@ Digital

Offensive technologies
Fall 2017

Lecture 1- General Introduction to
Vulnerabilities in Web Applications

Fabio Massacci

https://securitylab.disi.unitn.it/doku.php?id=course_on_offensive_technologies

@ Digital

About this lecture

» The whole course is dedicated to the
identification, testing and mitigation of various
forms of security vulnerabilities

* The purpose of this lecture is to briefly introduce
the background needed for recognizing some of
the vulnerabilities in the source code

* We will test this ability using a practical exercise
on Wednesday: it is important for the latter part
of the course __

19/09/17

@ Digital
Outline
Vulnerabilities in web applications
Injection vulnerabilities
Information Disclosure vulnerabilities
Session Fixation vulnerabilities
Denial of Service vulnerabilities
@ Digital

Vulnerabilities in web applications

Many security holes in corporate IT are not due
to worms or viruses, but due to vulnerabilities in
the source code of applications

— These vulnerabilities are often exploited by attackers for both fun and profit
Differences between web and client-server
applications open enterprises to significant risk

— JavaScript has diffused boundaries between client and server
— Easier to deploy, harder to maintain securely

Web application security is critical for businesses

Finding and fixing web application
vulnerabilities is mostly about looking at the
source code

19/09/17

19/09/17

Practical Approachesin &

Vulnerability Discovery (continued)

* Plan to have everything compromised
— Everything is vulnerable

* Rely on tools to detect and correct SPECIFIC
problems but not replace everything by tools

— Tools can help finding certain vulnerabilities but
they are nothing without knowledge

* Learn from (preferably) other’s mistakes
— We can use Open Source Software to learn

Why |00king at 0pen @ Digital

source software?

* There is little difference with commercial
software

* The source code and development histories are
available

* Often, open source maintainers are doing a
good job in documenting vulnerabilities, so it is
possible to reverse-engineer them

* Many commercial systems are using open
source components, thus the learning effort will
be useful

) UNIVERSITY

vulnerabilities taxonomy

* There are different categories, classifications and databases
— Open Web Application Security Project (OWASP) Top 10 list

Common Weakness Enumeration (CWE)

Common Weakness Scoring System (CWSS)

The National Vulnerability Database (NVD)

0 Vi bilityDatal (05VDB)

IARPA Securely Taking On New Executable Software of Uncertain

Provenance (STONESOUP)

* Almost all these vulnerabilities are related to problems in the
source code

— Design errors
— Implementation errors
— Many of them are Language/Framework independent

. &) Retal .
OF TRENTO - Italy A qu|ck Iook at ©

OWASP Top 10 (2013)

A2: Broken Auth.
Al: Injection and Session
Management

A3: Cross-site
Scripting (XSS)

A4: Insecure
Direct Object
References

A5: Security AG6: Sensitive
Misconfiguration Data Exposure

A7: Missing A8:Cross-site A9: Using
Function Level Request Forgery Component With
Access Control (CSRF) Known Vulns.

A10: Unvalidated
Redirects and
Forwards

PRI,
7 UNIVERSITY Oelt Dlgltal
o> OF TRENTO - Italy MASTER SCHOOL

19/09/17

Common Weakness &
Enumeration (CWE)

https://cwe.mitre.orq/

A formal dictionary of common software bugs/
flaws that occur in software architecture,
design, and implementation that can lead to
exploitable security vulnerabilities (> 800
entries)

A common language for describing and a
standard for measuring such bugs/flaws
Information about identification/mitigation/
prevention efforts

Nature
ChildOf
ChildOf

ChildOf
ChildOf
Childof
ChildOf
ChildOf
Childof
ChildOf
ChildOf
Childof
ChildOf
CanPrecede
PeerOf
ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
MemberOf
MemberOf

CanFollow
CanFollow

Common Weakness &
Enumeration (CWE)

Type ID Name v o9
© 20 Improper Input Validation 700
© 74 Improper Neutralization of Special Elements in Output Used by a Downstream Component ('Injection’ 699

