

Security Engineering Fall 2015

Lecture 11 – Cryptography (or 2000 years in 2 hours) Fabio Massacci

• Topic

- Introduction
- Symmetric key cryptography
- Hash (one-way) functions
- Public key cryptography
- Digital signatures
- Authentication key establishment
- Disclaimer
 - This is a quick summary to provide an introduction to people who have no crypto background. For the real thing attend the Crypto course.

Massacci - Paci - Security Engineering 2 30/10/2015

UNIVERSITY OF TRENTO - Italy

Terminology

Cryptography

- the science of designing methods "secret writing".

- Cryptanalysis
 - The science of methods for analysing and breaking ciphers.
- Cryptology = cryptography & cryptanalysis.
- Cryptography today
 - the study of mathematical techniques related to aspects of information security, such as confidentiality, data integrity, entity authentication, and data origin authentication.
- Why do we need it?

Massacci - Paci - Security Engineering

30/10/2015

- · Because we want to talk over a channel that only process bits
- · Do bits have colors?
 - Alice sends Bob a stream of "green" bits b1...bn
 - Charlie sends Bob the same stream of "red" bits.
 - If bits had colors Alice could tell them apart
- Are bits invisible?
 - Alice sends Bob a stream of "invisible" bits b1..bn
 - Charlie can read the stream b1...bn
 - If bits were invisible only Bob could read them

Massacci - Paci - Security ▶4 30/10/2015

Cit Digital

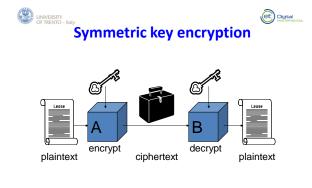
30/10/2015

Massacci - Paci - Security Engineering

Security services

- Data confidentiality: encryption hides the content of messages.
- Data integrity: integrity check functions (hash functions) detect changes to documents.
- Data origin authentication: digital signatures and message authentication codes verify the source and integrity of documents
- More services may mean authentication against a third party vs authentication for yourself only

5


- Encryption algorithms (ciphers) protect the confidentiality of data.
 - Some (but not all) encryption algorithms can also be used for integrity checks.
- A plaintext (clear text) x is converted into a ciphertext eK(x) under the control of a key K.
- Decryption with an appropriate key K' computes the plaintext from the ciphertext dK'(eK(x))=x
- Properties

Massacci - Paci - Security Engineering

- If you don't know K' the message should look random.
- Relation between K and K' determines type of crypto

6

30/10/2015

7

Symmetric Key Cryptography

- Properties
 - Symmetric ciphers (secret key cryptography): same key used for encryption & decryption.
 - Encryption protects documents on the way fromAtoB.
 - A and B have to share a key and keep their keys secret.
 - A procedure is required for A and B to obtain their shared key.
 - For n parties to communicate directly, about n²keys are needed.
- Example
 - SWIFT (the network used for international bank transfers) use symmetric keys to encrypt data in transit

8

 Long ago people with a suitcase full of key material (a tape) had to physically bring the key material across the world.

Massacci - Paci - Security Engineering

30/10/2015

Massacci - Paci - Security Engineering

30/10/2015

UNIVERSITY OF TRENTO - Italy eit Digital **Block ciphers & stream ciphers**

- Block ciphers: encrypt sequences of "long" data blocks without changing the key.
 - Security relies on design of encryption function.
 - Typical block length: 64 bits, 128 bits.
- Stream ciphers: encrypt sequences of "short" data blocks under a changing key stream.
 - Security relies on design of key stream generator.
 - Encryption can be quite simple, e.g. XOR.
 - Typical block length: 1 bit, 1 byte, 8-bit word
- Typical usage
 - Stream cipher → streaming data (eg phone conversation)
 - Block cipher \rightarrow data at rest (eg image)

Massacci - Paci - Security Engineering 30/10/2015


• Very simple algorithm

- Given a streaming sequence of N message bits p_i
- Take a sequence of N truly random bits k_i
- − To encrypt \rightarrow c_i=k_i xor m_i
- Decrypt → m_i = m_i xor k_1
- Properties
 - Perfect confidentiality in information theoretic sense · BUT only if you use the key only ONCE
 - Zero integrity protection
 - (so good only if integrity protected otherwise)
 - Hugely expensive: truly random sequence are difficult to generate

