

●

●●●●●

●

●●

●●●●

●

●

●

●●●●

●

●

●●●

●

●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●●●

●

●●●●●●●●●

●

●●●

●●

●

●

●

●●

●●●●●●●

●●●●●

●●

●●

●

●

●●

●●●

●●●●

●●

●

●●●

●●●

●●●●●●

●

●

●●●

●●

●

●

●●●●

●●

●●

●

●●

●

●

●

●

●

●●●●●

●●

●●

●●●

●

●

●●●●

●●●●●

●●●●●●

●●●●

●

●●●

●

●●●●●

●

●

●

●●●●●●●●●●●

●●●

●

●●●●●

●

●

●

●●

●

●●●●

●

●

●●

●

●

●●●●●●●●

●●

●●●●●●●●●●●

●●●

●

●●●

●●●●●●

●

●

●

●●

●

●●●

●

●

●

●●●

●●

●

●

●●●●

●

●●

●●●●●●●●●

●

●

●●●●●●

●

●

●●●

●

●●

●●

●●●●

●

●

●●●●●

●●●●●

●●

●

●

●

●

●

●●●●●●

●

●●●●●●●

●

●

●

●●

●●

●●

●●●

●●●●●●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●

●●

●●

●●

●

●●●●

●●●●

●●

●

●

●

●

●

●

●●●●●●●●●

●●●●

●

●●

●

●

●●

●

●●

●

●●

●

●●●●●

●

●●

●●●

●●●

●

●●

●●●●●●●●●

●

●

●

●●●●

●

●●●●●●●

●●●●●

●●●●

●●

●

●

●●

●

●

●●●

●

●●●

●●●

●●

●●●

●

●

●

●

●

●●

●●

●

●●●

●

●●

●●●

●

●●●●

●

●

●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●●●●

●

●

●

●●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●●●●●

●

●

●

●●●

●●

●●

●

●●

●●●●●●

●

●●●●●

●●

●●●●●●

●●●●

●

●

●

●●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●●●●●●

●

●

●

●●

●●●

●●

●●

●

●●

●

●●●

●●●

●

●

●●

●

●

●

●●●●●

●

●

●●

●●

●

●●

●●

●●●●●●●●●●●

●●●●

●

●

●

●

●●

●●●●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●●

●

●

●●●

●●●●

●●

●

●

●

●

●●

●

●●

●●●●

●●●

●●●●●

●●

●●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●●

●

●●

●

●●●

●

●●

●

●●●

●●●●

●

●

●●

●

●

●

●

●●●●

●●

●●●●●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●

●●

●●

●●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●●

●●

●

●●●

●●●●

●●●

●●

●

●

●●

●

●

●●

●●●

●

●

●●●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●●

●●●●●

●●●

●

●●●

●

●

●

●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●

●

●●

●

●●

●●●●

●●●

●●

●

●

●●●

●

●●

●●

●●

●

●

●●

●●●

●●●

●

●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●

●●

●●

●

●

●

●

●●●●●

●●●

●

●●●

●●

●●●

●●

●●●●●●●●●●●●

●

●●●

●

●

●●●●●

●

●

●

●

●●

●●●●●

●

●●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●

●

●●●

●

●

●●●

●

●●●●

●

●●●

●

●

●●●●

●

●●

●

●●

●●

●●●

●

●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●●●●

●●

●

●●●

●

●●

●●●

●

●●●

●

●●

●●

●●●

●●

●

●●

●●●

●●●●

●

●

●●●

●●

●

●

●●●●●●

●●

●●

●

●

●●●●

●

●●

●●●●●●

●●●●●

●●

●

●●

●

●●●

●●●

●●

●●

●●

●

●

●

●●●

●

●

●●

●●●●●

●

●

●●

●●

●●●

●

●●●●●●●

●

●

●

●

●

●

●●●

●

●●

●●●

●●

●●

●●

●●

●

●

●●●

●●

●

●●●

●●

●●

●●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●●

●●●●●●●

●●

●●

●

●

●

●

●

●●●

●

●

●

●●

●●●

●●●

●●●●●●

●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●●

●●

●

●

●●

●●●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●●●●

●●

●

●●●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●●

●●

●

●

●

●●●●

●●●

●

●●●

●●

●

●●●●●●●●●●

●●●●●

●●●

●

●●●

●

●

●

●●

●

●●

●

●

●●

●●●

●

●

●

●●●

●

●

●●●●●

●●●

●

●

●●●

●●●

●

●

●

●●

●

●

●●

●●●

●

●●●

●●●

●

●●

●

●

●

●●●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●●

●●●●●●●●

●

●

●●

●●●●●●●●●●

●

●●

●

●●●

●●

●

●●

●●●●

●

●●●

●

●

●

●●

●●●●

●●●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●●●●

●●

●●●

●

●

●

●●●●●●●●●●

●●

●

●

●

●●●

●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●

●●●

●●●●●●●●●●●

●

●

●

●●

●

●●●

●

●

●●●●

●●

●●●●

●●

●

●●

●

●

●

●

●●

●

●●●

●

●●●●

●●●

●●

●●●

●

●

●

●

●●●●

●

●

●

●●

●●●

●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●●

●

●

●●●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●●

●

●

●●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●●●

●

●●

●●●

●

●

●●●●

●

●

●●●

●●●

●

●

●

●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●●●●

●

●●●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●●●●

●

●●●●●

●

●●●

●

●

●

●●

●

●●

●●●●●●

●

●

●●

●●●●

●

●●●

●●●

●

●

●

●●

●●●

●

●●●

●

●

●

●●●

●

●

●●

●

●●●

●

●●●

●

●

●

●●●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●●

●●●

●

●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●

●●●●

●●●

●

●●●

●

●●●●

●

●●●●●

●

●●●●●●

●

●

●

●

●●

●●

●

●●●●

●

●●

●●●●●

●●●●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●●●

●

●●●●

●

●●●●●●●

●

●●●

●

●●

●

●●●●

●●●

●

●

●

●●●

●●

●●

●

●

●●●

●●

●●

●

●●●●●

●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●●

●

●●

●●

●●●

●●

●●●

●

●●●●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●●●●

●●●●●●●●●

●

●●●●

●

●●●

●●

●

●●●●●●●●●

●

●●●●

●●●

●

●●

●●

●●

●

●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●

●●●●●●●●●●

●

●●

●

●●●

●●

●●●

●

●●●

●

●●●

●

●●●●●●●

●

●●●

●

●●●●●●

●●

●

●●●

●●●●●●●●●●●●

●●

●

●

●●●●●●●

●●●●●●●●

NVD EDB EKITS SYM

0
2

4
6

8
10

The histogram on the left represents the frequency distribution of CVSS Impact values among the datasets.
The boxplot on the right reports the distribution of values around the median (represented by a thick hori-
zontal line). Outliers are represented by dots.

Fig. 3. Histogram and boxplot of CVSS Impact subscores per dataset.

tem. In this manuscript this triplet is referred to as the “CIA” impact. Each variable
can assume three values: Complete (C), Partial (P), None (N).

The Exploitability submetric is as well identified by three variables:

— Access Vector gives information on the accessibility of the vulnerability by distin-
guishing the case when the attacker can exploit it remotely from the Network, (N);
from an Adjacent Network (A); Locally (L).

— Access Complexity provides information on the difficulty the attacker may encounter
in recreating the conditions for the vulnerability to be exploited. This assessment
can assume three values: High (H), Medium (M), or Low (L).

— Authentication represents the number of steps of authentication the attacker has to
go through to trigger the vulnerability. The levels of the assessment can be: None
(N), Single (S), Multiple (M).

Table III reports a summary of the CVSS base score’s variables and respective pos-
sible values.

3.2. Breakdown of the Impact subscore
Figure 3 depicts a histogram distribution of the Impact subscore. From inspection of
the vulnerabilities it is apparent that the subscore does not assume all of the possible
values. and as a result This is clearly visible from the subscore distribution, which has
gaps below score 2, between 3 and 6 and between 7 and 9. Still, the Impact subscore
reveals some variability throughout all datasets. In EDB scores between 6 and 7 char-
acterize the great majority of vulnerabilities. This distribution may be an effect of the
nature of the dataset: EDB features proof-of-concepts for vulnerabilities discovered by
security researchers, likely with the intent of selling them to the software vendors;
lower score vulnerabilities may be of too little value to be worth the bounty [Miller
2007]; medium-score ones may instead represent the “low-hanging fruits” that maxi-
mize the researchers’ return-on-investment.

The great majority of vulnerabilities in SYM and EKITS have a Impact subscore
greater than 6; unsurprisingly, vulnerabilities exploited in real attacks in the wild

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:8 L. Allodi et al.

Table IV. Incidence of values of CIA triad within NVD.

Confidentiality Integrity Availability Absolute no. Incidence
C C C 9972 20%
C C P 0 -
C C N 43 <1%
C P C 2 <1%
C P P 13 <1%
C P N 3 <1%
C N C 15 <1%
C N P 2 <1%
C N N 417 1%
P C C 5 <1%
P C P 1 <1%
P C N 0 -
P P C 22 -
P P P 17550 35%
P P N 1196 2%
P N C 9 <1%
P N P 110 <1%
P N N 5147 10%
N C C 64 <1%
N C P 1 <1%
N C N 43 <1%
N P C 17 <1%
N P P 465 1%
N P N 7714 16%
N N C 1769 4%
N N P 5003 10%
N N N 16 <1%

tend to yield a higher Impact on the victim system than the average vulnerability or
proof-of-concept exploit.

The different distribution of the CVSS Impact subscore among the datasets is ap-
parent in the boxplot reported in Figure 3. NVD results distributed in the whole range
[0..10], with median just above 6 (6.4). The distribution of impact values in EDB is
highly dense around the median (6.4). The distribution of the Impact subscore for SYM
and EKITS are clearly different from the other two datasets; their median impact score
of 10 is also significantly higher than those of NVD and EDB.

To explain the gaps in the histogram in Figure 3, we decompose the distribution of
Impact subscores throughout our datasets. To simplify discussion, in Table IV we re-
port the incidence of the existing values for the CIA assessments in NVD only. It is
immediate to see that only few values are actually used. For example there is only one
vulnerability whose CIA impact is “PCP” (i.e. partial impact on confidentiality, com-
plete on integrity and partial on availability). Availability almost always assumes the
same value of Integrity, apart from the case where there is no impact on Confidential-
ity, and looks therefore of limited importance for a descriptive discussion.

