
19/09/17	

1	

Offensive	technologies	
Fall	2017	

Lecture	1-	General	Introduc1on	to	
Vulnerabili1es	in	Web	Applica1ons	

Fabio	Massacci	
	

h<ps://securitylab.disi.unitn.it/doku.php?id=course_on_offensive_technologies	

1	

About	this	lecture	

•  The	whole	course	is	dedicated	to	the	
iden1fica1on,	tes1ng	and	mi1ga1on	of	various	
forms	of	security	vulnerabili1es	

•  The	purpose	of	this	lecture	is	to	briefly	introduce	
the	background	needed	for	recognizing	some	of	
the	vulnerabili1es	in	the	source	code	

•  We	will	test	this	ability	using	a	prac1cal	exercise	
on	Wednesday:	it	is	important	for	the	la<er	part	
of	the	course				

2	



19/09/17	

2	

Outline	

•  Vulnerabili1es	in	web	applica1ons	
•  Injec1on	vulnerabili1es	
•  Informa1on	Disclosure	vulnerabili1es	
•  Session	Fixa1on	vulnerabili1es	
•  Denial	of	Service	vulnerabili1es	

3	

Vulnerabili;es	in	web	applica;ons	

•  Many	security	holes	in	corporate	IT	are	not	due	
to	worms	or	viruses,	but	due	to	vulnerabili1es	in	
the	source	code	of	applica1ons	
–  These	vulnerabili4es	are	o6en	exploited	by	a<ackers	for	both	fun	and	profit		

•  Differences	between	web	and	client-server	
applica1ons	open	enterprises	to	significant	risk		
–  JavaScript	has	diffused	boundaries	between	client	and	server	
–  Easier	to	deploy,	harder	to	maintain	securely	

•  Web	applica1on	security	is	cri1cal	for	businesses	
•  Finding	and	fixing	web	applica1on	
vulnerabili1es	is	mostly	about	looking	at	the	
source	code	

	

4	



19/09/17	

3	

Prac;cal	Approaches	in		
Vulnerability	Discovery	(con;nued)	
•  Plan	to	have	everything	compromised	
– Everything	is	vulnerable	

•  Rely	on	tools	to	detect	and	correct	SPECIFIC	
problems	but	not	replace	everything	by	tools	
– Tools	can	help	finding	certain	vulnerabili4es	but	
they	are	nothing	without	knowledge	

•  Learn	from	(preferably)	other’s	mistakes	
– We	can	use	Open	Source	So6ware	to	learn	

5	

Why	looking	at	open		
source	soHware?	

•  There	is	li<le	difference	with	commercial	
so[ware	

•  The	source	code	and	development	histories	are	
available	

•  O[en,	open	source	maintainers	are	doing	a	
good	job	in	documen1ng	vulnerabili1es,	so	it	is	
possible	to	reverse-engineer	them	

•  Many	commercial	systems	are	using	open	
source	components,	thus	the	learning	effort	will	
be	useful	

6	



19/09/17	

4	

A	quick	look	at		
vulnerabili;es	taxonomy	

•  There	are	different	categories,	classifica1ons	and	databases	
–  Open	Web	Applica4on	Security	Project	(OWASP)	Top	10	list	
–  Common	Weakness	Enumera4on	(CWE)	
–  Common	Weakness	Scoring	System	(CWSS)		
–  The	Na4onal	Vulnerability	Database	(NVD)	
–  Open-sourced	Vulnerability	Database	(OSVDB)	
–  IARPA	Securely	Taking	On	New	Executable	So6ware	of	Uncertain	

Provenance	(STONESOUP)	
		

•  Almost	all	these	vulnerabili1es	are	related	to	problems	in	the	
source	code	
–  Design	errors	
–  Implementa4on	errors	
–  Many	of	them	are	Language/Framework	independent	

	
	

7	

OWASP	Top	10	(2013)	
A3:	Cross-site		
Scrip4ng	(XSS)	A1:	Injec4on	

A2:	Broken	Auth.	
and	Session	
Management	

A4:	Insecure	
Direct	Object	
References	

A5:	Security	
Misconfigura4on	

A6:	Sensi4ve	
Data	Exposure	

A7:	Missing	
Func4on	Level	
Access	Control	

A8:Cross-site	
Request	Forgery	

(CSRF)	

A9:	Using	
Component	With	
Known	Vulns.	

