

- Formal verification of security

Massacci-Paci-Security Engineering

28/10/14

Bell-LaPadula Confidentiality Model

- · BLP is a model that covers the confidentiality aspects of access control
 - Initially invented for the military
 - OS Multics Operating Systems
 - Implemented in physical security
 - Eg photocopier won't copy document with a "Top Secret" mark
- · Prevents low-security level subjects to read high-security level objects
- · Consider information flows when a subject reads or alters an object

28/10/14

Massacci-Paci-Security Engineering

Bell-LaPadula Components

- · S set of subjects
- · O set of objects
- A set of access operations
 - read, write, append, execute
- L set of partially ordered security levels
 - Top secret > secret > confidential > unclassified

28/10/14 Massacci-Paci-Security Engineering

Bell-LaPadula State: assign security levels

▶ 5

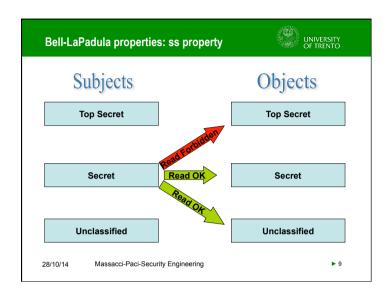
- f_c: S → L
 - Assign to a subject the maximum security level
- f_a: S → L
 - Assign to a subject the current security level
- f₀: 0 → L
 - Assign to an object its security level
- · The security level assigned to a subject is also called security clearance

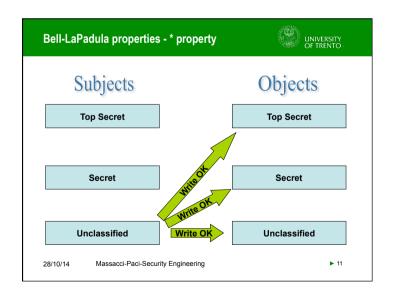
28/10/14

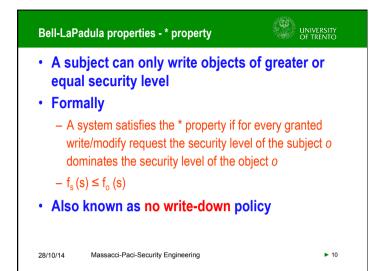
Massacci-Paci-Security Engineering

▶ 7

Bell-LaPadula properties – ss property


▶ 6


▶ 8


- · A subject can only read an object of less or equal security level
- Formally
 - A system satisfy the simple security property if for every granted read access the security level of the subject s dominates the security level of the object o
 - $-f_0(0) \leq f_s(s)$
- Also known as no read-up security policy

28/10/14

Massacci-Paci-Security Engineering

The Basic Security Theorem

- · A state is secure, if all current assignment of permissions to subjects satisfies the ssproperty, * - property, and ds-property.
- · A state transition is secure if it goes from a secure state to a secure state
- Basic Security Theorem
 - If all the transitions are secure and the intial state is secure all the subsequent states will be secure regardaless the input

28/10/14

Massacci-Paci-Security Engineering

▶ 13

Tranquillity

- McLean: consider a system with an operation downgrade:
 - downgrades all subjects to system low
 - downgrades all objects to system low
 - enters all access rights in all positions of the access control matrix
- · The resulting state is secure according to BLP
- Should such a system be regarded as secure?
 - McLean: no, everybody is allowed to do everything
 - Bell: yes, if downgrade was part of the system specification
- · Fact: BLP assumes tranquility, i.e. access control data do not change.

28/10/14

Massacci-Paci-Security Engineering

Limitations of Bell-LaPadula

- · Restricted to confidentiality
- · No policies for changing access rights
 - A general and complete downgrade is secure
 - However, BLP is intended for systems with static security levels
- BLP contains covert channels
 - Information flow that is not controlled by the model

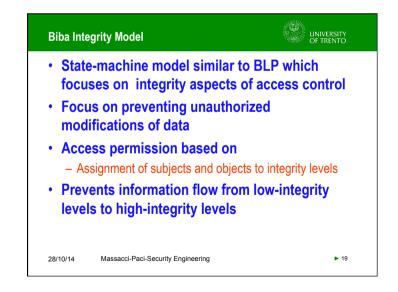
28/10/14

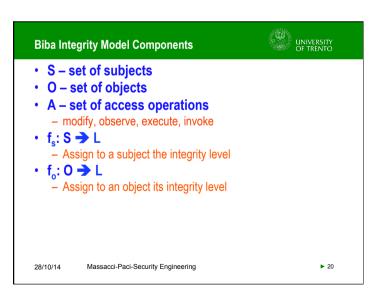
Massacci-Paci-Security Engineering

▶ 15

Covert Channels

▶ 14


- Covert channels are information channels that are not controlled by the security mechanism of the system
- Information can flow (leak) from a high security level to a low security level
 - A subject assigned to a low-security level can detect the existence of an high-security level object when it is denied access
 - Sometimes, it is not sufficient to hide only the content of objects. Also their existence may have to be hidden.
- Telling a subject that a certain operation is not permitted constitutes information flow


28/10/14

Massacci-Paci-Security Engineering

Biba Integrity Model properties: si property

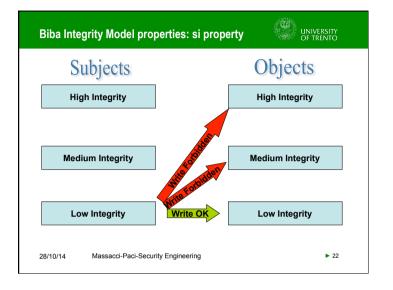
- A subject can modify an object only if the integrity level of the subject dominates the integrity level of the object
- Formally
 - A subject s can modify (alter) an object o if $f_s(s) \ge f_o(s)$
- · Also known as no write-up policy