For the sake of readability, we therefore exclude the Availability assessment from
the analysis, and proceed by looking at the two remaining Impact variables in the
four datasets. This analysis is reported in Table V. Even with this aggregation on
place many possible values of the CIA assessment result unused. “PP” vulnerabilities
characterize the majority of disclosed vulnerabilities (NVD) and vulnerabilities with a
proof-of-concept exploit (EDB). This observation changes completely when looking at
the SYM and EKITS datasets, for which most vulnerabilities (50%, 75%) score “CC”.
This shift alone can be considered responsible for the different distribution of scores
depicted in Figure 3.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Comparing vulnerability severity and exploits using case-control studies 39:9

Table V. Combinations of Confidentiality and Integrity values per dataset.

Confidentiality Integrity SYM EKITS EDB NVD
C C 51.61% 74.76% 18.11% 20.20%
C P 0.00% 0.00% 0.02% 0.04%
C N 0.31% 0.97% 0.71% 0.87%
P C 0.00% 0.00% 0.01% 0.01%
P P 27.80% 16.50% 63.52% 37.83%
P N 7.83% 0.97% 5.61% 10.62%
N C 0.23% 0.00% 0.18% 0.22%
N P 4.39% 2.91% 5.07% 16.52%
N N 7.83% 3.88% 6.75% 13.69%

NVD

Exploitability score

F
re

qu
en

cy

0 2 4 6 8 10

0
10

00
0

20
00

0

EDB

Exploitability score

F
re

qu
en

cy

0 2 4 6 8 10

0
20

00
40

00

EKITS

Exploitability score

F
re

qu
en

cy

0 2 4 6 8 10

0
20

40
60

SYM

Exploitability score

F
re

qu
en

cy

0 2 4 6 8 10

0
20

0
40

0
60

0

●●●

●

●●●●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●●●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●●

●●●●●●●

●●●

●●

●●

●●

●

●

●

●

●●

●●●

●

●

●●

●●●

●

●●

●

●●●

●

●

●●●

●●●●

●

●●●

●

●

●

●●

●

●

●●

●

●●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●●●●●

●●

●
●

●●

●●

●●

●

●

●

●

●●●●

●●

●●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●

●●

●●

●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●●●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●●●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●●

●●●●

●●

●●

●●●●

●

●●

●

●●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●●●●●●

●●●

●●

●●●●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●●●●●●●●●

●●

●

●

●

●●●●

●

●

●

●

●●

●●●

●

●

●●

●

●●

●

●●●

●●

●●

●●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●●●●●●●●●●●

●

●●

●

●

●

●

●●●●

●

●●●

●●

●●●●●●

●●

●●●●●

●

●

●●●

●

●●●

●●

●

●

●●

●●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●

●●●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●

●●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●●●

●

●

●

●●●

●●

●

●

●●●●

●●●

●●●

●

●●●●

●

●●

●●

●●

●●

●●●

●

●●

●

●

●

●●

●●●●●

●

●

●●●●●●●

●

●●●●

●●●

●

●●●●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●●●

●

●●●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●●●●●●●●

●●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●

●

●●

●●●

●

●●●●

●●

●

●

●●●

●●

●

●●

●

●

●

●●

●

●●●

●●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●●

●●●●●●●●●●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●●

●●●●●●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●●

●●●●

●

●●

●●

●

●

●●●

●

●●●●

●

●●

●

●

●●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●●●

●

●

●●

●

●●●

●●

●●

●

●●●●

●

●

●

●●

●●

●●

●

●●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●●●

●

●●

●●

●

●●●●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●●

●●

●

●●●●●●●

●●

●●●●

●

●

●

●

●●●●

●

●

●●

●

●

●●●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●●●●

●●●●

●●●●●

●

●

●●●●●●●

●●

●

●●●●●●●●

●●●

●●

●

●

●●●●●

●●

●

●

●●

●●●●●

●

●●●●●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●●●

●

●●●●●●●

●●

●

●●●●

●

●●

●

●

●●●

●●●

●

●●●

●●

●

●

●

●
●

●●●

●●●●●●●●●

●●

●●●●●

●

●●

●

●●

●

●●

●

●

●●

●●●

●●

●●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●●

●

●●

●

●●●●●

●

●●●●●●●

●●●●●

●

●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●

●●●●

●●●●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●

●●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●●●●●●●●

●

●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●●

●●

●●

●●

●●

●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●
●

●●

●

●

●

●

●●●

●●●

●

●

●●●●●●●●●●●

●

●●●

●

●●

●

●●

●

●●●●

●

●●●

●

●

●●●●●

●●●

●

●●●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●●●

●

●●●

●●

●●●

●

●●●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●

●●●

●

●●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●●●●

●

●●

●

●

●

●●●

●●

●●●

●

●

●

●●

●

●●●●●

●

●●●●●●●●●●

●

●

●

●●

●●

●●

●

●

●●●●●

●

●●●●

●●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●

●●

●●

●●

●●

●

●

●

●

●

●●●

●

●●●●●●●●

●●

●●●●

●

●●

●

●

●

●

●●●

●

●●●

●

●

●

●●●

●

●

●●

●

●●●

●

●●●●

●

●●

●

●

●●

●●

●●

●

●

●●●●●●

●

●●

●●

●●

●

●

●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●●

●●●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●●●●●

●

●

●●●●

●

●

●●●●

●

●

●●

●●

●●●●●

●●●
●
●●

●●●●●●

●

●●

●

●●●

●●●●

●●●

●

●●

●

●●

●●●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●●

●

●

●●●●●●

●●●●●

●

●●●●●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●●

●●●●

●

●

●

●

●●●●●●●●

●●

●●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●●

●
●

●●●●●

●●●

●

●

●●

●

●

●

●

●●

●●●

●●

●

●

●●

●

●●●

●●

●●

●●●●●●

●

●●

●●

●●●●

●

●●

●

●

●

●

●●●

●●●●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●●

●●●●●

●

●●

●

●●●

●

●

●

●

●●

●●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●●●

●

●●

●

●

●●

●

●●●●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●●●●

●

●●●

●

●

●

●●

●

●●

●●

●●●

●●

●

●

●

●

●

●

●

●●●●●

●●

●●●●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●●●●●

●

●●

●●

●

●●●

●

●●

●

●●●

●

●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●●

●●

●

●

●●

●

●●

●

●●●

●

●●●●●●

●

●●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●●

●●

●

●

●

●●●●●

●

●●●●●

●

●●

●

●

●

●●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●●●

●●

●

●●●●●

●

●●●

●

●

●

●●

●●●

●●

●●●●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●●●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●●●●●●●