A10:	Unvalidated	
Redirects	and		
Forwards	

8	



19/09/17	

5	

Common	Weakness		
Enumera;on	(CWE)	

•  h<ps://cwe.mitre.org/	
•  A	formal	dic1onary	of	common	so[ware	bugs/
flaws	that	occur	in	so[ware	architecture,	
design,	and	implementa1on	that	can	lead	to	
exploitable	security	vulnerabili1es	(>	800	
entries)	

•  A	common	language	for	describing	and	a	
standard	for	measuring	such	bugs/flaws	

•  Informa1on	about	iden1fica1on/mi1ga1on/
preven1on	efforts	

9	

Common	Weakness		
Enumera;on	(CWE)	

10	



19/09/17	

6	

Common	Weakness		
Enumera;on	(CWE)	

11	

The	Na;onal	Vulnerability		
Database	(NVD)	

•  h<ps://nvd.nist.gov/		
•  The	US	Government	repository	of	vulnerability	data	
•  Enables	automa1on	of	vulnerability	management,	
security	measurement	and	compliance	

•  Includes	databases	of	security-related	so[ware	
flaws/bugs,	product	names,	and	impact	metrics	

•  Supports	the	Common	Vulnerability	Scoring	System	
(CVSS)	scores	
–  Quan4fies	characteris4cs	of	each	vulnerability	so	that	they	
can	be	compared	

12	



19/09/17	

7	

The	Na;onal	Vulnerability		
Database	(NVD)	

13	

Outline	

•  Vulnerabili1es	in	web	applica1ons	
•  Injec1on	vulnerabili1es	
•  Informa1on	Disclosure	vulnerabili1es	
•  Session	Fixa1on	vulnerabili1es	
•  Denial	of	Service	vulnerabili1es	

14	



19/09/17	

8	

Injec;on	vulnerabili;es		

•  Assume	an	applica1on	is	wri<en	in	mul1ple	languages:	
Java,	JavaScript,	HTML,	SQL	…	

•  An	applica1on	accepts	any	user	input	without	sani1za1on	
–  Problem:	some	input	that	looks	like	a	String	in	Java	can	be	
accepted	as	a	piece	of	executable	code	by	SQL,	JavaScript,	or	
HTML	interpreters	

–  These	are	also	called	”polyglot”	vulnerabili4es	
•  Consequences?	

–  Website	defacement	
–  …	
–  Complete	control	over	the	machine	that	hosts	the	vulnerable	
applica4on	

15	

SQL/NoSQL	injec;on	

•  Descrip1on:	
– Due	to	insufficient	input	filtering	(or	output	
escaping)	a<acker-controlled	input	may	be	
interpreted	as	code	by	a	database	interpreter	and	
executed	[1].	Eventual	outcome	is	code	execu4on.	

•  Related	Threats:	Informa1on	Disclosure,	
Data	Modifica1on/Dele1on,	Eleva1on	of	
Privileges.	