Massacci - Paci - Security Engineering

▶ 10

30/10/2015

- Advantage:
- if touch a bit decryption fails → can spot manipulation Disadvantage:

- if you touch a bit decryption fails \rightarrow can't recover the plaintex ▶ 11

Massacci - Paci - Security Engineering

30/10/2015

eit Digital

Block Ciphers

- Algorithms: AES (Rijndael), DES, 3DES, ...
- Typical block sizes: 64, 128, 256 bits.
- No provable security.
- Algorithms designed to resist known attacks: e.g. differential & linear cryptanalysis.
- Recommended key length: 80-90 bits.
- DES: 56-bit keys vulnerable to brute-force key search.

Number of Alternative Keys		
$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
$2^{56} = 7.2 \times 10^{16}$	255 µs = 1142 years	10.01 hours
$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$	5.4 × 1018 years
$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} \text{years}$	5.9 × 1030 years
$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s = 6.4 \times 10^{12} \text{years}$	6.4 × 106 years
	Alternative Keys $2^{32} = 4.3 \times 10^9$ $2^{56} = 7.2 \times 10^{16}$ $2^{128} = 3.4 \times 10^{38}$ $2^{168} = 3.7 \times 10^{50}$	$eq:linearized_linearized$

30/10/2015

eit) Digital

eit) Digital

30/10/2015

Cit Digital

Cryptographic hash functions

- Cryptographic hash functions are used for integrity checks.
- Apply a hash function h to a document x and store the result h(x) in a secure place.
- The result h(x) is called "hash value", "message digest", or "checksum".

Massacci - Paci - Security

 Changes to x detected by re-computing the hash of x and comparing the result with the stored value.

13

- Ease of computation: it is easy to compute h(x).
- Compression: the hash function maps inputs of arbitrary length to fixed length results.
- Pre-image resistance (one-way): given y, it is computationally infeasible to find x so that h(x)=y.
- More properties

 - weak collision resistance

 • computationally infeasible given x to find y ≠ x such that

 H(y) = H(x)

 - strong collision resistance
- computationally infeasible to find any pair (x, y) such that H(x) = H(y)
 Many hash functions: SHA, RIPEMD-160, MD5 (dubious)
- As of now no proof that they always work
- Actually their existence is at the core of P vs NP question

14

WINNERSTY CONTRACTOR AND A CONTRACTOR AN

- Hash functions do not need keys.
- For integrity checks, hash values have to be protected: keys for cryptographic protection.
- Message authentication code (MAC): keyed hash function for data origin authentication.
- HMAC construction: take a hash function h, for a key kand a document x, compute
- $HMAC(x) = h(k||p_1||h(k||p_2||x)$

 $(p_1, p_2 \text{ are padding fields, } | | \text{ is concatentation})$

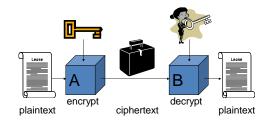
UNIVERSITY OF TRENTO - Italy

Massacci - Paci - Security Engineering

30/10/2015

Back to square one?

- Symmetric key encryption:
 - sender and receiver have to share a key.
- Keyed Hash:
 - sender and receiver have to share a key
- To send a secret message from A to B, or to verify the integrity of a message from A to B we have to get a secret key to A and B first.
 - To solve the problem of sending secret messages, we have to solve the problem of sending secret keys.
- Are we moving in circles?


Massacci - Paci - Security Engineering	16	30/10/2015
---	----	------------

UNVERSITY OF THENTO - INAY Public key encryption

- Proposed in the open literature by Diffie & Hellman in 1976.
 - Arguably invented by British Secret Service some year earlier
- Each party has a public encryption key and a private decryption key.
- Computing the private key from the public key should be computationally infeasible.
- The public key need not be kept secret but it is not necessarily known to everyone.
- There exist applications where access to public keys is restricted.