●●●●●

●

●
●

●●

●

●

●●

●●

●

●

●

●●

●●

●●●●●●●

●

●

●

●

●

●●●●

●●●

●●

●●●●●

●

●●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●●

●

●●

●●

●●●●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●●●

●

●

●

●

●

●●●●●

●●●

●●

●●

●

●

●●●●

●

●

●●

●●●

●●

●

●●

●

●

●

●●●●●

●

●●

●●

●

●

●●

●

●●

●●●

●●●●●●●

●●

●●●

●

●●

●

●●●●●●●●●

●

●

●●●

●●●●●

●

●

●

●●●●●●

●

●

●●

●●●●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●●●

●

●

●●

●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●

●●●●

●

●

●●

●●●●

●

●●

●

●

●

●●

●●●●

●●

●

●

●

●

●

●●●

●●●

●

●

●●

●

●●●●●●●

●

●●●

●

●

●●

●●

●

●●●

●

●

●●

●

●●

●●

●

●●●●●●●

●●●●

●

●●

●●

●●●

●●●

●

●●●●

●●●

●●●●●

●●●

●●●●

●●●●

●

●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●

●●●

●

●●

●●

●

●●●

●●●

●

●

●

●

●

●●●●●

●

●

●●●●●●

●●

●

●●●

●●

●●●●●●●●

●●●

●●●●●●●●●

●

●

●●

●

●

●●●

●

●●●●●

●●●

●●

●

●

●

●

●

●●●

●●

●●●●●

●●

●●

●

●

●

●●●●

●●●●●●

●●●

●

●●

●●●

●

●

●●

●

●●

●●●●

●●●●

●

●

●

●

●

●●●●●●●●●

●

●

●●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●●

●●●●

●●●●

●●

●

●

●

●

●●

●●

●

●

●

●●

●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●

●

●●

●

●

●●●

●

●●

●

●●

●●

●

●

●●●●●●●●●●●●●●

●

●●●●

●

●●

●●●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●●●

●

●

●●

●●●

●

●●●●

●

●●●●

●●

●●●●

●

●

●●●●

●

●●●●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●

●

●●●

●●

●

●

●●●●●●●

●●

●

●●●

●●●●

●●●

●●●

●●

●●●

●●●

●●●●●●

●

●●●●

●●

●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●

●●●●●●●

●●●

●

●●●

●

●●●

●

●

●

●●●

●

●

●●

●

●●●●●●

●

●●

●●●

●●●●

●

●●●●

●

●●●●●●●●●

●

●●

●

●

●●●●●

●●

●●●●●

●

●●●

●

●

●

●●●

●●●

●●●

●●●●●

●

●

●●●●●●

●●

●●

●●●●

●

●●

●●

●●●●●●●●●●●●●

●●●●●

●●

●

●

●●●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●●

●

●●●

●●●●

●

●

●

●

●

●●●●

●●

●

●●●

●

●●●●●●

●

●

●

●

●●●

●

●●●

●●

●

●●

●●

●●

●

●●●●●●●●

●

●●●

●

●●●●

●●

●

●

●●●●●●●

●

●●●

●

●●

●●●

●

●●●

●

●●

●●●●

●

●

●●●●●●●●

●

●

●

●●●●●

●●

●●●●●

●●

●●●●●●●●●●

●●●●

●

●

●

●

●●●●●

●

●●

●●●

●

●●

●●

●

●●●

●●

●●●●

●

●●●●●●●●●●●●●●

●

●●

●

●

●●

●

●●

●

●

●●

●●●●●

●

●●●●

●

●

●●●●●●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●●●●●

●●●

●

●

●

●●●●●

●

●●●●●●●●●●●

●●

●

●

●●●●●●●●●●●●

●

●●●●

●●●●●

●●●

●

●

●

●●●●●●

●

●

●●

●

●●●●●●●●

●●●●●

●●●

●

●

●●

●●

●

●●

●●●●

●

●

●

●●●●●●

●●

●●●●●●

●

●●●●●

●

●●●●

●

●

●

●●●

●

●●

●

●

●

●

●●●●●●●●●●

●●●

●

●

●

●

●●●

●

●●●●●

●

●

●

●●●●●●●●

●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●●●

●●

●

●●●●●

●●

●●●●●

●

●

●●●●●●

●

●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●

●

●

●●

●

●●●●●

●

●

●●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●

●●●●

●●●●●

●

●●●●●

●●

●

●

●●●●

●

●●

●

●●●●●

●●●

●

●

●●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●

●●

●●

●

●●●●

●

●●●●●

●

●●

●●●

●●●●●

●

●

●

●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●

●●●●

●●●●●●●●

●●●

●●

●

●●

●●

●

●●

●●●

●

●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●

●●●●●●

●●

●

●

●

●●●●●

●●

●●

●

●●●●●●●●

●●●●

●

●●

●●●●●●●●●●●●

●●●●

●●●●●

●

●●

●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●

●

●

●●●

●

●●

●

●

●

●●●●●

●●●

●●

●

●

●

●●

●

●●●

●

●●

●

●●●●●●

●

●●●

●

●●

●

●●●●●

●

●●●●●●

●

●●●

●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●

●●

●●●●●●

●

●●●●

●

●●

●

●●

●●●●●●

●●●●

●

●

●●

●●●●●●●●●

●

●●●●●●●●

●●

●●●●

●

●●●●●

●●

●

●

●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●

●●●

●

●●●●●●●

●●●

●●●

●

●●

●

●●●

●●●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●●●●●●

●

●●●

●

●

●

●●

●

●●●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●

●

●

●

●●●

●

●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●

●

●●

●

●●●●●

●●

●

●

●●●

●

●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●●

●●

●

●●

●●●●●●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●●●●

●

●●●●

●

●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●●

●

●

●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●

●●

●

●●

●

●

●

●

●●

●●●●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●

●

●●●

●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●

●

●●●●●●●●●●

●

●●

●●

●

●●

●

●

●●●●

●

●●●●

●

●

●

●●

●●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●

●

●●

●

●●

●

●●

●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●

●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●●

●●●●●●●●●

●●●●

●●●

●

●

●●

●

●●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●

●●

●●●●●●●

●

●

●

●

●●●●●●●●●●

●

●

●●

●●●

●●●

●●

●●

●●

●

●

●●●●●●●●●●●

●

●●●

●

●

●●

●

●●●

●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●●

●

●

●

●●

●●●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●

●●

●●●●●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●

●●

●●

●

●

●

●●●●●●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●

●

●●●●

●●

●

●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●

●

●●●

●

●●

●

●●●

●●

●●●●●

●

●●●●●●

●

●

●●

●

●

●

●

●●●●●

●●●●

●

●●●●

●

●●

●●●●

●●●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●

●

●

●●●●●●●

●

●●●●

●

●●●●●

●

●●●●●●●●●●●

●●●

●●●●●●●●●●●

●●

●

●●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●

●●●●●

●

●●●●●●●●●

●●

●

●

●

●

●●●●●●●

●

●●●

●●

●●●●●●●●

●

●●●●●

●

●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●●●

●●●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●

●

●

●

●●

●●●●●●●

●

●●●●●●

●●

●

●

●

●●

●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●●

●

●●●●●●

●

●●●●●●●●

●●●●●

●●●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●

●●

●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●

●●●

●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●

●●

●

●●

●●●●●●●●●●●●

●

●●

●●

●●●●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●

●

●●

●●●●●●

●●●●●●●●●●●●●●

●●

●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●

●

●●

●

●

●

●

●●●●

●●

●●●●●●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●●●

●

●●

●●

●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●●●

●

●

●

●

●●●

●

●

●●

●

●

●●●●●●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●●●●●●

●●

●

●●

●

●

●●●●

●●●●

●

●

●

●

●

●●

●●

●●●●

●

●

●●●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●●●●

●

●●●●●●●●●●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●●●●●●

●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●

●●

●●●

●

●●●●

●●●

●●●●●

●

●●

●

●●●●

●●

●

●●●
●

●

●

●

●●

●●●

●●

●

●●

●

●●●●●●●●●●

●

●

●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●●●

●

●●●●

●

●●●

●●●

●●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●●●

●●●●●

●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●●●●●●

●●●

●●

●●

NVD EDB EKITS SYM

2
4

6
8

10

Fig. 4. Distribution of CVSS Exploitability subscores.

Table VI. Exploitability Subfactors for each dataset.

metric value SYM EKITS EDB NVD

E
xp

lo
it

ab
ili

ty

Acc. Vec.
local 2.98% 0% 4.57% 13.07%
adj. 0.23% 0% 0.12% 0.35%
net 96.79% 100% 95.31% 86.58%

Acc. Com.
high 4.23% 4.85% 3.37% 4.70%
medium 38.53% 63.11% 25.49% 30.17%
low 57.24% 32.04% 71.14% 65.13%

Auth.
multiple 0% 0% 0.02% 0.05%
single 3.92% 0.97% 3.71% 5.30%
none 96.08% 99.03% 96.27% 94.65%

3.3. Breakdown of the Exploitability subscore
Figure 4 reveals the distribution of the Exploitability subscore for each dataset. Almost
all vulnerabilities score between 8 and 10, and from the boxplot it is evident that
the distribution of exploitability subscores is indistinguishable among the datasets. In
other words, Exploitability can not be used as a proxy for likelihood of exploitation in
the wild. A similar result but only for proof-of-concept exploits has also been reported
in [Bozorgi et al. 2010]).

In table VI we decompose the Exploitability subscores and find that most vulnera-
bilities in NVD do not require any authentication (Authentication = (N)one, 95%), and
are accessible from remote (Access Vector = (N)etwork, 87%). This observation is even
more extreme in datasets other than NVD.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:10 L. Allodi et al.

For this reason the CVSS Exploitability subscore resembles more a constant than
a variable, and has therefore little or no influence on the variance of the final CVSS
score. This may in turn affect the suitability of the CVSS as a risk metric, that would
lack of a characterization of “exploitation likelihood”.

4. RANDOMIZED CASE-CONTROL STUDY
Randomized Block Design Experiments (or Controlled Experiments) are common
frameworks used to measure the effectiveness of a treatment over a sample of subjects.
These designs aim at measuring a certain variable of interest by isolating factors that
may influence the outcome of the experiment, and leave to randomization other fac-
tors of not primary importance. However, in some cases practical and ethical concerns
may make an experiment impossible to perform; for example, one cannot ask subjects
to start smoking in order to see whether they die of cancer. Similarly, we can not ask
subjects to stay vulnerable to see if they get their computers infected and their bank
accounts emptied.

When an experiment is not applicable, an alternative solution is to perform a retro-
spective analysis in which the cases (people with a known illness) are compared with
a random population of controls clustered in “blocks” (randomly selected patients with
the same characteristics). These retrospective analyses are called Randomized case-
control studies and are in many respects analogous to their experimental counterpart.
A famous application of this methodology is the 1950 study by [Doll and Hill 1950],
where the authors showed the correlation between smoking habits and the presence
or absence of cancer of the lungs by performing a case-control study with data on hos-
pitalization.

We revisit this methodology to assess whether a vulnerability risk factor (like the
CVSS score) can be a good predictor for vulnerability exploitation, and whether it can
be improved by additional information.

We start by giving the reader some terminology:

— Cases. The cases of a control study are the subjects that present the observed effect.
For example, in the medical domain the cases could be the “patients” whose status
has been ascertain to be “sick”. In a computer security scenario, a “case” could be
a vulnerability that has been exploited in the wild. For us a case is therefore a
vulnerability in SYM.

— Explanatory variable or risk factor. A risk factor is an effect that can explain the
presence (or increase in likelihood) of the illness (or attack). For cancer it is smoking
habits. We consider as risk factors (1) the CVSS level; (2) the existence of a Proof-
of-Concept exploit (vuln ∈ EDB); (3) the presence of an exploit in the black markets
(vuln ∈ EKITS). Another possibility (not investigated here) could be to use some of
the CVSS subscores.

— Confounding variables can be other variables that may be alternative explanations
of the effect, or correlate with its observation. For example, patient age or sex may be
confounding factors for some types of cancer. In our case the existence of an exploit
in SYM may depend on factors such as the type of vulnerability, its time of disclosure
and the affected software (see the Linux vs Windows example in Section 2).

— Control group. A control group is a group of subjects chosen at random from a pop-
ulation with similar characteristics (e.g. age, social status, location) to the cases. In
the original formulation of case-control study, the control group was composed of
healthy people only. With that application of the case-control study we can only as-
certain whether the observed effect (e.g. cancer of the lung) is related to a particular
risk factor (e.g. smoking habits) by a greater or lower degree than to other confound-
ing variables (e.g. living in polluted cities). We relax this condition and leave open

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Comparing vulnerability severity and exploits using case-control studies 39:11

the (random) chance that cases get included in the control group. This relaxation
allows us to perform additional computations on our samples (namely CVSS sensi-
tivity, specificity and risk reduction). This, however, introduces (random) noise in the
generated data. To address this issue, we perform the analysis with bootstrapping.

— Bootstrapping is a technique by which noise in the data is “flattened” by re-sampling
the data multiple times with replacement. This mitigates the effects, in the final
analysis, of a random observation showing up in an iteration.

Confounding variables. Deciding which confounding factors to include in a case-
control study is usually left to the intuition and experience of the researcher [Doll and
Hill 1950]. Because SYM is the “critical point” of our study (as it reports our cancer
patients), we consulted with Symantec to decide which factors to consider as confound-
ing. While this list can not be considered an exhaustive one, we believe the variables
we identify in the following capture the most important aspects of the inclusion of the
vulnerability in SYM. More details on this process are discussed in the Threats to Va-
lidity Section (§6). In the following we discuss the confounding variables we choose and
the enforcement of the respective controlling procedure:

— Year. Symantec’s commitment in reporting exploited CVEs may change with time.
After a detailed conversation with Symantec emerged that the inclusion of a CVE
in an attack signature is an effort on Symantec’s side aimed at enhancing the use-
fulness of their datasets. Specifically, Symantec recently opened a data sharing pro-
gram called WINE whose aim is to share attack data with security researchers [Du-
mitras and Shou 2011]. The data included in the WINE dataset spans from 2009
to the present date. Given the explicit sharing nature of their WINE program, we
consider vulnerabilities disclosed after 2009 to be better represented in SYM. We
therefore consider only those in our study.
Enforcement: Unfortunately vulnerability time data in NVD is very noisy due to how
the vulnerability disclosure mechanism works [Schryen 2009; Miller 2007]. For this
reason, an exact match for the disclosure date of the sampled vulnerability svi and
the SYM vulnerability vi is undesirable. In our case a coarse time data granularity
is enough, as we only need to cover the years in which Symantec actively reported
attacked CVEs. We therefore enforce this control by first selecting for sampling only
vulnerabilities whose disclosure dates span from 2009 on, and then by performing
an exact match in the year of disclosure between svi and vi.