1000
1003
442 Web Problems 699
712 OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS) 629
722 QWASP Top Ten 2004 Category Al - Unvalidated Input 711
725 OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws 711
751 2009 Top 25 - Insecure Interaction Between Components 750
801 2010 Top 25 - Insecure Interaction Between Components 800
811 OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS 809
864 2011 Top 25 - Insecure Interaction Between Components 900
931 OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS) 928
990 SFP Secondary Cluster: Tainted Input to Command 888
© 494 Download of Code Without Integrity Check 1000
& 352 Cross-Site Request Forgery (CSRF: 1000
) 80 Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS) gggo
) 81 Improper Neutralization of Script in an Error Message Web Page 699
1000
o 83 Improper Neutralization of Script in Attributes in a Web Page iggo
o 84 Improper Neutralization of Encoded URI Schemes in a Web Page gggo
o 85 Doubled Character XSS Manipulations 699
1000
86 Improper Neutralization of Invalid Characters in Identifiers in Web Pages 699
9o 1000
87 Improper Neutralization of Alternate XSS Syntax 699
o 1000
635 Weaknesses Used by NVD 635
884 CWE Cross-section 884
© 113 Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response Splitting' 1000
© 184 Incomplete Blacklist 1000 692
10

19/09/17

Voo
,pv"»"f'v Z @ Digital
g0 S v

Common Weakness
Enumeration (CWE)

v Observed Examples
Reference Description
CVE-2008- Chain: protection mechanism failure allows XSS

CVE-2006- Chain: only checks "javascript:" tag

CVE-2007- Chain: only removes SCRIPT tags, enabling XSS

CVE-2008- Reflected XSS using the PATH_INFO in a URL

CVE-2008- Reflected XSS not properly handled when generating an error message

CVE-2008- Reflected XSS sent through email message.

CVE-2008- Stored XSS in a security product.

CVE-2008- Stored XSS using a wiki page.

CVE-2006- Stored XSS in a guestbook application.

CVE-2006- Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.

CVE-2006- Chain: library file is not protected against a direct request (CWE-425), leading to reflected XSS.

11

W The National Vulnerability €™~

Database (NVD)

* https://nvd.nist.gov/
* The US Government repository of vulnerability data

* Enables automation of vulnerability management,
security measurement and compliance

* Includes databases of security-related software
flaws/bugs, product names, and impact metrics

* Supports the Common Vulnerability Scoring System
(CVSS) scores

— Quantifies characteristics of each vulnerability so that they
can be compared

12

19/09/17

The National Vulnerability o=
Database (NVD)

National Cyber Awareness System
ulnerability Summary for CVE-2014-0075

Original release date: 05/31/2014
Last revised: 08/22/2016

Source: : US-CERT/NIST
Overview

verflow in the par: Ch kH d functiol he/coy p11/filters/C! Apache Tomcat before 6.0.40, 7.x before 7.0.53, and 8.x before
804 Il wsremt atta k a denial fervc e (re: ce consumption) via 2 malformed chunk si: h kdt nsfer coding of a request during the streaming of data.
Impact

CVSS Severity (version 2.0):

CVSS v2 Base Score: 5.0 MEDIUM

Vector: (AV:N/AC:L/Au:N/C:N/I:N/A:P) (legend)
Impact Subscore: 2.9

Exploitability Subscore: 10.0
CVSS Version 2 Metrics:

Access Vector: Network exploitable
5t mplexity: Low

Authentication: Not required to exploit
Impact Type: Allows disruption of service

13

Djf @ Digital
Outline

Vulnerabilities in web applications
Injection vulnerabilities

Information Disclosure vulnerabilities
Session Fixation vulnerabilities

Denial of Service vulnerabilities

14

19/09/17

@ Digital
Injection vulnerabilities

Assume an application is written in multiple languages:
Java, JavaScript, HTML, SQL ...
An application accepts any user input without sanitization

— Problem: some input that looks like a in Java can be
accepted as a piece of executable code by SQL, JavaScript, or
HTML interpreters

— These are also called "polyglot” vulnerabilities
Consequences?
— Website defacement

— Complete control over the machine that hosts the vulnerable
application

15

@ Digital
SQL/NoSQL injection

Description:

— Due to insufficient input filtering (or output
escaping) attacker-controlled input may be
interpreted as code by a database interpreter and
executed [1]. Eventual outcome is code execution.