•  Technical	Impact:		Severe.	
16	



19/09/17	

9	

SQL	injec;on:	example	
UserData	data	=	getDataFromUser();	
String	userId	=	data.getUserId();	
String	passwd	=	data.getPasswd();	
SomeDB.executeQuery("SELECT	*	FROM	users	WHERE	users.userId	=	’		

	 	+	userId	+	”’	AND	users.passwd	='”	+	passwd	+	“'");	

query	<-	"SELECT	*	FROM	users	WHERE	users.userId	=		
’Batman’	OR	’1’	==	’1’;	DROP	TABLE	users;	--’	AND	users.passwd=	’’"	

userId	<-	“Batman’	OR	’1’	==	’1’;	DROP	TABLE	users;	--”	
passwd	<-	“”	

userid	<-	”John	Doe”	
passwd	<-	”qweJk@#4kw”	
query	<-	"SELECT	*	FROM	users	WHERE	users.userId	=		
’John	Doe’	AND	user.passwd	=	’qweJk@#4kw’”	

17	

NoSQL	injec;on:	example	

*The	image	is	taken	from	h<p://www.busanhlf4.org/	
18	



19/09/17	

10	

NoSQL	injec;on:	example	

*The	image	is	taken	from	h<p://www.busanhlf4.org/	
19	

SQL/NoSQL	injec;on:	how	to	find	it?	

•  You	should	be	suspicious	if	an	applica1on		
– Gets	user	input	
– Does	not	check/sani4ze	the	input		
– Uses	this	input	to	construct	a	query	to	a	database	
– Uses	string	opera4ons	(e.g.,	concatena4on,	
replacement)		to	build	a	query	

			Language	 Keywords	
Java	(+JDBC)		 sql,	java.sql	

Python	 pymssql,		

C#	 Sql,	SqlClient,	OracleClient,	SqlDataAdapter	

PHP	 mysql_connect		

Node.js	 require("mysql”),	require(”mssql"),	
require("mongodb")	 20	



19/09/17	

11	

Cross-Site	Scrip;ng	(XSS)		

•  Descrip1on:	
–  "Insufficient	input	valida4on	or	output	escaping	can	allow	
an	a<acker	to	plant	his	own	HTML	or	scripts	on	a	
vulnerable	site.	The	injected	scripts	will	have	access	to	the	
en4rety	of	the	targeted	web	applica4on	…	"	[2].	

–  The	reflected	variant	takes	the	advantage	when	the	input	
is	incorrectly	echoed	back	to	the	browser;	the	persistent	
variant	goes	a	bit	further:	it	also	takes	the	advantage	on	
the	lack	of	sani4za4on	of	the	data	that	goes	to	a	DB.	

•  Related	Threats:		
–  Informa4on	Disclosure,	Eleva4on	of	Privileges.	

•  Technical	Impact:		
– Moderate/Severe	

21	

Cross-Site	Scrip;ng	(XSS):	reflected	

…	
<%	String	userId	=	
request.GetParameter(”userId")	%>	
…	
	
<html>	
			...	
			<h1>	

	Hello,	<%=	userId	%>!	
			</h1>	
			...	
</html>	

h<p://homepage.jsp?userId=John	

22	



19/09/17	

12	

Cross-Site	Scrip;ng	(XSS):	reflected	

…	
<%	String	userId	=	
request.GetParameter(”userId")	%>	
…	
	
<html>	
			...	
			<h1>	

	Hello,	<%=	userId	%>!	
			</h1>	
			...	
</html>	

h<p://homepage.jsp?userId=<script>alert(’XSS');</script>	

23	

Cross-Site	Scrip;ng	(XSS):	stored	

Database	

*The	diagram	is	adapted	from	[3].	

Step	0	->	developer	writes	vulnerable	pages:	
1st	one	stores	invalidated	input;	
2nd	one	reads	it	from	a	database	and	with	no	valida4on.	
		

Step	1	->		
A<acker	sends	malformed	
	input	(code)	to	a		
vulnerable	web	page.	

Step	2	->	User	browses	the	site.	
Step	3	->	Web	site	reads	unchecked	data		
and	sends	it	along	with	a<acker’s	code		
to	the	user’s	browser.	

Step	4	->	User’s	browser		
renders	the	web	page	and	
runs	the	a<acker’s	code		
(every	4me	the	page		
is	requested!)	

