

Security Engineering

Lecture 16 – Network Security Fabio Massacci (with the courtesy of W. Stallings)

Lecture Outline

- Network Attacks
 - Attive Attacks
 - Passive Attacks
 - TCP Attacks
- Contermeasures
 - IPSec
 - SSL/TLS
 - Firewalls
 - Intrusion Detection Systems
 - Honeypots

Network Security

Figure 8.1 Example Network to Illustrate DoS Attacks

Where does Network Security sit?

Passive and Active attacks

• Passive attacks

- GOAL : obtain information
- No modification of content or fabrication
 - Release of message contents
 - Traffic analysis

• Active attacks

- GOAL : modification of content and/or participation in communication to
 - Impersonate legitimate parties (Masquerade)
 - Replay or retransmit
 - Modify the content in transit
 - Launch denial of service attacks

Passive Attack - Interception

Passive Attack: Traffic Analysis

Active Attack: Masquerade

Active Attack: Message Replay

Digital MASTER SCHOOL

Key issues

- Historical design assumptions
 - Network protocols were designed to rely messages between TRUSTED partners (US Agencies and first league US Universities)
 - Remember: Trusted != Trustworthy
- Design un-intended consequences
 - Addresses are forgeable
 - Content is forgeable
 - Content can be malicious
 - Rely operators can be malicious

Cryptographic network security services aka Security protocols

- Kerberos,
- IPSec
- TLS/SSL

• Non-cryptographic network security services

- Firewalls
- Intrusion Detection Systems
- Honeypots

Active Attack: Denial of Service

- an action that prevents or impairs the authorized use of networks, systems, or applications
- Attacks to
 - network bandwidth
 - system resources (network stack)
 - application resources
- IP source spoofing
- Syn flooding
- Missing acks etc.

Example: Source Address Spoofing

- Use forged source addresses
 - given sufficient privilege to "raw sockets"
 - easy to create
 - real source is much harder to identify

What happens

- generate large volumes of packets with different, random, source addresses
- cause some congestion when people respond to the innocent recipient ("sender" of the message)
- Why?
 - Source in IP is used for identification not authentication (same as in real mail headers)

Example: TCP Attacks

• TCP connections have associated state

- Starting sequence numbers, port numbers

- Problem what if an attacker learns these values?
 - Port numbers are sometimes well known to begin with (ex. HTTP uses port 80)
 - Sequence numbers are sometimes chosen in very predictable ways

CLIENT (ALICE)

TCP Three-Way Handshake protocol

SERVER (BOB)

SYN(sequence number ISSa) SYN-ACK (sequence number ISSb, ack number ISSa +1) ACK(ack number ISSb+1)

TCP Session Hijacking

TCP SYN Flooding Attacks

ATTACKER (MALLORY)

SERVER (BOB)

Respond to a Syn Flooding?

- X receives a "base traffic" of several GBs of initial TCP handshake
 - Several scattered servers in China
- How to respond?
 - Contacting ISP doesn't seem to work

Key ideas behind security protocols

- Vulnerability: headers and content are forgeable
- Countermeasure: make headers unforgeable
 - 1-way function of
 - headers AND
 - secret, but only known to sender AND
 - easily verifiable by recipient

• Problem 1: freshness

 Make sure that result of 1-way function is not always the same (as other wise people can reply it)

• Problem 2: bootstrapping

- Make sure that sender and recipient initially share some secret
- Same for content

Building Secure Tunnels

- Logical connections between two endpoints that crosses an insecure network
- Provide
 - Data integrity, confidentiality and data origin authentication
- Built as follows
 - Authenticated key establishment protocol
 - Key Derivation
 - Traffic Protection using Derived Keys

- general IP Security mechanisms
- provides
 - authentication
 - confidentiality
 - key management
- applicable to use over LANs, across public & private WANs, & for the Internet

IP Security Architecture

- mandatory in IPv6, optional in IPv4
- have two security header extensions:
 - Authentication Header (AH) (RFC 4302)
 - Encapsulating Security Payload (ESP) (RFC 4303)
 - Key Exchange function
- VPNs want both authentication/encryption

 hence usually use ESP

Authentication Header (AH)

- provides support for data integrity & authentication of IP packets
 - end system/router can authenticate user/app
 - prevents address spoofing attacks by tracking sequence numbers
- based on use of a MAC
 - HMAC-MD5-96 or HMAC-SHA-1-96
- parties must share a secret key

Encapsulating Security Pavload (ESP)

Security Associations

- a one-way relationship between sender & receiver that affords security for traffic flow
- defined by 3 parameters:
 - Security Parameters Index (SPI)
 - IP Destination Address
 - Security Protocol Identifier
- has a number of other parameters

- seq no, AH & EH info, lifetime etc

• IP implementation has a database of Security Associations

SSL / TLS

- Transport Layer Security protocol, ver 1.0
 - De facto standard for Internet security
 - The primary goal of the TLS protocol is to provide confidentiality and data integrity between two communicating applications
 - In practice, used to protect information transmitted between browsers and Web servers

• Based on Secure Sockets Layers protocol, ver 3.0

- Same protocol design, different algorithms
- Deployed in nearly every web browser

TLS Basics

- TLS consists of two protocols
- Handshake protocol
 - Use public-key cryptography to establish a shared secret key between the client and the server

Record protocol

 Use the secret key established in the handshake protocol to protect communication between the client and the server