Related Threats: Information Disclosure,
Data Modification/Deletion, Elevation of
Privileges.

Technical Impact: Severe.

16

19/09/17

@ I‘__’)ikgit‘aly

SQL injection: example

UserData data = getDataFromUser();
String userld = data.getUserId();
String passwd = data.getPasswd();
SomeDB.executeQuery("SELECT * FROM users WHERE users.userlId =’
+ userId + ”’ AND users.passwd ='" + passwd + “'");

userid <- ”John Doe”

passwd <- *qwelk@#4kw”

query <- "SELECT * FROM users WHERE users.userId =
>John Doe’ AND user.passwd = ’qwelk@#4kw’”

userId <- “Batman’ OR °1° == ’1’; DROP TABLE users; --"
passwd <- “”

query <- "SELECT * FROM users WHERE users.userId =
’Batman’ OR ’1° == ’1°; DROP TABLE users; --’ AND users.passwd= ’’"

17

éEDPQwr
NoSQL injection: example

exports.insecure = function(request, response) {
var login = request.body.userid;
var password = request.body.passwd;
var loginParam = eval("({ _id: '" + login + "', pword : '" + password + "'})");

server.dbprovider.findOne("users", loginParam, function(error, item) {
(error null) {
response.send("MongoDB ERROR: " + error);

}
(item null) {
response.send("Hello, " i g + ")

{

response.send("A¢:

Batman'})//

18
*The image is taken from http://www.busanhlf4.org/

19/09/17

@ Digital

NoSQL injection: example

exports.insecure = function(request, response) {
var login = request.body.userid;
var password = request.body.passwd;
var loginParam = eval("({ _id: '" + login + "', pword : '" + password + "'})");

server.dbprovider.findOne("users", loginParam, function(error, item) {
(error null) {
response. send("'MongoDB

H
}
(item null) {
response.send("Hello, "

¢ This webpage is not available

response.send("Access d
=N
Batman'}); process.exit(); //

*The image is taken from http://www.busanhlf4.org/

}

19

4”¢j (EE) Digita
SQL/NoSQL injection: how to find it?

* You should be suspicious if an application
— Gets user input
— Does not check/sanitize the input
— Uses this input to construct a query to a database

— Uses string operations (e.g., concatenation,
replacement) to build a query

Java (+JDBC) sql, java.sql

Python pymssql,

CH Sql, SglClient, OracleClient, SqlDataAdapter

PHP mysql_connect

Node.js require("mysql”), require(”mssql"),
require("mongodb") 20

19/09/17

10

% @ Digital
Cross-Site Scripting (XSS)

* Description:
— "Insufficient input validation or output escaping can allow
an attacker to plant his own HTML or scripts on a
vulnerable site. The injected scripts will have access to the
entirety of the targeted web application ... " [2].

— The reflected variant takes the advantage when the input
is incorrectly echoed back to the browser; the persistent
variant goes a bit further: it also takes the advantage on
the lack of sanitization of the data that goes to a DB.

* Related Threats:

— Information Disclosure, Elevation of Privileges.
* Technical Impact:

— Moderate/Severe

21

ng? (EE)D@ma
Cross-Site Scripting (XSS): reflected

http://homepage.jsp?userld=John

<% String userld = \\
request.GetParameter(”userId") %>

] @ [homepage.jsp X
<html> & C ® nhttp://homepage.jsp?userid=John
<h1> Hello, Jonh!
Hello, <%= use
</h1>
</html>

22

19/09/17

11

<% String userld =
request.GetParameter(”userId") %>

@ Digital

Cross-Site Scripting (XSS): reflected

http://homepage.jsp?userld=<script>alert(’XSS');</script>

1

L] [] homepage.jsp ¢
<html> (S C @ nhttp://homepage.jsp?userid=<script>alert('XSS');<script/>
<hl>
Hello, <%= use LDREERCRE
’ xss
</h1>
cee oK
</html>

23

Step 0 -> developer writes vulnerable pages:
1%t one stores invalidated input;

Database

‘ Step 1-> &,
Attacker sends malformed

input (code) to a
vulnerable web page.