Massacci - Paci - Security 17 30/10/2015

Encryption with public keys

Massacci - Paci - Security Engineering

18

30/10/2015

Cit Digital

Basic idea

Protocol for A

- A and B share off line
 common parameters Pab
- A computes

 random number Xa
- A sends

 1-way-A(Pab,Xa)
- A computes

 Combine-A(1-way-B(Pab,Xb),Xa)
- If the math commutes A and B share a secret

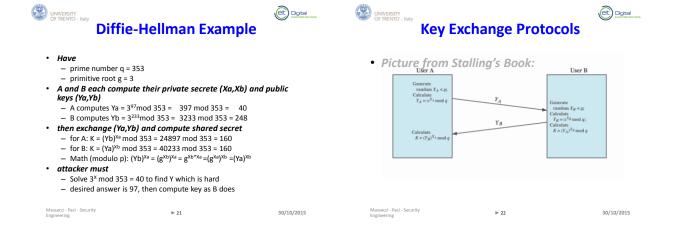
Digital Materiacom

30/10/2015

et Digital

- Protocol for B
 - A and B share off line
 - common parameters Pab *B computes*
 - random number Xb
 B sends
 - 1-way-B(Pab,Xb)
 B computes
 - Combine-B(1-way-A(Pab,Xa),Xb)
 - If the math commutes A and B share a secret

Massacci - Paci - Security
Engineering


UNIVERSITY OF TRENTO - Italy

Diffie Hellman

- Based on the discrete log problem
- Given
 - p is prime number
 - g is a primitive root of p (generator)
 - powers of g generate all integers from 1 to p-1
 m any integer < p
- Compute discrete logarithm a

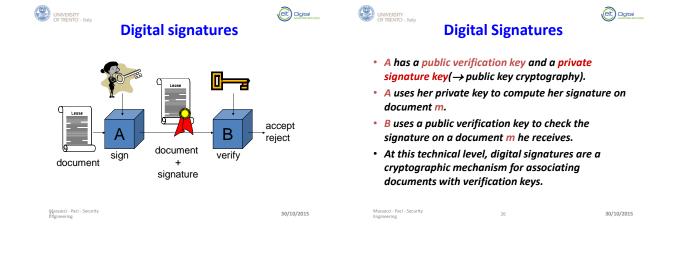
 m = g^a mod p for 0 ≤ l ≤ p-1
- Computationally untractable (as of now)
- However something commutes
 - (g^a)^b=(g^b)^a

Massacci - Paci - Security > 20 30/10/2015 Engineering

UNIVERSITY OF TRENTO - Italy

Some complications...

- What if messages can be changed in transit?
- How do you beat a Chess Master?
 Have another chess master playing against him
- DH can be attacked because it only guarantee confidentiality but not integrity
- Attack
 - A send YA to B and C intercepts it
 - C sends YC to B claiming to be A
 - B sends YB to A and C intercepts it
 - C sends YC to B claiming to be B
 - What has A? What has B? What has C?


Massacci - Paci - Security Engineering

▶ 23

Digital signature mechanisms

- Used for non-repudiation, origin authentication and data integrity services.
- Used in some authentication exchange mechanisms.
- Digital signature mechanisms have three components:
 - key generation
 - signing procedure (private)
 - verification procedure (public)

30/10/2015 Massaci - Paci - Security 24 30/10/2015 Engineering 24

- To get an authentication service that links a document to A's name (identity) and not just a verification key, we require a procedure for B to get an authentic copy of A'spublic key.
- Only then do we have a service that proves the authenticity of documents 'signed by A'.
- Yet even such a service does not provide nonrepudiation at the level of persons.

27

Massacci - Paci - Security				
	Massacci -	Paci - S	ecurity	

Electronic signatures

Cit Digital

- Digital signatures: mathematical evidence linking a document to a public key.
- Electronic signatures: a security service for associating documents with legal persons.
- The link between a public key and a person has to be established by procedural means.
- This link can be recorded in a certificate.
- Certificates are not necessary for verifying digital signatures, verification keys are.

30/10/2015 Massacci - Paci - Security 28 30/10/20 Engineering 28 30/10/20	J15
--	-----

Certificates

eit Digital

• How do you get a verification key?