24	



19/09/17	

13	

Cross-Site	Scrip;ng	(XSS):		
some	examples	(reflected)	

public	class	XSS	extends	HttpServlet	{	
				protected	void	doGet(HttpServletRequest	request,		

	 	 	HttpServletResponse	response)	{	
		
	/*	...	*/	 		

	 	response.sendError(HttpServletResponse.SC_NOT_FOUND,	
																 	 	"The	page	\""	+	 	 	

	 	 	 	request.getParameter("page")	+		
	 	 	 	"\"	was	not	found.");	

				}	
}	

h<p://homepage.jsp?page=123	

25	

Cross-Site	Scrip;ng	(XSS):		
some	examples	(reflected)	

public	class	XSS	extends	HttpServlet	{	
				protected	void	doGet(HttpServletRequest	request,		

	 	 	HttpServletResponse	response)	{	
		
	/*	...	*/	 		

	 	response.sendError(HttpServletResponse.SC_NOT_FOUND,	
																 	 	"The	page	\""	+	 	 	

	 	 	 	request.getParameter("page")	+		
	 	 	 	"\"	was	not	found.");	

				}	
}	

h<p://homepage.jsp?page=<script>alert(’XSS')</script>	

26	



19/09/17	

14	

Cross-Site	Scrip;ng	(XSS):		
some	examples	(stored)	

<%	
...	
String	eid	=	request.GetParameter(”eid”);	
Statement	stmt	=	conn.createStatement();	
ResultSet	rs	=	stmt.executeQuery(”select	*		

	 	from	emp	where	id='”	+	eid	+	”'”);	
if	(rs	!=	null)	{	
			rs.next();	
}	
String	bio	=	rs.getString(”bio”);	
	
Employee	biography:	<%=	bio	%> 		
…	
%>	
	

h<p://show-employee.jsp?eid=123	

27	

Cross-Site	Scrip;ng	(XSS):		
some	examples	(stored)	

<%	
...	
String	eid	=	request.GetParameter(”eid”);	
Statement	stmt	=	conn.createStatement();	
ResultSet	rs	=	stmt.executeQuery(”select	*		

	 	from	emp	where	id='”	+	eid	+	”'”);	
if	(rs	!=	null)	{	
			rs.next();	
}	
String	bio	=	rs.getString(”bio”);	
	
Employee	biography:	<%=	bio	%> 		
…	
%>	
	

h<p://show-employee.jsp?eid=qwe‘	or	’1’	==	’1’;	insert	into	emp	(bio)	
values	('<script>alert(\"XSS\")</script>’)	select	*	from	emp;	--		

28	



19/09/17	

15	

Cross-Site	Scrip;ng	(XSS):		
how	to	find	it?	

•  You	should	be	suspicious	if	an	applica1on	
– Gets	an	input	from	an	HTTP	en4ty	such	as	query	
string,	header	or	form,	or	request	object	

– Does	not	check	the	input	for	validity		
– Echoes	it	back	to	the	browser	(either	HTML	or	
HTTP	headers),	saving	it	to	or	retrieving	from	a	
database	unchecked	

	

29	

Cross-Site	Scrip;ng	(XSS):		
how	to	find	it?	

Language	 Keywords	

Java	(JSP)		 addCookie,	getRequest,	request.getParameter	
followed	by	<jsp:setProperty	or	<%=	or	
response.sendRedirect		

Python	 form.getvalue,	SimpleCookie	when	the	data	is	not	
validated	correctly.		

C#	 Request.*,	Response.*,	and	<%=	when	the	data	is	not	
validated	correctly.		

PHP	 Accessing	$_REQUEST,	$_GET,	$_POST,	or	$_SERVER	
followed	by	echo,	print,	header,	or	printf.		