*The diagram is adapted from [3].

@ Digital

Cross-Site Scripting (XSS): stored

2" one reads it from a database and with no validation.

Step 2 -> User browses the site.

Step 3 -> Web site reads unchecked data
and sends it along with attacker’s code
to the user’s browser.

Step 4 -> User’s browser
renders the web page and
runs the attacker’s code
(every time the page

is requested!)
24

19/09/17

12

Cross-Site Scripting (XSS): @) oo
some examples (reflected)

http://homepage.jsp?page=123

public class XSS extends HttpServlet {
protected void doGet(HttpServletRequest request,
HttpServletResponse response) {

/* oo */

response.sendError(HttpServletResponse.SC_NOT_FOUND,
"The page \"" +
request.getParameter("page") +
"\" was not found.");

) 4

25

e

Cross-Site Scripting (XSS): @) oo
some examples (reflected)

http://homepage.jsp?page=<script>alert(’XSS')</script>

public class XSS extends HttpServlet {
protected void doGet(HttpServletRequest request,
HttpServletResponse response) {

/* oo0*/

response.sendError(HttpServletResponse.SC_NOT_FOUND,
"The page \"" +
request.getParameter("page") +

"\" was not found.");

, 4

26

19/09/17

13

19/09/17

Cross-Site Scripting (XSS): €) 2o

some examples (stored)
http://show-employee.jsp?eid=123

<%

String eid = request.GetParameter(”eid”);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(”select *
from emp where id='" + eid + ”'”);
if (rs != null) {
rs.next();

}
String bio = rs.getString(”’bio”);

Employee biography: <%= bio %>

%> 7
27

Spnd
h.

Cross-Site Scripting (XSS): Ok
some examples (stored)

http://show-employee.jsp?eid=qwe’ or '1’ =="1’; insert into emp (bio)
values ('<script>alert(\"XSS\")</script>’) select * from emp; --

<%

String eid = request.GetParameter(”eid”);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(”select *
from emp where id='” + eid + ”'”);
if (rs !'= null) {
rs.next();

}
String bio = rs.getString(”bio”);

Employee biography: <%= bio %>

%> 7 28

14

T4 %

bt Cross-Site Scripting (XSS): S
how to find it?

* You should be suspicious if an application

— Gets an input from an HTTP entity such as query
string, header or form, or request object
— Does not check the input for validity

— Echoes it back to the browser (either HTML or
HTTP headers), saving it to or retrieving from a
database unchecked

29

T4 %

how to find it?
angusze —Kopuords

Java (JSP) addCookie, getRequest, request.getParameter
followed by <jsp:setProperty or <%= or
response.sendRedirect

Python form.getvalue, SimpleCookie when the data is not
validated correctly.

C# Request.*, Response.*, and <%= when the data is not
validated correctly.

PHP Accessing $_REQUEST, $_GET, $_POST, or $_SERVER
followed by echo, print, header, or printf.

Node.js request, response, ...

30

bt Cross-Site Scripting (XSS): S

19/09/17

15

i<
N @ Digital

Outline

Vulnerabilities in web applications

Injection vulnerabilities

Information Disclosure vulnerabilities

Session Fixation vulnerabilities

Denial of Service vulnerabilities

31

¥

(CON A
A1) @ Digital

Information Disclosure vulnerabilities

* Description:

— Attacker is able to get data that leads to a breach in security or
privacy policy. The data itself could be the goal, or the data can
provide information that leads the attacker to the goal.

— Intentional: the design team has a mismatch with the end user
as to whether data should be protected (privacy issues).