- Public key cryptosystems often assume there is a public directory of user names and keys.
- But a "Global PK directory" does not exists
- Kohnfelder [1978]: implement the directory as a set of digitally signed data records containing a name and a public key; he coined the term certificate for these records.
- Today: a certificate is a signed document binding a subject to other information; subjects can be people, keys, names, ...

Massacci - Paci - Security Engineering	29	30/10/2015

Certification Authorities

- · Certificates are signed by an Issuer.
- Certification Authority (CA) is just another name for Issuer.
- Sometimes CA is used more narrowly for organizations issuing ID certificates [PKIX].
- The application determines the technical and procedural 'trust' requirements a CA has to meet.
- Sometimes Trusted Third Party (TTP) is used as a synonym for CA.

Massacci - Paci - Security Engineering	30	30/10/2015

UNWEETTY
 OF TRAVIO - Ray
 Public Key Infrastructures

- The protocols, services and standards that facilitate the use of public-key cryptography by allowing the secure distribution of public keys between communicating parties.
- PKI standards: X.509 [ISO/IEC 9594-8], PKIX [RFC 2459], PKCS.
- X.509 certificates were intended to bind public keys [originally passwords] to X.500 path names (Distinguished Names) who has permission to modify X.500 directory nodes.

Massacci - Paci - Security Engineering	31	30/10/2015
---	----	------------

X.509 certificates

eit) Digital

- User certificate (public key certificate, certificate): the public key of a user, together with some information, rendered unforgeable by encipherment with the secret key of the certification authority which issued it.
- Attribute certificate: a set of attributes of a user together with some other information, digitally signed under the private key of the CA.
- Certification authority: an authority trusted by one or more users to create and assign certificates.

Massacci - Paci - Security 32 30/10/2015 Engineering

UNIVERSITY OF TRENTO - Italy X.509v3 ce	ertificate format	
version (v3) serial number signature algorithm id issuer name validity period subject name subject public key info issuer unique identifier subject unique identifier extensions		 Certificates may have to be revoked if a corresponding private key is compromised. if a fact the certificate vouches for no longer is valid. Certification Revocation Lists (CRLs): Distributed in regular intervals or on demand. Make sense if on-line checks are not possible or too expensive. When on-line checks are feasible, certificate status can be queried on-line: Online Certificate Status Protocol – OCSP. Positive lists in the German signature infrastructure.
Massacci - Paci - Security Engineering	33 30/10/2015	Massacci - Paci - Security 34 30/10/2015 Engineering

UNIVERSITY OF TRENTO - Italy

- In order to verify a certificate you need a verification key. If you get a verification key from a certificate, how do you get a certificate?

Question....

- Ask a certificate server to send you a signed certificate
- How do you get the verification key to check the key that signed the certificate?

• Ask a certificate server to send you a signed certificate certifiying the certificate server...

- Spot a certain loop here?
- Need a root of trust
- How many people trust

Massacci - Paci - Security Engineering

▶ 35

30/10/2015

How to bootstrap trust?

- Do you trust...
 - TÜRKTRUST Bilgi İletişim ve Bilişim Güvenliği Hizmetleri A.Ş.
 - A-Trust Ges. f. Sicherheitssysteme im elektr. Datenverkehr GmbH
 - Go Daddy Root Certificate Authority G2
 - CA 沃通根证书

Massacci - Paci - Security Engineering

- XRamp Security Services Inc
- · How many of you actually trusted in the last month...

▶ 36

- GeoTrust Universal CA

30/10/2015

Cit Digital

Ch man but I have still my 1GB...