Node.js	 request,	response,	…	

30	



19/09/17	

16	

Outline	

•  Vulnerabili1es	in	web	applica1ons	
•  Injec1on	vulnerabili1es	
•  Informa1on	Disclosure	vulnerabili1es	
•  Session	Fixa1on	vulnerabili1es	
•  Denial	of	Service	vulnerabili1es	

31	

Informa;on	Disclosure	vulnerabili;es	

•  Descrip1on:	
–  A<acker	is	able	to	get	data	that	leads	to	a	breach	in	security	or	
privacy	policy.	The	data	itself	could	be	the	goal,	or	the	data	can	
provide	informa4on	that	leads	the	a<acker	to	the	goal.	

–  Inten;onal:	the	design	team	has	a	mismatch	with	the	end	user	
as	to	whether	data	should	be	protected	(privacy	issues).	

–  Accidental:	the	data	could	leak	due	to	an	error	in	the	code,	or	a	
nonobvious	channel.		

–  Mistake:	verbose	[error]	messages	that	developers	think	are	
safe,	but	a<ackers	find	them	helpful,	e.g.,	the	name	or	the	ip	
address	of	a	server	

–  Three	main	categories:	hardcoded	creden4als,	comments	in	the	
source	code,	and	verbose	error	messages.	

•  Technical	impact:	could	be	anything	

32	



19/09/17	

17	

Informa;on	Disclosure:	example	0	

try	{	
	/*	...	*/	

}	
catch	(Exception	e)	{	

	System.out.println(e);	
	e.printStackTrace();	

}	
	

33	

Informa;on	Disclosure:	example	1	

34	



19/09/17	

18	

Informa;on	Disclosure:	example	2	

public	boolean	authenticate(Request	req,	Response	res)	{	
				/*	...	*/	
				if	(config.getRealmName()	==	null)	{		

	authenticateCC.append(request.getServerName());								
	authenticateCC.append(':');													
	authenticateCC.append(Integer.toString(	
	 	request.getServerPort()));									

				}		
				else	{												

	authenticateCC.append(config.getRealmName());									
				}									
				return	(false);					
}	

35	

Informa;on	Disclosure:	example	2	

public	boolean	authenticate(Request	req,	Response	res)	{	
				/*	...	*/	
				if	(config.getRealmName()	==	null)	{		

	authenticateCC.append(request.getServerName());								
	authenticateCC.append(':');													
	authenticateCC.append(Integer.toString(	
	 	request.getServerPort()));									

				}		
				else	{												

	authenticateCC.append(config.getRealmName());									
				}									
				return	(false);					
}	

36	



19/09/17	

19	

Informa;on	Disclosure:	example	2	

public	boolean	authenticate(Request	req,	Response	res)	{	
				/*	...	*/	
				if	(config.getRealmName()	==	null)	{		

	authenticateCC.append(request.getServerName());								
	authenticateCC.append(':');													
	authenticateCC.append(Integer.toString(	
	 	request.getServerPort()));									

				}		
				else	{												

	authenticateCC.append(config.getRealmName());									
				}									
				return	(false);					
}	

37	

Informa;on	Disclosure:	example	3	

Login	successful:	"authen4cate"	method	returns	”true”	

38	



19/09/17	

20	

Informa;on	Disclosure:	example	3	
(con;nued)	

password	=	null;	

May	throw	null	reference	
excep4on	

39	

Informa;on	Disclosure:		
how	to	find	it?	

•  Applica1on	returns	”default	”	informa1on	
such	as	server	type/	configura1on/ip	
address/hostname.	

•  Too	many	details	in	error	messages,	
unhandled	excep1ons,	stack	traces;	different	
error	messages	when	handling	user	login.	

•  Look	for	”password”,	”creden1als”,	“login”	
and	similar	keywords,	you	might	find	
something	quite	interes1ng.		

40	



19/09/17	

21	

Path	Traversal	

•  Descrip1on:	
–  An	applica4on	can	be	tricked	into	reading	or	wri4ng	
files	at	arbitrary	loca4ons	(o6en	bypassing	
applica4on-level	restric4ons).	This	o6en	happens	due	
to	improper	recogni4on	of	”../”	segments	in	un	user-
supplied	parameters.	Unconstrained	file	wri4ng	bugs	
are	o6en	exploited	for	deploying	a<acker-controlled	
code	[2].	