— Accidental: the data could leak due to an error in the code, or a
nonobvious channel.

— Mistake: verbose [error] messages that developers think are
safe, but attackers find them helpful, e.g., the name or the ip
address of a server

— Three main categories: hardcoded credentials, comments in the
source code, and verbose error messages.

* Technical impact: could be anything

32

19/09/17

16

e é%DP@@!
Information Disclosure: example 0

try {
/¥ ... %/
}

catch (Exception e) {
System.out.println(e);
e.printStackTrace();

y

33

ie

A7

Information Disclosure: example 1

<?php def é%thenticate(uname, pword) :
SUName = " ", if uname __r :
t =
$PWord = " ", . return False
elif pword != "
$DB=""

return False
>
else:

return True

user name: pb-admin
pword:

def authenticate(uname,pword):
if uname==" " and pword=="
return True
else:
return False

34

19/09/17

17

@ I;)igital

Information Disclosure: example 2

public boolean authenticate(Request req, Response res) {

/* o0 */

if (config.getRealmName() == null) {
authenticateCC.append(request.getServerName());
authenticateCC.append(':");
authenticateCC.append(Integer.toString(

request.getServerPort()));

}

else {
authenticateCC.append(config.getRealmName());

}

return (false);

} 4

35

@ I;)igital

Information Disclosure: example 2

public boolean authenticate(Request req, Response res) {

/* o0 */

if (config.getRealmName() == null) {
authenticateCC.append(request.getServerName());
authenticateCC.append(':");
authenticateCC.append(Integer.toString(

request.getServerPort()));

}

else {
authenticateCC.append(config.getRealmName());

}

return (false);

} 4

36

19/09/17

18

19/09/17

@ Digital

Information Disclosure: example 2

public boolean authenticate(Request req, Response res) {

/* o0 */

if (config.getRealmName() == null) {
authenticateCC.append(request.getServerName());
authenticateCC.append(':");
authenticateCC.append(Integer.toString(

request.getServerPort()));

}

else {
authenticateCC.append(config.getRealmName());

}

return (false);

} 4

37

*’%W @?@i@l
Information Disclosure: example 3

Login successful: "authenticate" method returns "true”

LN [login.jsp X

(= C | @ https://logjn.isn
® © ® /N loginjsp X

Welcome! < G ® https:/flogin.jsp

Access denied.

38

19

@ Digital

Information Disclosure: example 3

Connection dbConnection Connection(". password = nU”;

boolean authenticate(String username, String password) {

User user = Users.getUser(username);

boolean hasAccess false;
(user null) {
hasAccess = getDigest(password) . e(messagd

[T Exception report

The server encountered an internal error () that prevented t from fulfiling this request.

(hasAccess) { lexception)

true;
z java.lang.NullPointerException

false;

May throw null reference

MessageDigest md = MessageDigaaey excepl'lon
byte[] bytes = password.getBytes();
md.update(bytes);

(HexUtils.convert(md.digest())

String getDigest(String pass

St

Information Disclosure: L
how to find it?

* Application returns “default ” information

such as server type/ configuration/ip
address/hostname.

Too many details in error messages,
unhandled exceptions, stack traces; different
error messages when handling user login.

Look for “password”, “credentials”, “login”
and similar keywords, you might find
something quite interesting.

40

19/09/17

20

Path Traversal

* Description:

— An application can be tricked into reading or writing
files at arbitrary locations (often bypassing
application-level restrictions). This often happens due
to improper recognition of ”../” segments in un user-
supplied parameters. Unconstrained file writing bugs
are often exploited for deploying attacker-controlled
code [2].

* Related threats: Information disclosure, code
injection, denial of service

* Technical impact: Moderate/Severe

41

(eit) Digital
. byt e

Path Traversal: some examples

An attacker could

provide an input such
String path = getInputPath(); as :
if (path.startsWith("/safe_dir/")) { o
File f = new File(path); /safe_dir/../data.db
f.delete();

} The code attempts

I7d to validate the input
by whitelisting.

