
19/11/14

1

Security Engineering

Lecture 17 - OS/VM Security
Fabio Massacci

Massacci - Paci - Security Engineering ►

A misconception

●  I don’t need OS security because I consider
smart sensors and
●  they use machine-to-machine communication
●  they communicate either with wireless or power-lines
●  So once we secure the network we are done

●  I don’t need safety belts on my delivery van
because
●  we only deliver groceries door-to-door
●  we drive either on state roads or on country roads
●  So once we put brakes we are done

 Massacci - Paci - Security Engineering ►

Some Misinterpreted Pictures..

●  The picture is “evocative”
●  but this is NOT the reality

●  A “descriptive” picture
would include all the
different software and
protocol stacks
●  A MSc student in CS should

know the actual reality…
●  And reason on what is really

going on
 Massacci - Paci - Security Engineering ►

What is a smart sensor?

●  Basically a Phone with a GSM Card

Massacci - Paci - Security Engineering ►

19/11/14

2

The Network…Actually

Massacci - Paci - Security Engineering

Some Security Technologies

●  Transport Layer Security protocol, ver 1.0
●  Confidentiality and data integrity between two communicating

applications
●  Protect information transmitted between browsers and Web

servers
●  Deployed in nearly every web browser

●  IPSec authentication
●  confidentiality, authentication, key management

●  Where do we position them in the real picture?

Massacci - Paci - Security Engineering ►

IPSEC+Configuration of Device

Massacci - Paci - Security Engineering

TLS+Selecting the Sensor on Server

Massacci - Paci - Security Engineering

19/11/14

3

A Simple Model of the OS/VM

● A system is a collection of running processes and files.
● processes perform actions on behalf of a user

● open, read, write files read, write, execute memory, etc.
● files have access control lists dictating who can do users what

● Simple policy goals
● Integrity: processes running on behalf of user A shouldn’t be able

to corrupt the code, data, or files of user B nor interfere with the
latter processes.
● Availability: processes should eventually gain access to resources

such as the CPU or disk.
● Confidentiality: same as integrity (replace “corrupt”à “read”)

● More sophisticated goals
● Access control following a RBAC/MAC model

Massacci - Paci - Security Engineering

What can go wrong?

● read/write/execute or change ACL of a file for which process
doesn’t have proper access.
● checkfileaccessagainstACL

● process writes (or reads) into memory of another process
● Isolate memory of each process (don’t forget OS, network and device

services etc. etc.)
● process pretends it is the OS and execute its codes

● maintain process ID and keep certain operations privileged
● need some way to transition and avoid process transition back

● process never gives up the CPU
● force process to yield in some finite time

● process uses up all the memory or disk
● Enforce quotas

● OS or hardware is buggy ... Oops.

Massacci - Paci - Security Engineering

What an OS should have?

● reliable access to information about what the App is
about to do
● what instruction is it about to execute?
● Which data is going do be read ot written

● ability to “stop” the application
● can’t stop a program running on another machine that you don’t

control
● really, stopping isn’t necessary, but transition to a “good” state.

● Ability to protect the OS’s state and code from
tampering.
● key reason why a kernel’s data structures and code aren’t

accessible by user code.
● More and above all that à low overhead.

Massacci - Paci - Security Engineering

The curse of performance

● If performance was not an issue an OS could:
● examine the entire history and the entire machine state to decide whether or

not to allow an instruction.
● perform an arbitrary computation to decide whether or not to allow a transition.
● Use a distinct instruction set (and processor) from the program

● In practice, most systems must
● keep a small piece of state to track mostr recent history
● only look at labels on the transitions
● have small and few labels
● perform simple tests
● use (almost) the same instruction set

● Otherwise, the overheads would be overwhelming.
● So policies are practically limited by the vocabulary of labels, the

complexity of the tests, the state maintained by the OS/VM, and the
potentially different instructions

Massacci - Paci - Security Engineering

19/11/14

4

Two Alternative Protection models

●  Sandboxing
● Does not emulate computer’s hardware
● Alters interface between computer, process
● Requires only software support

● Virtual machines
● Emulate computer’s hardware
● “Guest” entity cannot access underlying computer

system
● Requires absolutely hardware support

Massacci - Paci - Security Engineering

Sandboxes

● Environment in which actions of process are restricted
according to security policy
● Program to be executed is not altered,
● Implementation of “Interface” instructions with devices is changed

● Can add extra security-checking mechanisms to libraries, kernel, drivers,
etc.