•  Related	threats:	Informa1on	disclosure,	code	
injec1on,	denial	of	service	

•  Technical	impact:	Moderate/Severe	

41	

Path	Traversal:	some	examples	

String	path	=	getInputPath();	
if	(path.startsWith("/safe_dir/"))	{	
			File	f	=	new	File(path);	
			f.delete();	
}	

		 The	code	a<empts	
to	validate	the	input	

by	whitelis4ng.	

If	the	file	is	within	
the	”/safe_dir/”	

folder,	
the	file	gets	deleted.	

An	a<acker	could	
provide	an	input	such	

as	:	
/safe_dir/../data.db	

Database	

42	



19/09/17	

22	

Path	Traversal:	some	examples	
(con;nued)	

public	void	sendUserFile(Socket	sock,	String	user)	{	
				BufferedReader	filenameReader	=	new	BufferedReader(	
							new	InputStreamReader(sock.getInputStream(),	"UTF-8"));	

		
				String	filename	=	filenameReader.readLine();	
				BufferedReader	fileReader	=		

		new	BufferedReader(new	FileReader("/home/"	+	user	+								
						"/"	+	filename));	

	
				String	fileLine	=	fileReader.readLine();	
				while(fileLine	!=	null)	{	
						sock.getOutputStream().write(fileLine.getBytes());	
						fileLine	=	fileReader.readLine();	
				}	
}	

43	

Path	Traversal:	some	examples	
(con;nued)	

public	void	sendUserFile(Socket	sock,	String	user)	{	
				BufferedReader	filenameReader	=	new	BufferedReader(	
							new	InputStreamReader(sock.getInputStream(),	"UTF-8"));	

		
				String	filename	=	filenameReader.readLine();	
				BufferedReader	fileReader	=		

		new	BufferedReader(new	FileReader("/home/"	+	user	+								
						"/"	+	filename));	

	
				String	fileLine	=	fileReader.readLine();	
				while(fileLine	!=	null)	{	
						sock.getOutputStream().write(fileLine.getBytes());	
						fileLine	=	fileReader.readLine();	
				}	
}	

44	



19/09/17	

23	

Path	Traversal:	how	to	find	it?	

•  You	should	be	suspicious	if	an	applica1on	
– Gets	an	input	from	user	
– The	input	is	used	to	construct	a	path	for	any	
purpose	(downloading/uploading	files,	redirects,	
etc.)	

– Even	if	the	input	looks	like	it	is	sani4zed,	
sani4za4on	func4ons	o6en	contain	errors,	so	you	
pay	close	a<en4on	to	sani4zers	

– Some4mes	there	are	no	path	constraints	at	all	

45	

Outline	

•  Vulnerabili1es	in	web	applica1ons	
•  Injec1on	vulnerabili1es	
•  Informa1on	Disclosure	vulnerabili1es	
•  Session	Fixa1on	vulnerabili1es	
•  Denial	of	Service	vulnerabili1es	

46	



19/09/17	

24	

Session	Fixa;on	vulnerabili;es	

•  Descrip1on:	
– An	a<ack	that	allows	to	hijack	a	valid	user	session.	
When	authen4ca4ng	a	user,	an	app	doesn’t	assign	
a	new	session	ID,	making	it	possible	to	use	an	
existent	session	ID.	The	a<acker	has	to	provide	a	
legi4mate	Web	applica4on	session	ID	and	try	to	
make	the	vic4m's	browser	use	it.	[5]	

•  Technical	impact:	Severe	

47	

Session	Fixa;on:	example*	

*This	example	is	taken	from	[4].	 48	



19/09/17	

25	

Session	Fixa;on:	example	

1.   The	a<acker	establishes	a	legi1mate	connec1on	with	a	web	
server;	

2.   The	web	server	issues	a	session	ID;	
3.   The	a<acker	has	to	send	a	link	with	the	established	session	ID	to	

the	vic1m;	she	has	to	click	on	the	link,	accessing	the	site;	
4.   The	web	server	”sees”	that	the	session	has	been	already	

established	(by	the	a<acker),	so	it	doesn’t	create	a	new	one;		
5.   The	vic1m	provides	her	creden1als	to	the	web	server;	the	a<acker	

can	access	her	account	knowing	the	session	ID.	