- How do you sign a 1GB file?
- · The mathematician's correct answer
 - I just use elliptic curve over a field of "1GB" instead of 512Bits
 - You'll die before the algorithm calculates that
- The computer scientist's hack
 - Let m be very large
 - Compute hash(m) now this is small
 - Compute sign(privK,hash(m))
 - If hash is broken \rightarrow digital signature down the pipe

Massacci - Paci - Security
Engineering
37

30/10/2015

Sorry man, I also need encrypting my 1GB

- How do you encrypt a 1GB file?
- The dumb CS hack
 - Let m be very large
 - Compute hash(m) now this is small
 - Compute enc(pubK,hash(m))
- The smart CS's hack
 - Let m be very large
 - Generate a random symmetric key sessionK
 - Compute enc(sessionK,m), enc(pubK,sessionK)
 - Send both
 - If symmetric encryption broken \rightarrow security broken

Massacci - Paci - Security Engineering

▶ 38

30/10/2015

UNVERSITY Key exchange and distribution

- Crypto transforms (communications) security problems into key management problems.
- To use encryption, digital signatures, or MACs, the parties involved have to hold the "right" cryptographic keys.
- With public key algorithms, parties need authentic public keys.
- With symmetric key algorithms, parties need shared secret keys.

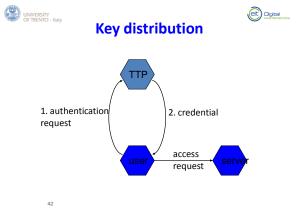
Massacci - Paci - Security 39 30/10/2015

UNIVERSITY OF TRENTO - Italy

Key usage

- It is good cryptographic practice to restrict the use of keys to a specific purpose.
- In key management, we may use key encrypting keys and data encrypting keys.
- Examples for key usages: Encryption Decryption
 - Signature Non-repudiation
 - Master key Transaction key ...
- With RSA, don't use a single key pair both for encryption and for digital signatures.

Massacci - Paci - Security Engineering	40	30/10/2015



- In a protocol like TLS where key authentication is based on digital signatures, we may need a Trusted Third Party (TTP) to vouch for the authenticity of verification keys.
- In a protocol where authentication is based on symmetric cryptographic algorithms, a TTP may serve as a key distribution centre (KDC) supplying parties with session keys.

41

30/10/2015

30/10/2015

UNIVERSITY OF TRENTO - Italy

Massacci - Paci - Security

Key distribution

- Advantage: scalability a single authentication server can support many servers and users.
- The credential tells the server that the user has been authenticated.
- The credential could contain a session key to be shared between user and server so that the server can authenticate further requests.
- The TTP would also serve as Key Distribution Centre (KDC).

Massacci - Paci - Security 4 Engineering 4	3
---	---

UNIVERSITY OF TRENTO - Italy

Kerberos

eit) Digital

- Kerberos was developed at MIT for user authentication in a distributed system.
- The parties involved are client A, server B, and Kerberos authentication server (KAS) S.
- Based on the Needham-Schroeder key establishment ("authentication")protocol: the server provides A and B with a session key.
- Uses a symmetric encryption algorithm.
- More of this in the network security lectures

Massacci - Paci - Security Engineering	44	30/10/2015
---	----	------------

Cryptographic keys

- Most cryptographic algorithms take a key as one of their inputs.
- Kerckhoffs' principle: Do not rely on the secrecy of cryptographic algorithms; only the keys have to be kept secret.
- State of the art: Standardized algorithms that have been examined quite intensively and are often the strongest part in a security architecture.
- Good key management practices are required to reap the benefits of strong cryptography.

WINNESSITY OTTENNO - taky Key management questions

- Where are keys generated?
- How are keys generated?
- Where are keys stored?
- How do they get there?
- Where are the keys actually used?
- How are keys revoked and replaced?
- When keys are stored on a computer, cryptography relies on strong computer security.
- If the keys are computer generated (and not truly random numbers) cryptography rely on strong random number generators

Massacci - Paci - Security Engineering	45	30/10/2015	Massacci - Paci - Security Engineering	46	30/10/2015

et Digital

Massacci - Paci - Security Engineering

30/10/2015

Resources

- Chapters 2,19, 20 and 21. Stallings & Brown. Computer Security Principles and Practice.
- Chapter 14,15. Dieter Gollmann. Computer Security
- Alfred Menezes, Paul van Oorschot, Scott Vanstone: Handbook of Applied Cryptography <u>http://www.cacr.math.uwaterloo.ca/hac/</u>
- Bruce Schneier: Applied Cryptography

Massacci - Paci - Security 49 Engineering 30/10/2015