If the file is within
the ”/safe_dir/”
folder,

Database
the file gets deleted.

gl UNIVERSITY OEI'C Digital
W O NTO - Ital MASTER SCHOOL

19/09/17

21

Path Traversal: some example@
(continued)

public void sendUserFile(Socket sock, String user) {
BufferedReader filenameReader = new BufferedReader(
new InputStreamReader(sock.getInputStream(), "UTF-8"));

String filename = filenameReader.readlLine();
BufferedReader fileReader =
new BufferedReader(new FileReader("/home/" + user +
"/" + filename));

String filelLine = fileReader.readlLine();

while(fileLine != null) {
sock.getOutputStream().write(fileLine.getBytes());
fileLine = fileReader.readLine();

}

}
43

Path Traversal: some example@
(continued)

public void sendUserFile(Socket sock, String user) {
BufferedReader filenameReader = new BufferedReader(
new InputStreamReader(sock.getInputStream(), "UTF-8"));

String filename = filenameReader.readlLine();
BufferedReader fileReader =
new BufferedReader(new FileReader("/home/" + user +
"/" + filename));

String filelLine = fileReader.readlLine();

while(fileLine != null) {
sock.getOutputStream().write(fileLine.getBytes());
fileLine = fileReader.readLine();

}

}
44

19/09/17

22

Yg:*’ z @ Digital
Path Traversal: how to find it?

* You should be suspicious if an application
— Gets an input from user

— The input is used to construct a path for any
purpose (downloading/uploading files, redirects,
etc.)

— Even if the input looks like it is sanitized,
sanitization functions often contain errors, so you
pay close attention to sanitizers

— Sometimes there are no path constraints at all

45

r%; 4 @ Digital
Outline

Vulnerabilities in web applications
Injection vulnerabilities

Information Disclosure vulnerabilities

Session Fixation vulnerabilities

Denial of Service vulnerabilities

46

19/09/17

23

ni'% @ pigv;al
Session Fixation vulnerabilities

* Description:

— An attack that allows to hijack a valid user session.
When authenticating a user, an app doesn’t assign
a new session ID, making it possible to use an
existent session ID. The attacker has to provide a
legitimate Web application session ID and try to
make the victim's browser use it. [5]

» Technical impact: Severe

47

ni'% @ pigv;al
Session Fixation: example®
\w)

Victim

/

http://website.kom/
login.php?sessionid=abcd

@ Login g
| sessionid=abcd o
< ®
% POST account.php

Afincker @—’

Web Server

*This example is taken from [4]. 48

19/09/17

24

“':’ @ Digital
Session Fixation: example

1. The attacker establishes a legitimate connection with a web
server;

2. The web server issues a session ID;

3. The attacker has to send a link with the established session ID to
the victim; she has to click on the link, accessing the site;

4. The web server ”“sees” that the session has been already
established (by the attacker), so it doesn’t create a new one;

5. The victim provides her credentials to the web server; the attacker
can access her account knowing the session ID.

(session ID can be also sent via a cookie or a hidden
field in the DOM container)

49

Session Fixation: Ok
example (continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {
clearRequestedSessionURL(req);

}
/% ¥/

String sessionID =
req.getPathParameter(Globals.SESSION_PARAMETER_NAME);

if (sessionID != null) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* o0 */
} 50

19/09/17

25

Session Fixation:
example (continued)

@ Digit’,al

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {
clearRequestedSessionURL(req);

}
/* ¥/

String sessionID =
req.getPathParameter(Globals.SESSION_PARAMETER_NAME);

if (sessionID != null) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* o0 */

V.

Session Fixation:
example (continued)

@ Digit’,al

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {
clearRequestedSessionURL(req);

}
/% ¥/

String sessionID =
req.getPathParameter(Globals.SESSION_PARAMETER_NAME);

if (sessionID != null) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* o0 */

V.