(session	ID	can	be	also	sent	via	a	cookie	or	a	hidden	
field	in	the	DOM	container)	

49	

Session	Fixa;on:		
example	(con;nued)	

protected	boolean	parseRequest(Request	req,	Response	res)	{	
				if	(isURLRewritingDisabled(req))	{	
								clearRequestedSessionURL(req);	
				}	
	
				/*	...	*/ 		
	
				String	sessionID	=																																																																														

	req.getPathParameter(Globals.SESSION_PARAMETER_NAME);	
	
				if	(sessionID	!=	null)	{	
								req.setRequestedSessionId(sessionID);	
								req.setRequestedSessionURL(true);	
				}	
					
				/*	...	*/ 		
}	 50	



19/09/17	

26	

Session	Fixa;on:		
example	(con;nued)	

protected	boolean	parseRequest(Request	req,	Response	res)	{	
				if	(isURLRewritingDisabled(req))	{	
								clearRequestedSessionURL(req);	
				}	
	
				/*	...	*/ 		
	
				String	sessionID	=																																																																														

	req.getPathParameter(Globals.SESSION_PARAMETER_NAME);	
	
				if	(sessionID	!=	null)	{	
								req.setRequestedSessionId(sessionID);	
								req.setRequestedSessionURL(true);	
				}	
					
				/*	...	*/ 		
}	 51	

Session	Fixa;on:		
example	(con;nued)	

protected	boolean	parseRequest(Request	req,	Response	res)	{	
				if	(isURLRewritingDisabled(req))	{	
								clearRequestedSessionURL(req);	
				}	
	
				/*	...	*/ 		
	
				String	sessionID	=																																																																														

	req.getPathParameter(Globals.SESSION_PARAMETER_NAME);	
	
				if	(sessionID	!=	null)	{	
								req.setRequestedSessionId(sessionID);	
								req.setRequestedSessionURL(true);	
				}	
					
				/*	...	*/ 		
}	 52	



19/09/17	

27	

Session	Fixa;on:		
example	(con;nued)	

protected	boolean	parseRequest(Request	req,	Response	res)	{	
				if	(isURLRewritingDisabled(req))	{	
								clearRequestedSessionURL(req);	
				}	
	
				/*	...	*/ 		
	
				String	sessionID	=																																																																														

	req.getPathParameter(Globals.SESSION_PARAMETER_NAME);	
	
				if	(sessionID	!=	null	&&	!isURLRewritingDisabled(req))	{	
								req.setRequestedSessionId(sessionID);	
								req.setRequestedSessionURL(true);	
				}	
					
				/*	...	*/ 		
}	 53	

Session	Fixa;on:	how	to	find	it?	[5]	

•  You	should	be	suspicious	if	the	usual	flow	is	
broken	[6]	
– User	enters	correct	creden4als	
–  The	applica4on	authen4cates	the	user	successfully	
–  Session	informa4on	(temporary	data)	is	stored	in	a	
temporary	loca4on	

–  Session	is	invalidated	(session.invalidate())	
– Any	temporary	data	is	restored	to	new	session	(new	
session	ID)	

– User	goes	to	successful	login	landing	page	using	new	
session	ID	

	
54	



19/09/17	

28	

Session	Fixa;on:	how	to		
find	it?	(con;nued)	[5]	

•  Check	for	session	fixa1on	if	a	user	tries	to	login	using	a	
session	ID	that	has	been	specifically	invalidated	(requires	
maintaining	this	list	in	some	type	of	URL	cache)	