— Impact type. Our analysis (Section 3.2) showed that some CIA types are more
common in SYM than elsewhere (e.g. CIA=“CCC”). An explanation for this may be
that attackers contrasted by Symantec may prefer to attack vulnerabilities that
allow them to execute arbitrary code rather than ones that enables them to get
only a partial access on the file system. We therefore also control for the CVSS
Confidentiality, Integrity and Availability assessments.
Enforcement: The CVSS framework provides a precise assessments of the CIA im-
pact. We therefore perform an exact match between the CIA assessment of svi and
that of vi.

In addition, we “sanitize” the data by Software. Symantec is a security market leader
and provides a variety of security solutions but its largest market share is in the con-
sumer market. In particular, the data in SYM is referenced to the malware and attack
signatures included in commercial products that are often installed on “consumer” ma-
chines. These are typically Microsoft Windows machines running commodity software
like Microsoft Office and internet plugins like Adobe Flash or Oracle Java [Dumitras

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:12 L. Allodi et al.

Table VII. Output format of our experiment.

Risk Factor level v ∈ SYM v 6∈ SYM

Above Threshold a b
Below Threshold c d

Table VIII. Sample thresh-
olds

CVSS ≥ 6
CVSS ≥ 9
CVSS ≥ 9 & v ∈ EDB
CVSS ≥ 9 & v ∈ EKITS

and Efstathopoulos 2012].9 Because of this selection problem, SYM may represent only
a subset of all the software reported in NVD or EDB or EKITS.

Enforcement: Unfortunately no standardized way to report vulnerability software
names in NVD exists, and this makes it impossible to use this variable as a direct
control. For example, CVE-2009-0559 (in SYM) is reported in NVD as a “Stack-based
buffer overflow in Excel”, but the main affected software reported is (Microsoft) Office.
In contrast, CVE-2010-1248 (in SYM as well) is a “Buffer overflow in Microsoft Of-
fice Excel” and is reported as an Excel vulnerability. Thus, performing a perfect string
match for the software variable would exclude from the selection relevant vulnerabili-
ties affecting the same software but reporting different software names.

The problem with software names extends beyond this. Consider for example a vul-
nerability in Webkit, an HTML engine used in many browsers (e.g. Safari, Chrome,
and Opera). Because Webkit is a component of other software, a vulnerability in Apple
Safari might also be a Webkit vulnerability in Google Chrome.

For these reasons using string matching for “software” when selecting svi would
introduce unknown error in the data. We can therefore only perform a “best effort”
approach by checking that the software affected by svi is included in the list of software
for ∀vi ∈ SYM . In this work software is therefore used as a “sanitation” variable rather
than a proper control. A possible refinement of this to be considered for future work is
to cluster software names in more general categories, e.g. “Browser” or “Plugin”.

4.1. Experiment run
We divide our experiment in two parts: sampling and execution. In the former we gen-
erate the samples from NVD, EDB and EKITS. In the latter we compute the relevant
statistics on the samples. What follows is a textual description of these processes. Our
R script to replicate the data analysis is available on our Lab’s webpage10.

Sampling. To create the samples, we first select a vulnerability vi from SYM and set
the controls according to their values for vi. Then, for each of NVD, EDB and EKITS we
randomly select, with replacement, a sample vulnerability svi that satisfies the condi-
tions defined by vi. We then include svi in the list of selected vulnerabilities for that
dataset sample. We repeat this procedure for all vulnerabilities in SYM. The sampling
has been performed with the statistical tool R-CRAN [R Core Team 2012].

Execution. Once we collected our samples, we compute the frequency with which
each risk factor identifies a vulnerability in SYM. Our output is represented in Table
VII. Each risk factor is defined by a CVSS threshold level t in combination with the
existence of a PoC (v ∈ EDB) or of a black-marketed exploit (v ∈ EKITS). Examples of
thresholds for different risk factors are reported in Table VIII. We run our experiment
for all CVSS thresholds ti with i ∈ [1..10]. For each risk factor we evaluate the number
of vulnerabilities in the sample that fall above and below the CVSS threshold, and
that are included (or not included) in SYM: the obtained table reports the count of

9Unix software is also included in SYM. However we do not consider this sample to be representative of
Unix exploited vulnerabilities.
10https://securitylab.disi.unitn.it/doku.php?id=software

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

https://securitylab.disi.unitn.it/doku.php?id=software

Comparing vulnerability severity and exploits using case-control studies 39:13

vulnerabilities that each risk factor correctly and incorrectly identifies as “at high risk
of exploit” (∈ SYM) or “at low risk of exploit” (6∈ SYM).

The computed values depend on the random sampling process. In an extreme case
we may therefore end up, just by chance, with a sample containing only vulnerabilities
in SYM and below the current threshold (i.e. [a = 0; b = 0; c = 1277; d = 0]). Such
an effect would be likely due to chance alone. To mitigate this we repeat, for every
risk factor, the whole experiment run 400 times and keep the median of the results.
We choose this limit because we observed that around 300 repetitions the distribution
of results is already markedly Gaussian. Any statistic reported in this paper is to be
intended as the median of the generated distribution of values.

4.2. Parameters of the analysis
Sensitivity and specificity. In the medical domain, the sensitivity of a test is the

conditional probability of the test giving positive results when the illness is present.
The specificity of the test is the conditional probability of the test giving negative result
when there is no illness. Sensitivity and specificity are also known as True Positive
Rate (TPR) and True Negatives Rate (TNR) respectively. High values for both TNR
and TPR identify a good “medical test”.11 In our context, we want to assess to what
degree a positive result from our current test (the CVSS score) matches the illness (the
vulnerability being actually exploited in the wild and tracked in SYM). The sensitivity
and specificity measures are computed as:

Sensitivity = P (v’s Risk factor above t| v ∈ SYM) = a/(a+ c) (2)
Specificity = P (v’s Risk factor below t| v 6∈ SYM) = d/(b+ d) (3)

where t is the threshold. Sensitivity and specificity outline the performance of the test
in identifying exploits, but say little about its effectiveness in terms of diminished risk.

Risk Reduction. To understand the effectiveness of a policy we adopt an approach
similar to that used by Evans in [Evans 1986] to estimate the effectiveness of seat
belts in preventing fatalities. In his case, the “effectiveness” was given by the difference
in the probability of having a fatal car crash when wearing a seatbelt and when not
wearing it (Pr(Death & Seat belt on)− Pr(Death & not Seat belt on)).

In our case, we measure the ability of a risk factor to predict the actual exploit in
the wild. Formally, the risk reduction is calculated as

RR = P (v ∈ SYM |v’s Risk factor above t)− P (v ∈ SYM |v’s Risk factor below t) (4)

therefore RR = a/(a+ b)− c/(c+ d). An high risk reduction identifies risk factors that
clearly discern between high-risk and low-risk vulnerabilities, and are therefore good
decision variables to act upon: the most effective strategy is identified by the risk factor
with the highest risk reduction.

4.3. Data Analysis
Sensitivity and specificity. Figure 5 reports the sensitivity and specificity levels re-

spective to different CVSS thresholds. Sensitivity is represented by the blue solid line;
specificity is represented by the grey dotted line. The vertical red line outlines the
CVSS threshold fixed by PCI DSS (cvss = 4). The green vertical line marks the thresh-
old that separates LOW CVSS vulnerabilities from MEDIUM+HIGH CVSS vulnera-
bilities (cvss = 6).

11Some may prefer the False Positive Rate (FPR) to the TNR. Note that TNR=1-FPR (as in our case d/(b+
d) = 1−b/(b+d)). We choose to report the TNR here because 1) it has the same direction of the TPR (higher
is better); 2) it facilitates the identification of the threshold with the best trade-off by intersecting TPR.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:14 L. Allodi et al.

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NVD sensitivity and specificity

CVSS score

Le
ve

l o
f m

ea
su

re

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

EDB sensitivity and specificity

CVSS score

Le
ve

l o
f m

ea
su

re

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

EKITS sensitivity and specificity

CVSS score

Le
ve

l o
f m

ea
su

re

Fig. 5. Sensitivity (solid line) and specificity (dotted line) levels for different CVSS thresholds. The red line
identifies the threshold for PCI DSS compliance (cvss = 4). The green line identifies the threshold between
LOW and MEDIUM+HIGH vulnerabilities (cvss = 6, see histogram in Figure 1).

Unsurprisingly, low CVSS scores show a very low specificity, as most non-exploited
vulnerabilities result above the threshold. With increasing CVSS thresholds, the speci-
ficity measure gets better without sensibly affecting sensitivity. The best trade-off ob-
tainable with the sole CVSS score is achieved with a threshold of 8, where specificity
grows over 30% and sensitivity sets at around 80%. To further increase the threshold
causes the sensitivity measure to collapse. In EKITS, because most vulnerabilities in
the black markets are exploited and their CVSS scores are high, the specificity mea-
sure can not significantly grow without collapsing sensitivity. In the Appendix (Table
X) we report the full set of results.

Risk reduction. In Figure 6 we report our results for risk reduction (RR). The mere
CVSS score (green squares), irrespectively of its threshold level, always defines a poor
patching policy with very low risk reduction. The existence of a public proof-of-concept
exploit is a good risk factor, yielding higher risk reduction levels (40%). The presence
of an exploit in the black markets is the most effective risk factor to consider.

Table IX reports the numerical Risk Reduction for a sample of thresholds. The full
list of results is available in the Appendix, Table X. A CVSS score of 6 entails a Risk Re-
duction of 4%; the performance is slightly better, but still unsatisfactory, if the thresh-
old is raised to 9. Overall, CVSS’ Risk Reduction stays below 10% for most thresholds.
Even by considering the 95% confidence interval, we can conclude that CVSS-only
based policies may be unsatisfactory from a risk-reduction point of view. Unsurpris-
ingly, the test with the CVSS score alone results in very high p-values, that in this
case testify that CVSS as a risk factor does not mark high risk vulnerabilities any
better than random selection would do.