● Similar to debuggers, profilers that add breakpoints
● Example à JavaVM

● Sometimes can modify program or process to be
executed
● Add code to do extra checks (memory access, etc.) as program

runs (software fault isolation)
● Not truly sandboxing in this case à in-line monitor

● Example à Software Fault Isolation

Massacci - Paci - Security Engineering

Virtual Machine

● A program that simulates hardware of computer
system and reports results back to Application
● Classical OS is essentially the first “virtualization” of the

physical hardware
● Virtual machine monitor (VMM, “hypervisor”)

provides VM on which conventional OS can run
● Each VM is one subject;
● VMM doesn’t worry about processes running inside each VM

● up to the VM manager to make sure they are properly secure
● VMM mediates all interactions of VM with resources or other

VMs

Massacci - Paci - Security Engineering

Hardware Support for OS/VM

● Translation Lookaside Buffer (TLB)
● provides an inexpensive check for each memory access.
●  mapsvirtualaddresstophysicaladdress

● small, fully associative cache (8-10 entries) – cache miss triggers a
trap
● granularity of map is a page (4-8KB)

●  Distinct user and supervisor modes
● certain operations (e.g., reload TLB, device access) require

supervisor bit is set
● Invalid operations cause a trap

● Setsupervisor bit and transfer control back to OS
routine.
● Timer triggers a trap for preemption and avoids hijacking

Massacci - Paci - Security Engineering

19/11/14

5

How a Classical OS Works

Massacci - Paci - Security Engineering

MicroKernels

● The smaller the VMM/Sandbox the better
● Increase Flexibility,
● Minimize the TCB

● A big push for microkernels
● Mach, Spring, etc.

● Only put bare minimum into the kernel.
● context switching code, TLB management
● trap and interrupt handling device access

● Run everything else as a process.
● file systems networking protocols page replacement algorithm

● Component Sub-systems communicate via remote
procedure call (RPC)

Massacci - Paci - Security Engineering

How Micro-Kernels works

Massacci - Paci - Security Engineering

Performance trumps…

● Claim was that flexibility and increased assurance would win
● But performance overheads were non trivial
● Many PhD’s on minimizing overheads of communication
● Even highly optimized implementations of RPC cost 2/3 orders of magnitude

more than a procedure call.
● Result: micro-kernel won’t fly
● Windows, Linux, Solaris

● continue the monolithic tradition.
● and continue to grow for performance reasons (e.g., GUI) and for functionality

gains (e.g., specialized file systems.)
● Mac OS X, some embedded or specialized kernels (e.g., Exokernel)

● exceptions.
● VMware

● achieves multiple personalities but has monolithic personalities sitting on top
● What about cloud architectures?

Massacci - Paci - Security Engineering

19/11/14

6

Source: Wikipedia, VMWare

Typical “Cloud” Scenarios

●  Running one or more applications not
supported by host OS
●  A virtual machine running required guest OS

could allow the desired applications to be run
●  Evaluating an alternate operating system

●  The new OS could be run within a VM
●  Server virtualization

●  Multiple virtual servers could be run on a
single physical server, in order to more fully
utilize the hardware resources of the physical
server.