•  Check	for	session	fixa1on	if	a	user	tries	to	use	an	exis1ng	
session	ID	already	in	use	from	another	IP	address	(requires	
maintaining	this	data	in	some	type	of	map)	

•  Some	server	applica1ons	(e.g.,	JBOSS,	Tomcat)	have	a	
serng	for	disabling	URL	rewri1ng	->	this	mi1gates	the	
a<ack	when	session	ID	is	exposed	via	GET	parameter	of	a	
URL	(as	well	as	being	stored	in	browser	history,	proxy	
servers,	etc)	

55	

Outline	

•  Vulnerabili1es	in	web	applica1ons	
•  Injec1on	vulnerabili1es	
•  Informa1on	Disclosure	vulnerabili1es	
•  Session	Fixa1on	vulnerabili1es	
•  Denial	of	Service	vulnerabili1es	

56	



19/09/17	

29	

Denial	of	Service	vulnerabili;es	

•  Descrip1on:	
– The	Denial	of	Service	(DoS)	a<ack	is	focused	on	
making	a	resource	(site,	applica4on,	server)	
unavailable	for	the	purpose	it	was	designed.	If	a	
service	receives	a	very	large	number	of	requests,	
it	may	cease	to	be	available	to	legi4mate	users.	In	
the	same	way,	a	service	may	stop	if	a	
programming	vulnerability	is	exploited,	or	the	way	
the	service	handles	resources	it	uses.	

•  Technical	impact:	Severe	

57	

Denial	of	Service:	example	1	

We	may	"kill”	the	
server	by	filling	all	of	

its	memory	

58	



19/09/17	

30	

Denial	of	Service:	example	2	

The	user	has	control	over	the	loop	
counter:	we	may	decrease	server’s	

performance	or	even	kill	it.	
59	

Denial	of	Service:	example	3	

Both	Connec4on	and	
CallableStatement	objects	
should	be	closed	in	the		

“finally”	block	
60	



19/09/17	

31	

Denial	of	Service:	how	to	find	it?	

•  You	should	be	suspicious	if	
– User-controlled	values	define	the	size	of	allocated	
memory,	arrays	or	buffers;	

– User-controlled	values	influence	loop	condi4ons;	
– ”Heavy”	resources	are	never	released	(file	locks/
descriptors,	database	connec4ons,	data	streams,	
etc.)	

– There	is	an	"infinite"	amount	of	resources	that	a	
single	user	can	allocate	(e.g.,	the	number	of	
working	processes	or	server	sockets);	

	
61	

References	
•  [1]	Web	Applica1on	Vulnerabili1es	and	Avoiding	Applica1on	Exposure	

h<ps://f5.com/resources/white-papers/web-applica1on-vulnerabili1es-and-
avoiding-applica1on-exposure		

•  [2]	Zalewski,	Michal.	The	tangled	Web:	A	guide	to	securing	modern	web	
applica1ons.	No	Starch	Press,	2012.	

•  [3]	Howard,	Michael,	David	LeBlanc,	and	John	Viega.	24	deadly	sins	of	so[ware	
security:	programming	flaws	and	how	to	fix	them.	McGraw-Hill,	Inc.,	2009.	

•  [4]	OWASP:	the	free	and	open	so[ware	security	community	
h<ps://www.owasp.org/index.php/Main_Page	

•  [5]	The	White	Hat	Security	blog	on	Session	Fixa1on	preven1on:	
h<ps://www.whitehatsec.com/blog/session-fixa1on-preven1on-in-java/	

•  [6]	The	OWASP	Enterprise	Security	API	session	handling	example:	
h<ps://code.google.com/p/owasp-esapi-java/source/browse/trunk/src/main/
java/org/owasp/esapi/reference/DefaultHTTPU1li1es.java	

•  [7]	Secure	Coding	Guidelines	for	Java	SE				
h<p://www.oracle.com/technetwork/java/seccodeguide-139067.html	

	 62	