The existence of a proof-of-concept exploit improves greatly the performance of the
policy: with “CVSS ≥ 6 + PoC” a RR of 42% can be achieved with very high statistical
significance. This result is comparable to wearing a seat belt while driving, as those
entail a reduction in risk of “only” 43% [Evans 1986]. The highest risk reduction (80%)
is obtained by considering the existence of an exploit in the black markets.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Comparing vulnerability severity and exploits using case-control studies 39:15

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Median Differential Risk

CVSS score

M
ed

ia
n

D
iff

er
en

tia
l R

is
k

● ●

●
●

● ●
●

●

●

CVSS only
CVSS + PoC
CVSS + Markets

Fig. 6. Risk reduction (RR) entailed by different risk factors.

Table IX. Risk Reduction for a sample of thresholds.

Risk factor threshold RR 95% RR conf. int. Significance
CVSS ≥6 4% -5% ; 12%
CVSS ≥6 + PoC 42% 38% ; 48% ****
CVSS ≥6 + Bmar 80% 80% ; 81% *
CVSS ≥9 8% 1% - 15%
CVSS ≥9 + PoC 42% 36% - 49% ****
CVSS ≥9 + Bmar 24% 23% - 29%

Note: Risk Reduction of vulnerability exploitation depending on pol-
icy and information at hand (CVSS, PoC, Markets). Significance is
reported by a Bonferroni-corrected Fisher Exact test (data is sparse)
for three comparison (CVSS vs CVSS+PoC vs CVSS+BMar) per ex-
periment [Bland and Altman 1995]. A **** indicates the Bonferroni-
corrected equivalent of p < 1E − 4; *** p < 0.001; ** p < 0.01; *
p < 0.05; nothing is reported for other values. Non-significant re-
sults indicate risk factors that perform indistinguishably at marking
“high risk” vulnerabilities than random selection. The full set of re-
sults is available in Appendix, Table X.

5. DISCUSSION
We now summarize the main observations of our study. We focus on: (1) CVSS charac-
teristics; (2) Risk reduction. Our results illustrate a mixed picture, with the margin of
statistical significance varying across the main hypotheses.

(1) The CVSS Impact submetric assumes only a few of the possible values, as Con-
fidentiality and Integrity losses usually go hand-in-hand. The Availability CVSS
assessment adds very little variability to the score, so of the 3 dimensions of the
Impact subscore, only 2 are effectively relevant.

(2) The CVSS Exploitability metric reveals little to none variability. The only variabil-
ity among the greatest majority of vulnerabilities in NVD is given for this metric
by the Access Complexity variable. Authentication and Access Vector show very
little (Access Vector) to almost none (Authentication) variability. The effect of this
is that the Exploitability submetric results flattened around very high values. As

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:16 L. Allodi et al.

a consequence, the Exploitability submetric is unsuitable as a characterization of
“likelihood of exploit”.

(3) The CVSS base score alone is a poor risk factor from a statistical perspective. Our
results indicate that policies based on CVSS scores, such as the US Government
NIST SCAP protocol or the world-wide used PCI DSS may not be effective in pro-
viding significant risk reductions. Our results demonstrate that using the CVSS
score as a selection criterion is statistically indistinguishable from randomly pick-
ing vulnerabilities to fix.

By considering risk factors other than the sole CVSS score it may be possible to
obtain more effective (and significant) strategies:

(1) The existence of a proof-of-concept exploit is an interesting risk factor to consider.
PoC-based policies can entail risk reductions up to 45% of the original risk.

(2) The black markets are an even more important source of risk. Our results show
that the inclusion of this risk factor can increase risk reduction up to 80%.

Our methodology is useful for both academic and industry practitioners. A case con-
trol study can be the methodology of choice when randomized trials and controlled
experiments can not be performed. For example, one can not ask users to stay vul-
nerable and see if they get a virus or a network attack12. On the negative side, it has
less power to determine causality than controlled experiments have, because it looks
backwards rather than directly controlling an experimental process. Yet, the method-
ology is appropriate to evaluate the strength of the correlation between an observation
of interest and some hypothesized risk factor/explanatory variable one may consider.
Many of the risk factors we consider (such as CVSS, proof-of-concept exploits, etc.) are
the de-facto standards in industry, generating a multi-million business (a casual walk
among the stands of BlackHat or RSA vendors would make it immediate). Evidence of
the effectiveness of these ‘metrics’ is however unclear, and case-control studies can be
a sound scientific method to evaluate the relevance of any risk factor by using the very
data that industry has available. Security data has multiple limitations that should
be carefully considered when performing related studies. An overview of these prob-
lematics is given in [Christey and Martin 2013]. The most important advantage of
the methodology is that it allows the researcher to control the different factors that
may influence the outcome of the observation of interest. By design, any residual noise
is evened-out by randomization in both the selection of the sample vulnerability and
the bootstrapping procedure. Our results can be tailored around specific case studies
by plugging in the methodology any risk factor, cost, time-to-deploy, or organizational
effort that are relevant to the case.

6. THREATS TO VALIDITY
We identify a number of threats to validity [Perry et al. 2000] to our study.

Construct validity. Data collection is the main issue in an empirical study. SYM and
EKITS may be particularly critical to the soundness of our conclusions. Because of the
unstructured dataset of the original SYM dataset, to build SYM we needed to take
some preliminary steps. A first issue is that the collected CVEs may not be relevant to
the actual threat. To address this issue, we proceeded in two steps. First, we manually
analyzed a random selection of about 50 entries to check for the relevance of the CVE
entries to the actual attack described in the signature. An informal communication
with Symantec confirmed that the CVEs are indeed relevant to the attack.

12Using honeynets for experiments would not give a controlled experiment either as they are artificial and
not actually used.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Comparing vulnerability severity and exploits using case-control studies 39:17

Due to the shady nature of the tools, the list of exploited CVEs in EKITS may be not
representative of the population of CVEs in the black markets; moreover, criminals
may “falsely report” what CVEs their tools attack, e.g. to increase sells. To mitigate
the problem, we crossed-referenced EKITS entries with knowledge from the security
research community and from our direct testing of tools traded in the the black mar-
kets [Allodi et al. 2013].

External validity. is concerned with the applicability of our results to real-world sce-
narios. Symantec is a world-wide company and a leader in the security industry. We
are therefore confident in considering their data as representative of real-world attack
scenarios. Yet, our conclusion can not be generalized to targeted attacks. These attacks
in the wild usually target a specific platform or system and are less likely to generate
an entry in a general purpose anti-virus product.

An important point to address is that our approach does not address changing be-
havior of the attacker. For example, if all vulnerabilities from the black markets with
a certain characteristic get patched, the attacker may simply modify his own attack
strategy in such a way to render the defender’s strategy ineffective. This is a common
problem in any game-theoretical approach: unfortunately the defender ought to move
first, thus the attacker can always adapt to the defender’s strategy (hence the defini-
tion of equilibrium as the state of the game into which neither attacker nor defender
have a good reason to change their strategy). This problem is present in the applica-
tion of any security technology or solution available. The game-theoretic nature of the
problem is not addressed by our methodology either. We reserve the exploration of this
issue for further work.

7. RELATED WORK
Vulnerability studies. Several studies before ours have dealt with software vulnera-

bilities, software risk and risk mitigation. Among all, Frei et al. [Frei et al. 2006] were
maybe the first to link the idea of life-cycle of a vulnerability to the patching process.
Their dataset was a composition of NVD, the Open Source Vulnerabiltity DataBase
and ‘FVDB’ (Frei’s Vulnerability DataBase, obtained from the examination of secu-
rity advisories for patches). The life-cycle of a vulnerability includes discovery time,
exploitation time and patching time. They showed that exploits are often quicker to
arrive than patches are. They were the first to look, in particular, at the difference in
time between time of first “exploit” and time of disclosure of the vulnerability. This
work have recently been extended by Shahzad et al. [Shahzad et al. 2012], who pre-
sented a comprehensive vulnerability study on NVD and OSVDB datasets (and Frei’s)
that included vendors and software in the analysis. Many descriptive trends in tim-
ings of vulnerability patching and exploitation are presented. However, their use of
exploit data from OSVDB says little about the actual exploitation of a vulnerabil-
ity [Christey and Martin 2013]. NVD timing data has also been reported to generate
an unforeseeable amount of noise because of how the vulnerability disclosure process
works [Schryen 2009; Christey and Martin 2013]. To avoid these problems we make
an effort in finding data on actual exploits, proof-of-concept exploits, and exploits in
the black markets. We provide a descriptive analysis of this vulnerability data, and
use our findings to provide advices to practitioners that desire to assess software vul-
nerability risk and efficacy of remediation strategies. For a thorough description of our
datasets and a preliminary discussion on the data, see [Allodi and Massacci 2012]; for
additional details on Symantec’s attack data we point the reader to [Dumitras and
Shou 2011].

The idea of using vulnerability data to assess overall security is not new by itself.
Attack surfaces [Manadhata and Wing 2011] and attack graphs [Wang et al. 2008]

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

39:18 L. Allodi et al.

are seminal approaches to the problem: the former uses vulnerability data to com-
pute an “exposure metric” of the vulnerable systems to potential attacks; the latter
aims at modeling consequent attacks on a system (or network of systems) the attacker
might perpetrate to reach a (usually critical) component such as a data server. These
approaches however lack of a characterization of vulnerability risk. Our methodology
integrates these approaches by providing a risk estimation for vulnerabilities; our re-
sults can be plugged in both attack graphs and attack surface estimations to obtain
more precise assessments.

CVSS. An analysis of the distribution of CVSS scores and subscores has been pre-
sented by Scarfone et al. [Scarfone and Mell 2009] and Gallon [Gallon 2011]. However,
while including CVSS subscore analysis, their results are limited to data from NVD
and do not provide any insight on vulnerability exploitation. In this sense, Bozorgi et
al. [Bozorgi et al. 2010] were probably the first to look for this correlation. They showed
that the CVSS characterization of “likelihood to exploit” did not match with data on
proof-of-concept exploits in EDB. We extended their first observation with a in-depth
analysis of subscores and of actual exploitation data.

Vulnerability models. Other studies focused on the modeling of the vulnerability dis-
covery processes, which arguably lays the ground for the “vulnerability remediation”
process, focus of our work. As noted by [Shin and Williams 2013], vulnerability models
can help “security engineers to prioritize security inspection and testing efforts” by, for
example, identifying software components that are most susceptible to attacks [Gegick
et al. 2009] or most likely to have unknown vulnerabilities hidden in the code [Neuhaus
et al. 2007]. Our contribution differs, in general, from work on vulnerability models in
that we do not aim at identifying “vulnerable components” or previously unknown vul-
nerabilities to point software engineers in the right direction. We instead propose a
methodology to evaluate the risk of already known vulnerabilities to be exploited in
the wild, and therefore may need immediate remediation or mitigation on the deploy-
ment side rather than on the development side.