●  Duplicating specific environments
●  A virtual machine could be duplicated and

installed on multiple hosts.
●  Creating a protected environment

●  If guest OS running on a VM becomes
infected with malware, host operating
system's exposure may be limited (depends
on configuration of virtualization software)

Massacci - Paci - Security Engineering

Reasons for Cloud Virtualization

● Server consolidation (Physical-to-Virtual (P2V) transformation)
● many small physical servers → one larger physical server, to increase

utilization of hw
● The large server can "host" many such "guest" virtual machines

● Inspection and isolation
● A virtual machine can be more easily controlled and inspected from outside

than a physical one, and its configuration is more flexible.
● Provisioning and relocation

● A new virtual machine can be provisioned as needed without the need for an
up-front hardware purchase.
● a virtual machine can easily be relocated from one physical machine to another

as needed.
● Disaster recovery scenarios

● Because of easy relocation
● ONLY work if you have more machines in different locations. If you only have

one big server won’t work

Massacci - Paci - Security Engineering

Cloud Architectural Solutions

●  SaaS (Software as a Service)
●  A provider licenses an application to customers for use as a service on

demand.
●  vendors host application on own web servers or download the

application to consumer device, disabling it after contract expires.
●  PaaS (Platform as a service)

●  delivery of computing platform & solution stack as a service.
●  facilitates deployment of applications without cost & complexity of

buying and managing hardware & software layers.
●  Environment supports lifecycle for building & running applications

●  IaaS (Infrastructure as a Service)
●  delivery of computer infrastructure as a service typically a virtualized

environment managed in an integrated and efficient way.
●  Offers computing as a service billed on a utility basis and amount of

resources consumed
●  So we would expect a lots of isolation + virtualization…

Massacci - Paci - Security Engineering ►

From ASP to Multi-Tenancy

Customer
Tenant

Customer
Tenant

Customer
Tenant

Customer
Tenant

Customer
Tenant

Multi-Tenant

Gemeinsame
Systemverwaltung

Single Tenancy
(classical on-premise or ASP model)

 Multi Tenancy

Source: SAP
Massacci - Paci - Security Engineering

19/11/14

7

Efficient & Sclabale Multi-Tenancy

Source: SAP

Customer
Tenant

Customer
Tenant

Customer
Tenant

Customer
Tenant

Customer
Tenant

●  Single Tenancy
●  (classical on-premise or ASP model)

●  Multi Tenancy

The less isolation the “better”…

[MSDN, F. Chong and G. Carraro, “Architecture Strategies for Catching the Long Tail”, http://msdn.microsoft.com/en-us/library/aa479069.aspx, April 2006.]

●  1. Custom
●  Every customer owns

customized version of the hosted
application (ASP-model of the
1990’s)

●  4-level-maturity-model of SaaS architectures:

●  2. Configurable
●  Each customer has a

separate instance, but all
instances have the same
code-base

●  Meta-data provides unique
feature-set for each customer

●  3. Multi-Tenant-Efficient,
Configurable
●  Vendor runs single instance
●  Customers data kept separate
●  Efficient use of computing

resources leads to lower costs

●  4. Scalable,
Configurable, Multi-
Tenant-Efficient
●  Numbers of servers in the

back-end can be increased
or decreased to match
demand

●  Update thousands of
tenants as easily as a
single tenant

●  Only few
players

reached 4th
level

Performance wins again

● The hit of crossing the kernel/OS boundary:
● Original Apache implementation forked a process to run each CGI:
● Could attenuate file access for sub-process
● protected memory/data of server from rogue script

● Very close to least privilege
● Too expensive for

● a small script (fork, exec, copy data to/from the server process), etc.
●  if this is repeated millions or billions of times…

●  can have more hardware but hardware don’t scale equally well than clients
● and you started all that to avoid having as much hardware as clients…

● current push is to run the scripts in the server.
● See Node.JS raison d’etre…
● Throw out least privilege

● Similar situation with DBs, web browsers, file systems, etc.

Additional readings

●  Gollmann – Computer Security
●  Ch. 8 – Operating Systems
●  Ch. 9 – Databases

●  NIST Guide on Hypervisor
●  csrc.nist.gov/publications/nistpubs/800-125/SP800-125-

final.pdf
●  Search Google for DataCenter Security

●  http://www.youtube.com/watch?v=1SCZzgfdTBo

Massacci - Paci - Security Engineering ►