• We will focus on the handshake protocol

TLS Handshake Protocol

- Two parties: client and server
- Negotiate version of the protocol and the set of cryptographic algorithms to be used
 - Interoperability between different implementations of the protocol
- Authenticate client and server (optional)
 - Use digital certificates to learn each other's public keys and verify each other's identity
- Use public keys to establish a shared secret

Handshake Protocol Structure

ENT	SER
ClientHello	
	ServerHello, [Certificate], [ServerKeyExchange], [CertificateRequest], ServerHelloDone
[Certificate], ClientKeyExchange, [CertificateVerify]	
switch to negotiated cipher	
Finished	switch to negotiated cipher
	Finished

ClientHello

CLIENT

ClientHello

Client Random [28]

Suggested Cipher Suites:

TLS_RSA_WITH_IDEA_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA

Suggested Compression Algorithm: None

SERVER

ServerHello

ClientKeyExchange

CLIE	NT		SERVER
	M3		
	A: Client Key Exchange	A: RSA_Encrypt(ServerPublic Key, Secret)	
	B: ChangeCipherSpec	NONE	
	C: Finished	MD5(M1 M2 M3A) SHA(M1 M2 M3A)	

ServerKeyExchange

Firewalls

- Lots of vulnerabilities on hosts in network
- Users don't keep systems up to date
 - Lots of patches
 - Lots of exploits in wild (no patch for them)
- Solution
 - Limit access to the network
 - Put firewalls across the perimeter of the network
 - Try to identify "signature" of attack and stop it
 - At network or application level

Firewalls

- Firewall inspects traffic through it
- Allows traffic specified in the policy
- Drops everything else
- Two Types
 - Packet Filters, Proxies

Internal Network

Packet Filters

- Work at Network and Transport Layer
- Packet filter selectively passes packets from one network interface to another
- Usually done within a router between external and internal networks
 - screening router

Packet Filters

• Data Available

- IP source and destination addresses
- Transport protocol (TCP, UDP, or ICMP)
- TCP/UDP source and destination ports
- Packet options (Fragment Size etc.)

Actions Available

- Allow the packet to go through
- Drop the packet (Notify Sender/Drop Silently)
- Alter the packet (NAT)
- Log information about the packet

Application-Level Proxies

- Implements the server and client part of the protocol on the firewall
- Proxy acts as a server for clients requests

– Validate client requests

• Proxy act as a client and connects to the destination server

Firewall Rules

Permissive Policies

- Allow all traffic but block certain dangerous services

Restrictive Policies

 Block all traffic and allow only traffic know to meet a useful purpose such as HTTP, POP3, SMTP, SSH

• An example:

- Allow from internal network to Internet: HTTP, FTP, SSJ, DNS
- Allow from anywhere to mail server: SMTP
- Allow from mail server to Internet: SMTP, DNS
- Allow from inside to mail server: SMTP, POP3
- Allow reply packets
- Block everything else

Firewall Limitations

- No protection against insider attacks
- No "message content" based filtering
 - Deep packet inspection only works if you have not an encrypted connection (and anyhow there are a lot of applications)
- No dection of protocol tunneling
- No encrypted messages filtering

Intrusion Detection Systems

- Firewalls allow traffic only to legitimate hosts and services
- Traffic to the legitimate hosts/services can have attacks
- Solution
 - Intrusion Detection Systems
 - Monitor data and behavior
 - Report when identify attacks

Signature-based IDS

- Characteristics
 - Uses known pattern matching to signify attack

Advantages

- Widely available
- Fairly fast
- Easy to implement
- Easy to update
- Disadvantages
 - Cannot detect attacks for which it has no signature

Anomaly-based IDS

• Characteristics

- Uses statistical model or machine learning engine to characterize normal usage behaviors
- Recognizes departures from normal as potential intrusions

Advantages

- Can detect attempts to exploit new and unforeseen vulnerabilities
- Can recognize authorized usage that falls outside the normal pattern

Disadvantages

- Generally slower, more resource intensive compared to signature-based IDS
- Greater complexity, difficult to configure
- Higher percentages of false alerts

Network-based IDS

• Characteristics

 NIDS examine raw packets in the network passively and triggers alerts

Advantages

- Easy deployment
- Unobtrusive
- Difficult to evade if done at low level of network operation

Disadvantages

- Different hosts process packets differently
- NIDS needs to create traffic seen at the end host
- Need to have the complete network topology and complete host behavior

Host-based IDS

Characteristics

- Runs on single host
- Can analyze audit-trails, logs, integrity of files and directories, etc.

Advantages

- More accurate than NIDS
- Less volume of traffic so less overhead
- Disadvantages
 - Deployment is expensive
 - What happens when host get compromised?

Honeypots

- Information system resources whose value lie in their ellicit use
- Systems to track attackers and learn about new attack techniques
- Low- interaction honeypots
 - Limited collection of an attacker's activities logs
 - Easy to be detected by an attacker
- High-interaction honeypots
 - Risk of being misused by the attack

Network Security Standard

- ISO 27033:2009
- Part 1
 - Guidance on how to implement network security
 - Guidance and process on how to identify network security risks
 - Guidance on how to select security controls in ISO 27002
- Part 2
 - Guidance on how to implement a security architecture
- Part 3
 - Illustrates network specific security risks and threats

Reading Material

- Chapters 16 and 17. Dieter Gollman.Computer Security, Wiley.
- Chapters 6, 8, 9, 21. William Stallings and Laurie Brown. Computer Security: Principles and Practice, 3rd edition, Prentice Hall.
- Read this paper for ideas (Car=Drones)
 - http://www.autosec.org/pubs/cars-usenixsec2011.pdf