Alhazmi et al.’s [Alhazmi and Malaiya 2008] and Ozment’s [Ozment 2007] work are
both central in vulnerability discovery models research. Alhazmi et al. fit six vulner-
ability models to vulnerability data of four major operative systems, and show that
Alhazmi’s ‘S shaped’ model is the one that performs the best. [Shin and Williams
2013] suggest that vulnerability models might be substituted with fault prediction
models, and showed that performances in terms of “recall” and “precision” do not dif-
fer sensibly between the two. However, as previously underlined by Ozment [Ozment
2007], vulnerability models may rely on unsound assumptions such as the indepen-
dence of vulnerability discoveries. Current vulnerability discovery models are indeed
not general enough to represent trends for all software [Massacci and Nguyen 2012].
Moreover, vulnerability disclosure and discovery are complex processes [Ozment 2005;
Clark et al. 2010], and can be influenced by {black/white}-hat community activities
[Clark et al. 2010] and economics [Miller 2007].

Markets for vulnerabilities. Our analysis of vulnerabilities traded in the black mar-
kets is also interesting because it supports the hypothesis that the exploit markets are
significantly different (and more stable) than the previous IRC markets frequented by
cyber criminals were [Herley and Florencio 2010]. Previous work from the authors of
this manuscript also experimentally showed that the goods traded in the black mar-
kets are very reliable in delivering attacks and are resilient to aging [Allodi et al.
2013].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Comparing vulnerability severity and exploits using case-control studies 39:19

8. CONCLUSION
In this paper we have proposed the case-control study methodology as an operative
framework for security studies. In a case-control study the researcher looks backward
at some of the cases (for example vulnerabilities exploited in the wild) and compare
them with controls (in our case randomly selected vulnerabilities with similar charac-
teristics such as year of discovery or software type). The purpose is to identify whether
some risk factor (in our scenario a high CVSS score, or the existence of a proof of con-
cept exploit) is a good explanation of the cases and therefore represents a decision
variable upon which the system administrator must act.

To illustrate the methodology we first analyzed the CVSS score in its capability to
express the Impact and the Likelihood of an exploitation to happen. We showed that
a proper characterization of ‘likelihood of exploit’ is not present in the CVSS score.
We then evaluated its performances as a “risk indicator” [Council 2010; Quinn et al.
2010] by performing a case-control study, in which we sample the data at hand to test
how the CVSS score correlates with exploitation in the wild. Our results show that
the CVSS base score never achieves high rates of identified true positives (sensitivity)
simultaneously with a high rate of true negatives (specificity).

Finally, we showed how the methodology can be used to evaluate the ‘effectiveness’
of multiple policies that consider different risk factors. Our results show that the sole
CVSS score performs no better than ‘randomly picking’ vulnerabilities to fix and may
lead to negligible risk reductions. Markedly better results can instead be obtained
when additional risk factors are considered; in this study we considered the existence
of a proof-of-concept exploit and of an exploit traded in the black markets.

In future work we plan to integrate our methodology with additional evaluation
factors such as the cost of a strategy or the criticality of the assets. Another interesting
venue would be to apply our methodology to other domains (e.g. critical infrastructures
and targeted attacks).

REFERENCES
O.H. Alhazmi and Y.K. Malaiya. 2008. Application of Vulnerability Discovery Models to Ma-

jor Operating Systems. IEEE Transactions on Reliability 57, 1 (march 2008), 14 –22.
DOI:http://dx.doi.org/10.1109/TR.2008.916872

Luca Allodi, Vadim Kotov, and Fabio Massacci. 2013. MalwareLab: Experimentation with Cybercrime attack
tools. In Proceedings of the 2013 6th Workshop on Cybersecurity Security and Test.

Luca Allodi and Fabio Massacci. 2012. A Preliminary Analysis of Vulnerability Scores for Attacks in Wild. In
Proceedings of the 2012 ACM CCS Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security.

J Martin Bland and Douglas G Altman. 1995. Multiple significance tests: the Bonferroni method. 310, 6973
(1995), 170.

Mehran Bozorgi, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. 2010. Beyond heuristics: learn-
ing to classify vulnerabilities and predict exploits. In Proceedings of the 16th ACM International Con-
ference on Knowledge Discovery and Data Mining. ACM, 105–114.

Steve Christey and Brian Martin. 2013. Buying into the bias: why vulnerability statistics suck. https://www.
blackhat.com/us-13/archives.html#Martin. (July 2013).

Sandy Clark, Stefan Frei, Matt Blaze, and Jonathan Smith. 2010. Familiarity breeds contempt: the honey-
moon effect and the role of legacy code in zero-day vulnerabilities. In Proceedings of the 26th Annual
Computer Security Applications Conference. 251–260. http://doi.acm.org/10.1145/1920261.1920299

PCI Council. 2010. PCI DSS Requirements and Security Assessment Procedures, Version 2.0. (2010). https:
//www.pcisecuritystandards.org/documents/pci dss v2.pdf

Richard Doll and A Bradford Hill. 1950. Smoking and Carcinoma of the Lung. British Medical Journal 2,
4682 (1950), 739–748.

Tudor Dumitras and Petros Efstathopoulos. 2012. Ask WINE: are we safer today? evaluating operating
system security through big data analysis. In Proceeding of the 2012 USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET’12). 11–11.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

http://dx.doi.org/10.1109/TR.2008.916872
https://www.blackhat.com/us-13/archives.html#Martin
https://www.blackhat.com/us-13/archives.html#Martin
http://doi.acm.org/10.1145/1920261.1920299
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf
https://www.pcisecuritystandards.org/documents/pci_dss_v2.pdf

39:20 L. Allodi et al.

Tudor Dumitras and Darren Shou. 2011. Toward a standard benchmark for computer security research:
The Worldwide Intelligence Network Environment (WINE). In Proceedings of the First Workshop on
Building Analysis Datasets and Gathering Experience Returns for Security. ACM, 89–96.

L. Evans. 1986. The effectiveness of safety belts in preventing fatalities. Accident Analysis & Prevention 18,
3 (1986), 229–241.

Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. 2006. Large-scale vulnerability analysis.
In Proceedings of the 2006 SIGCOMM workshop on Large-scale attack defense. ACM, 131–138.

L. Gallon. 2011. Vulnerability Discrimination Using CVSS Framework. In Proceedings of the 4th IFIP Inter-
national Conference on New Technologies, Mobility and Security. 1–6.

Michael Gegick, Pete Rotella, and Laurie A. Williams. 2009. Predicting Attack-prone Components. In Pro-
ceedings of the 2nd International Conference on Software Testing Verification and Validation (ICST’09).
181–190.

Chris Grier, Lucas Ballard, Juan Caballero, Neha Chachra, Christian J. Dietrich, Kirill Levchenko, Panayi-
otis Mavrommatis, Damon McCoy, Antonio Nappa, Andreas Pitsillidis, Niels Provos, M. Zubair Rafique,
Moheeb Abu Rajab, Christian Rossow, Kurt Thomas, Vern Paxson, Stefan Savage, and Geoffrey M.
Voelker. 2012. Manufacturing compromise: the emergence of exploit-as-a-service. In Proceedings of the
19th ACM Conference on Computer and Communications Security. ACM, 821–832.

C. Herley and D. Florencio. 2010. Nobody sells gold for the price of silver: Dishonesty, uncertainty and the
underground economy. Economics of Information Security and Privacy (2010).

Siv Hilde Houmb, Virginia NL Franqueira, and Erlend A Engum. 2010. Quantifying security risk level from
CVSS estimates of frequency and impact. 83, 9 (2010), 1622–1634.

Vadim Kotov and Fabio Massacci. 2013. Anatomy of Exploit Kits. Preliminary Analysis of Exploit Kits as
Software Artefacts. In Proc. of ESSoS 2013.

Pratyusa K. Manadhata and Jeannette M. Wing. 2011. An Attack Surface Metric. IEEE Transactions on
Software Engineering 37 (2011), 371–386. DOI:http://dx.doi.org/10.1109/TSE.2010.60

Fabio Massacci, Stephan Neuhaus, and Viet Nguyen. 2011. After-Life Vulnerabilities: A Study on Firefox
Evolution, Its Vulnerabilities, and Fixes. In Proceedings of the 2011 Engineering Secure Software and
Systems Conference (ESSoS’11) (Lecture Notes in Computer Science). 195–208.

Fabio Massacci and Viet Nguyen. 2012. An Independent Validation of Vulnerability Discovery Models. In
Proceeding of the 7th ACM Symposium on Information, Computer and Communications Security (ASI-
ACCS’12).

Peter Mell, Karen Scarfone, and Sasha Romanosky. 2007. A Complete Guide to the Common Vulnerability
Scoring System Version 2.0. Technical Report. FIRST, Available at http://www.first.org/cvss.

C. Miller. 2007. The legitimate vulnerability market: Inside the secretive world of 0-day exploit sales. In
Proceedings of the 6th Workshop on Economics and Information Security.

Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. 2007. Predicting Vulnerable
Software Components. In Proceedings of the 14th ACM Conference on Computer and Communications
Security. 529–540.

A. Ozment. 2005. The likelihood of vulnerability rediscovery and the social utility of vulnerability hunting.
In Proceedings of the 4th Workshop on Economics and Information Security.

Andy Ozment. 2007. Improving vulnerability discovery models. In Proceedings of the 3rd Workshop on Qual-
ity of Protection. 6–11.

Dewayne E. Perry, Adam A. Porter, and Lawrence G. Votta. 2000. Empirical studies of software engineering:
a roadmap. In Proceedings of the 22nd Conference on The Future of Software Engineering. ACM, 345–
355.

Stephen D. Quinn, Karen A. Scarfone, Matthew Barrett, and Christopher S. Johnson. 2010. SP 800-117.
Guide to Adopting and Using the Security Content Automation Protocol (SCAP) Version 1.0. Technical
Report.

R Core Team. 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. http://www.R-project.org ISBN 3-900051-07-0.

Karen Scarfone and Peter Mell. 2009. An analysis of CVSS version 2 vulnerability scoring. In Proceedings
of the 3rd International Symposium on Empirical Software Engineering and Measurement. 516–525.