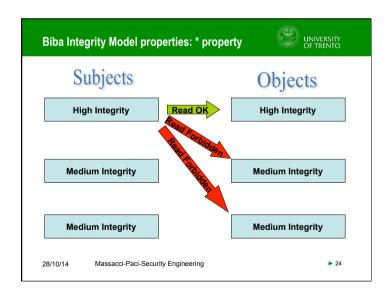
28/10/14

Massacci-Paci-Security Engineering

▶ 21

▶ 23


Biba Integrity Model properties: * property



- A subject can read an object only if the integrity level of the subject is dominated by the integrity level of the object
- Formally
 - A subject s can read (observe) an object o if f_s (s) ≤ f_o
 (s)
- · Also known as no read-down policy

28/10/14 Massacci-

Massacci-Paci-Security Engineering

Biba Integrity Model: dynamic integrity properties UNIVERSITY OF TRENTO.

- Automatically adjust subjects and objects assigned integrity levels
- Subject Low Watermark Security Policy
 - A subject s can read (observe) an object o at any integrity level. The new integrity level of the subject s is the greatest lower bound of f_s (s) and f_o (o).
- Object Low Watermark Security Policy
 - A subject s can modify (alter) an object o at any integrity level. The new integrity level of the subject s is the greatest lower bound of f_s (s) and f_o(o).

28/10/14

Massacci-Paci-Security Engineering

▶ 25

Biba Integrity Model properties: invoke and ring property repro-

- Invoke Property
 - A subject is only authorized to invoke subjects (tools) at lower integrity levels
 - Formally
 - A subject s₁ can invoke a subject s₂ if f₂ (s₂) ≤ f₂ (s₁)
- Ring property
 - A subject s can read objects at any integrity level. It can only modify objects o with $f_0(0) \le f_s(s)$; it can invoke a subject s' only if $f_s(s) \le f_s(s')$

28/10/14

Massacci-Paci-Security Engineering

▶ 26

Biba Implementation in Vista

- · Vista marks files with an integrity level
 - Low, Medium, High and System
 - Critical files are assigned System integrity level
 - Other objects are assigned Medium integrity level
 - Internet Explorer is assigned Low integrity level
- Vista implements the no write-up policy
 - Files downloaded form IE can read most of the files in Vista file system but cannot write them
 - Limit the damage done by viruses and malwares

28/10/14

Massacci-Paci-Security Engineering

▶ 27

Clark-Wilson Integrity Model

- This model attempts to capture security requirements of commercial applications
- **Emphasis on integrity**
 - internal consistency: properties of the internal state of a system
 - external consistency: relation of the internal state of a system to the outside world
- · Access permission based on
 - the assignment of subjects to trusted programs

28/10/14

Massacci-Paci-Security Engineering

Clark-Wilson Integrity Mechanisms

- Well-formed transactions
 - A user should only access data through trusted programs
- Separation of duty
 - Any person permitted to create or certify a well-formed transaction should not be permitted to perform it

28/10/14

Massacci-Paci-Security Engineering

▶ 29

Clark-Wilson Integrity Model: Certification Rules

- 1. IVPs must ensure that all CDIs are in a valid state at the time the IVPs is run
- 2. TPs must be certified to be valid
 - Valid CDIs must always be transformed in valid CDIs
 - TPs must be certified to access a specific set of CDIs
- 3. Access rules must satisfy any separation of duty requirement
- 4. All TPs must write to an append-only log
- 5. Any TPs taking a UDI as input must either convert it to a CDI or reject the UDI

28/10/14

Massacci-Paci-Security Engineering

▶ 31

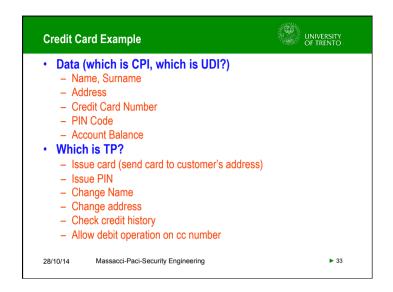
Clark-Wilson Integrity Model Components

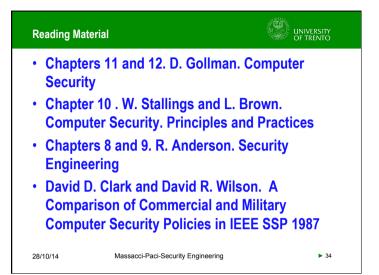
- Constrained Data Items (CDIs)
 - Data items subject to strict integrity controls
- Unconstrained Data Items (UDIs)
 - Unchecked data items
- Transformation Procedures (TPs)
 - System transactions that transforms CDIs from a consistent state to another
- Integrity Verification Procedures (IVPs)
 - Check integrity of data items

28/10/14

Massacci-Paci-Security Engineering

▶ 30


Clark-Wilson Integrity Model: Enforcement Rules



- maintain and protect list of TPs and CDIs each TP is certified to access
 - (TP₁:CDI_{a1},CDI_{b1},...), (Tp₂:CDI_{a2},CDI_{b2},...), (Tp₃:CDI_{a3},CDI_{b3},...)
- 2. system must maintain and protect the list of UserIDs and TPs each user can execute.
 - (UId₁TP_{a1},Tp_{a2},Tp_{a3})
 - Maybe further refined by restricting also CDI on a per-user basis
- 3. must authenticate each user wishing to execute a TP.
- 4. Only a subject that may certify an access rule for a TP may modify the respective entry in the list.
 - This subject must not have execute rights on that TP

28/10/14

Massacci-Paci-Security Engineering