Guido Schryen. 2009. A Comprehensive and Comparative Analysis of the Patching Behavior of Open Source
and Closed Source Software Vendors. In Proceedings of the 2009 Fifth International Conference on IT
Security Incident Management and IT Forensics (IMF ’09). IEEE Computer Society, Washington, DC,
USA, 153–168. DOI:http://dx.doi.org/10.1109/IMF.2009.15

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

http://dx.doi.org/10.1109/TSE.2010.60
http://www.first.org/cvss
http://www.R-project.org
http://dx.doi.org/10.1109/IMF.2009.15

Comparing vulnerability severity and exploits using case-control studies 39:21

Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X. Liu. 2012. A large scale exploratory analysis
of software vulnerability life cycles. In Proceedings of the 34th International Conference on Software
Engineering. IEEE Press, 771–781.

Yonghee Shin and Laurie Williams. 2013. Can traditional fault prediction models be
used for vulnerability prediction? Empirical Software Engineering 18, 1 (2013), 25–59.
DOI:http://dx.doi.org/10.1007/s10664-011-9190-8

Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajodia. 2008. An Attack Graph-Based
Probabilistic Security Metric. In Proceedings of the 22nd IFIP WG 11.3 Working Conference on Data
and Applications Security. Lecture Notes in Computer Science, Vol. 5094. Springer Berlin / Heidelberg,
283–296.

Branden R Williams and Anton Chuvakin. 2012. PCI Compliance: Understand and implement effective PCI
data security standard compliance. Syngress Elsevier.

Received ; revised ; accepted

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

http://dx.doi.org/10.1007/s10664-011-9190-8

Online Appendix to:
Comparing vulnerability severity and exploits using case-control
studies.

LUCA ALLODI, University of Trento
FABIO MASSACCI, University of Trento

A. DETAILED ANALYSIS TABLE
In this Appendix we report the full set of results from the bootstrapped random sam-
pling described in Section 4. Table X reports the results for all the active controls.

Sensitivity, specificity and risk reduction are calculated on the median of the results
obtained from the bootstrapping procedure. The last column of the table reports the
median p-value of the results: the reported p-value is the value under which 50% of
our samples are. We report the results numerically as they are in output from our
experiment. The level of significance should however be corrected (e.g. by means of a
Bonferroni correction) for each experimental run, when comparing the results for a
particular combination of controls [Bland and Altman 1995].

Additional results for different combinations of controls are reported in Table XI and
Table XII. The full set of results is available upon request to the authors.

The control variables we vary across the experiments are:

— censorYr: only CVEs disclosed in the years 2009,2010,2011,2012 are considered in
the study.

— censorSw: only CVEs affecting software also included in SYM are considered.
— checkYr: for each CVE in SYM another is picked for inclusion in the sample that

has the exact same year as the one in SYM. This is different from censorYr as in
that case the only constraint is that the chosen vulnerability lays in the 2009-2012
time range.

— checkSw (available upon request): each CVE picked for the sample has exactly one
counterpart, software-wise, in SYM.

Our risk factors are:

— CVSS score: the vulnerability has been disclosed (i.e. we consider every vulnerabil-
ity) and has a high CVSS threshold.

— Proof-of-concept exploit: the vulnerability has a proof-of-concept exploit in EDBand
has a high CVSS threshold.

— Black-marketed exploit: an exploit is reported to be traded in the black markets for
that vulnerability and has a high CVSS threshold.

c© 2013 ACM 1539-9087/2013/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

App–2 L. Allodi et al.

Table X. Full result table for the experiment reported in this manuscript. We report the p-values as are. When applying corrections like the Bonferroni, only the rows that
belong to the same experiment run should be considered, i.e. rows reporting the same combination of controls and threshold.

db censorYr censorSw checkYr checkCIA threshold Above & ∈ SYM Below & ∈ SYM Above & 6∈ SYM Below & 6∈ SYM Sensitivity Specificity Risk Reduction 95 conf. Int. p-value

nvd X X X X 1 53 0 281 0 100.00% 0.00% NA NA 1.00E+00
nvd X X X X 2 54 0 279 1 100.00% 0.35% 13.69% -85.7%;19.37% 1.00E+00
nvd X X X X 3 52 1 277 3 98.31% 1.09% -1.47% -47.07%;18.81% 6.22E-01
nvd X X X X 4 53 1 274.5 5 98.25% 1.76% 1.09% -35.03%;19.14% 6.06E-01
nvd X X X X 5 51 3 258 23 95.00% 8.04% 6.12% -7.12%;16.09% 5.52E-01
nvd X X X X 6 47 6 235 45 88.10% 16.03% 4.14% -4.29%;12.38% 5.08E-01
nvd X X X X 7 47 7 218 62 86.27% 22.22% 6.91% -0.71%;14.57% 1.96E-01
nvd X X X X 8 44 10 190 91 82.00% 32.35% 9.16% 2.04%;15.02% 4.11E-02
nvd X X X X 9 42 11 187 93 79.67% 33.22% 8.09% 0.98%;15.14% 7.61E-02
nvd X X X X 10 9 44 52 228 16.67% 81.54% -1.60% -10.73%;7.1% 5.68E-01
edb X X X X 1 95 0 115 0 100.00% 0.00% NA NA 1.00E+00
edb X X X X 2 95 0 115 0 100.00% 0.00% NA NA 1.00E+00
edb X X X X 3 95 0 114.5 1 100.00% 0.86% 45.39% 41.46%;49.23% 1.00E+00
edb X X X X 4 95 0 114 1 100.00% 0.89% 45.41% 42.18%;49.76% 1.00E+00
edb X X X X 5 93 1 103 13 98.94% 11.01% 40.21% 35.13%;45.36% 3.81E-03
edb X X X X 6 93 2 92 23 97.92% 20.00% 42.58% 37.86%;48.25% 2.90E-05
edb X X X X 7 92 3 84 32 97.06% 27.43% 45.18% 39.55%;51.16% 3.56E-07
edb X X X X 8 87 8 64 51 91.67% 43.97% 43.77% 37.56%;50.64% 3.57E-09
edb X X X X 9 86 9 65 51 90.43% 43.97% 42.00% 36.25%;49.11% 2.07E-08
edb X X X X 10 28 68 18 98 29.10% 84.62% 20.46% 12.53%;29.9% 1.81E-02

ekits X X X X 1 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X X X 2 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X X X 3 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X X X 4 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X X X 5 40 0 12 1 100.00% 7.69% 76.92% 76.47%;78.43% 2.45E-01
ekits X X X X 6 40 0 10 3 100.00% 23.08% 80.00% 79.59%;81.25% 1.22E-02
ekits X X X X 7 40 0 10 3 100.00% 23.08% 80.00% 79.59%;80% 1.22E-02
ekits X X X X 8 35 5 9 4 87.50% 30.77% 23.99% 23.51%;29.55% 1.99E-01
ekits X X X X 9 35 5 9 4 87.50% 30.77% 23.99% 23.51%;29.55% 1.99E-01
ekits X X X X 10 10 30 2 11 25.00% 84.62% 10.16% 8.65%;10.83% 7.07E-01

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

Comparing vulnerability severity and exploits using case-control studies App–3

Table XI. Table of results for the bootstrapped case-control study for the CIA, censor year, censor software controls.
db censorYr censorSw checkYr checkCIA threshold Above & ∈ SYM Below & ∈ SYM Above & 6∈ SYM Below & 6∈ SYM Sensitivity Specificity Risk Reduction 95 conf. Int. p-value

nvd X 1 54 0 1118 0 100.00% 0.00% NA NA 1.00E+00
nvd X 2 54 0 1115 3 100.00% 0.27% 4.63% -21.06%;5.75% 1.00E+00
nvd X 3 55 0 1094 23 100.00% 2.05% 4.62% -3.01%;5.9% 6.28E-01
nvd X 4 54 0 1087 30 100.00% 2.69% 4.39% -1.18%;5.86% 6.24E-01
nvd X 5 55 1 1009 107 98.56% 9.58% 4.63% 2.53%;6.19% 2.48E-02
nvd X 6 51 4 857 260 92.68% 23.29% 4.11% 2.01%;6.05% 4.19E-03
nvd X 7 50 5 739 378 90.24% 33.84% 4.86% 2.66%;6.72% 8.89E-05
nvd X 8 43 12 424 694 77.78% 62.08% 7.52% 4.98%;9.82% 4.15E-09
nvd X 9 42 13 416 701 77.08% 62.76% 7.37% 4.95%;10.16% 7.77E-09
nvd X 10 13 42 220 896 23.91% 80.27% 1.14% -1.68%;4.32% 4.10E-01
edb X 1 105 0 937 0 100.00% 0.00% NA NA 1.00E+00
edb X 2 105 0 937 0 100.00% 0.00% 10.07% 8.71%;11.43% 1.00E+00
edb X 3 104 0 930 9 100.00% 0.96% 9.58% -6.62%;11.39% 1.00E+00
edb X 4 105 0 925 13 100.00% 1.38% 9.66% -3.3%;11.61% 6.19E-01
edb X 5 104 1 866 72 99.07% 7.71% 9.62% 6.38%;11.68% 4.53E-03
edb X 6 102 3 720 216.5 97.18% 23.09% 10.98% 8.62%;13.11% 2.83E-08
edb X 7 100 4 630 307 95.92% 32.69% 12.27% 10%;14.47% 6.12E-12
edb X 8 91 13 340 597 87.50% 63.72% 18.99% 15.95%;21.83% 1.74E-24
edb X 9 90 14 336 603 86.54% 64.19% 18.96% 15.71%;21.75% 2.88E-24
edb X 10 35 69 135 801 33.68% 85.57% 12.98% 7.47%;17.97% 3.24E-06

ekits X 1 77 0 25 0 100.00% 0.00% NA NA 1.00E+00
ekits X 2 77 0 25 0 100.00% 0.00% NA NA 1.00E+00
ekits X 3 77 0 25 0 100.00% 0.00% NA NA 1.00E+00
ekits X 4 77 0 25 0 100.00% 0.00% NA NA 1.00E+00
ekits X 5 77 0 22 3 100.00% 12.00% 77.78% 77.78%;77.78% 1.34E-02
ekits X 6 75 2 17 8 97.40% 32.00% 61.52% 61.52%;61.52% 1.56E-04
ekits X 7 71 6 16 9 92.21% 36.00% 41.61% 41.61%;41.61% 1.59E-03
ekits X 8 60 17 14 11 77.92% 44.00% 20.37% 20.37%;20.37% 4.13E-02
ekits X 9 60 17 14 11 77.92% 44.00% 20.37% 20.37%;20.37% 4.13E-02
ekits X 10 14 63 3 22 18.18% 88.00% 8.24% 8.24%;8.24% 5.54E-01

nvd X X 1 48.5 0 1077.5 0 100.00% 0.00% NA NA 1.00E+00
nvd X X 2 47 0 1075 4 100.00% 0.37% 4.04% -29.13%;5.13% 1.00E+00
nvd X X 3 48 0 1062 15 100.00% 1.40% 4.01% -7.62%;5.33% 1.00E+00
nvd X X 4 48 0 1051 26 100.00% 2.45% 4.12% -2.32%;5.41% 6.31E-01
nvd X X 5 47 1 961 117 97.87% 10.81% 3.75% 1.35%;5.62% 6.01E-02
nvd X X 6 46 3 834 245 94.34% 22.77% 4.11% 2.22%;5.77% 2.65E-03
nvd X X 7 45.5 3 695 383 93.33% 35.48% 5.31% 3.19%;6.84% 6.88E-06
nvd X X 8 43 6 443 634 88.46% 58.92% 7.84% 5.79%;10.03% 3.61E-11
nvd X X 9 42 6 435 642 87.61% 59.58% 7.95% 5.78%;10.34% 3.50E-11
nvd X X 10 10 38 167 911 20.75% 84.52% 1.64% -1.67%;4.84% 3.27E-01
edb X X 1 86 0 795 0 100.00% 0.00% NA NA 1.00E+00
edb X X 2 88 0 794 0 100.00% 0.00% NA NA 1.00E+00
edb X X 3 87 0 789 4 100.00% 0.51% 9.92% 8.79%;11.02% 1.00E+00
edb X X 4 87 0 786 8 100.00% 1.01% 10.01% 8.77%;11.04% 1.00E+00
edb X X 5 87 0 714 80 100.00% 10.10% 10.61% 8.9%;11.95% 4.21E-04
edb X X 6 86 0 604 190 100.00% 23.90% 12.23% 10.49%;13.91% 1.74E-09
edb X X 7 87 1 525 269 98.91% 33.76% 13.87% 12.19%;15.38% 3.94E-14
edb X X 8 83 4 268 526 95.45% 66.28% 22.82% 19.79%;25.57% 3.42E-31
edb X X 9 82 4 264 529 95.29% 66.75% 23.05% 20.2%;25.69% 3.55E-31
edb X X 10 26 61 66 728 29.76% 91.76% 20.49% 14.81%;26.04% 8.28E-08

ekits X X 1 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X 2 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X 3 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X 4 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X 5 40 0 12 1 100.00% 7.69% 76.92% 76.92%;76.92% 2.45E-01
ekits X X 6 40 0 10 3 100.00% 23.08% 80.00% 80%;80% 1.22E-02
ekits X X 7 40 0 10 3 100.00% 23.08% 80.00% 80%;80% 1.22E-02
ekits X X 8 35 5 9 4 87.50% 30.77% 23.99% 23.99%;23.99% 1.99E-01
ekits X X 9 35 5 9 4 87.50% 30.77% 23.99% 23.99%;23.99% 1.99E-01
ekits X X 10 10 30 2 11 25.00% 84.62% 10.16% 10.16%;10.16% 7.07E-01

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

App–4 L. Allodi et al.

Table XII. –continuation from previous page
db censorYr censorSw checkYr checkCIA threshold Above & ∈ SYM Below & ∈ SYM Above & 6∈ SYM Below & 6∈ SYM Sensitivity Specificity Risk Reduction 95 conf. Int. p-value

nvd X X 1 162 0 954 0 100.00% 0.00% NA NA 1.00E+00
nvd X X 2 163 0 948 4 100.00% 0.41% 14.40% -33.07%;16.46% 1.00E+00
nvd X X 3 162 1 924 29 99.39% 3.01% 11.63% 2.86%;16.37% 1.07E-01
nvd X X 4 162 1 917 36 99.36% 3.80% 11.83% 4.03%;16.22% 5.01E-02
nvd X X 5 161.5 4 828 124 97.80% 13.02% 13.47% 10.15%;16.57% 5.71E-06
nvd X X 6 144 19 691 263 88.55% 27.54% 10.71% 6.65%;14.14% 3.83E-06
nvd X X 7 137 26 605 349 84.11% 36.53% 11.55% 8.07%;15.52% 7.01E-08
nvd X X 8 99 65 386 568 60.51% 59.46% 10.13% 6.2%;13.79% 2.59E-06
nvd X X 9 98 66 381 573 59.76% 60.01% 10.10% 6.26%;13.97% 3.16E-06
nvd X X 10 32 131 156 798.5 19.40% 83.61% 2.70% -1.56%;8.36% 3.45E-01
edb X X 1 263 0 401 0 100.00% 0.00% NA NA 1.00E+00
edb X X 2 262 0 401 0 100.00% 0.00% NA NA 1.00E+00
edb X X 3 261 1 395 6 99.62% 1.44% 24.87% 5.77%;40.96% 2.96E-01
edb X X 4 262 1 391 9 99.62% 2.23% 30.08% 16.92%;41.29% 8.93E-02
edb X X 5 258 5 353 49 98.08% 12.29% 32.91% 29.09%;37.27% 4.47E-07
edb X X 6 250 13 284 117 94.92% 29.17% 36.56% 32.49%;40.18% 3.87E-16
edb X X 7 238 24 239 161 90.71% 40.35% 36.93% 33.11%;40.28% 6.64E-20
edb X X 8 174 89 140 260 66.41% 64.99% 30.21% 26.16%;33.73% 2.14E-15
edb X X 9 173 90 139 262 65.65% 65.33% 29.80% 25.66%;33.45% 4.01E-15
edb X X 10 67 196 56 344 25.47% 86.01% 18.05% 13.12%;22.85% 2.95E-04

ekits X X 1 77 0 20 0 100.00% 0.00% NA NA 1.00E+00
ekits X X 2 77 0 20 0 100.00% 0.00% NA NA 1.00E+00
ekits X X 3 77 0 20 0 100.00% 0.00% NA NA 1.00E+00
ekits X X 4 77 0 20 0 100.00% 0.00% NA NA 1.00E+00
ekits X X 5 77 0 18 2 100.00% 10.00% 81.05% 81.05%;81.05% 4.08E-02
ekits X X 6 75 2 14 6 97.40% 30.00% 59.27% 59.27%;59.27% 8.27E-04
ekits X X 7 71 6 13 7 92.21% 35.00% 38.37% 38.37%;38.37% 4.53E-03
ekits X X 8 60 17 11 9 77.92% 45.00% 19.12% 19.12%;19.12% 5.00E-02
ekits X X 9 60 17 11 9 77.92% 45.00% 19.12% 19.12%;19.12% 5.00E-02
ekits X X 10 14 63 3 17 18.18% 85.00% 3.60% 3.6%;3.6% 1.00E+00

nvd X X X 1 106 0 855 0 100.00% 0.00% NA NA 1.00E+00
nvd X X X 2 105 1 849 5 99.11% 0.60% -1.38% -29.36%;12.47% 6.06E-01
nvd X X X 3 106 1 834 19 98.97% 2.17% 4.51% -6.5%;11.9% 7.12E-01
nvd X X X 4 104.5 2 827 27 98.20% 3.20% 5.20% -2.95%;11.83% 5.67E-01
nvd X X X 5 101 5 721 133 95.00% 15.59% 8.53% 5.14%;11.96% 1.77E-03
nvd X X X 6 96 11 623 232 89.91% 27.13% 8.84% 5.69%;11.62% 6.56E-05
nvd X X X 7 92 14 514 339 86.41% 39.62% 11.05% 8.35%;14.03% 2.44E-08
nvd X X X 8 79 28 391 464 73.21% 54.28% 10.99% 7.87%;14.26% 5.71E-08
nvd X X X 9 78 29 386 468 72.82% 54.79% 11.03% 7.7%;14.1% 6.38E-08
nvd X X X 10 18 88 110 745 17.00% 87.19% 3.56% -1.47%;9.54% 2.41E-01
edb X X X 1 133 0 209 0 100.00% 0.00% NA NA 1.00E+00
edb X X X 2 133 0 209 0 100.00% 0.00% NA NA 1.00E+00
edb X X X 3 133 0 207 2 100.00% 0.95% 39.10% 37.49%;40.48% 5.25E-01
edb X X X 4 133 0 205 4 100.00% 1.92% 39.41% 38.02%;40.85% 1.61E-01
edb X X X 5 132 1 170 38 99.25% 18.38% 41.08% 39.25%;42.83% 3.75E-08
edb X X X 6 131 2 141 68 98.50% 32.39% 45.29% 43.32%;47.06% 1.69E-14
edb X X X 7 131 3 125 84 97.76% 40.05% 47.53% 45.98%;49.35% 5.23E-18
edb X X X 8 120 14 92 117 89.63% 55.95% 45.99% 43.96%;48.14% 1.05E-18
edb X X X 9 118 15 92 117 88.89% 55.89% 45.04% 42.87%;47.14% 5.48E-18
edb X X X 10 37 96 24 185 28.15% 88.68% 27.24% 23.57%;31.78% 1.17E-04

ekits X X X 1 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X X 2 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X X 3 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X X 4 40 0 13 0 100.00% 0.00% NA NA 1.00E+00
ekits X X X 5 40 0 12 1 100.00% 7.69% 76.92% 76.92%;76.92% 2.45E-01
ekits X X X 6 40 0 10 3 100.00% 23.08% 80.00% 80%;80% 1.22E-02
ekits X X X 7 40 0 10 3 100.00% 23.08% 80.00% 80%;80% 1.22E-02
ekits X X X 8 35 5 9 4 87.50% 30.77% 23.99% 23.99%;23.99% 1.99E-01
ekits X X X 9 35 5 9 4 87.50% 30.77% 23.99% 23.99%;23.99% 1.99E-01
ekits X X X 10 10 30 2 11 25.00% 84.62% 10.16% 10.16%;10.16% 7.07E-01

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2013.

	Introduction
	Datasets
	A coarse-grained overview of the datasets

	CVSS score breakdown
	The Impact and Exploitability Subscores
	Breakdown of the Impact subscore
	Breakdown of the Exploitability subscore

	Randomized case-control study
	Experiment run
	Parameters of the analysis
	Data Analysis

	Discussion
	Threats to validity
	Related work
	Conclusion
	Detailed analysis table