19/09/17

26

Pt
> W Z @ Digital
S v

Session Fixation:
example (continued)

protected boolean parseRequest(Request req, Response res) {
if (isURLRewritingDisabled(req)) {
clearRequestedSessionURL(req);

}
/* ¥/

String sessionID =
req.getPathParameter(Globals.SESSION_PARAMETER_NAME);

if (sessionID != null && !isURLRewritingDisabled(req)) {
req.setRequestedSessionId(sessionID);
req.setRequestedSessionURL(true);

}

/* o0 */
} 53

Session Fixation: how to find it? [5]

* You should be suspicious if the usual flow is
broken [6]
— User enters correct credentials
— The application authenticates the user successfully

— Session information (temporary data) is stored in a
temporary location

— Session is invalidated (session. invalidate())

— Any temporary data is restored to new session (new
session ID)

— User goes to successful login landing page using new
session ID

Voo
> W Z @ Digital
S v

54

19/09/17

27

@ Digital
Session Fixation: how to
find it? (continued) [5]

* Check for session fixation if a user tries to login using a
session ID that has been specifically invalidated (requires
maintaining this list in some type of URL cache)

* Check for session fixation if a user tries to use an existing
session ID already in use from another IP address (requires
maintaining this data in some type of map)

* Some server applications (e.g., JBOSS, Tomcat) have a
setting for disabling URL rewriting -> this mitigates the
attack when session ID is exposed via GET parameter of a
URL (as well as being stored in browser history, proxy
servers, etc)

55

@ Digital
Outline

Vulnerabilities in web applications
Injection vulnerabilities

Information Disclosure vulnerabilities
* Session Fixation vulnerabilities

Denial of Service vulnerabilities

56

19/09/17

28

Denial of Service vulnerabilities

* Description:

— The Denial of Service (DoS) attack is focused on
making a resource (site, application, server)
unavailable for the purpose it was designed. If a
service receives a very large number of requests,
it may cease to be available to legitimate users. In
the same way, a service may stop if a
programming vulnerability is exploited, or the way
the service handles resources it uses.

* Technical impact: Severe

57

*’j:ﬁ% @9@?’1?‘1
Denial of Service: example 1

1 String TotalObjects = request.getParameter(“numberofobjects”);
2 int NumOfObjects = Integer.parselnt(TotalObjects);
3 ComplexObject[] anArray Complex0Object [NumOfObjects];

We may "kill” the
server by filling all of
its memory

58

19/09/17

29

«Ez>gqgma

Denial of Service: example 2

MyServlet ActionServlet {
void doPost(HttpServletRequest request,
HttpServletResponse response)
ServletException, IOException {

String [] values = request.getParameterValues("CheckboxField");

(int i=0; i<values.length; i++) {

The user has control over the loop
counter: we may decrease server’s
performance or even kill it.

«Ez>gqgma

Denial of Service: example 3

AccountDAO {

void createAccount(AccountInfo acct)
AcctCreationException {

{
Connection conn = DAOFactory.getConnection();
CallableStatement calStmt = conn.prepareCall(..);

calStmt.executeUpdate();

calStmt.close();

conn.close();
(java.sqUALE;

AcctCreatl Both Connection and

CallableStatement objects
should be closed in the
“finally” block

19/09/17

30

i<
bk @ Digital

Denial of Service: how to find it?

* You should be suspicious if

— User-controlled values define the size of allocated
memory, arrays or buffers;

— User-controlled values influence loop conditions;

— "Heavy” resources are never released (file locks/
descriptors, database connections, data streams,
etc.)

— There is an "infinite" amount of resources that a
single user can allocate (e.g., the number of
working processes or server sockets);

61

: 2'? @ Digital
References

* [1] Web Application Vulnerabilities and Avoiding Application Exposure
https://f5.com/resources/white-papers/web-application-vulnerabilities-and-
avoiding-application-exposure

* [2] Zalewski, Michal. The tangled Web: A guide to securing modern web
applications. No Starch Press, 2012.

* [3] Howard, Michael, David LeBlanc, and John Viega. 24 deadly sins of software
security: programming flaws and how to fix them. McGraw-Hill, Inc., 2009.

* [4] OWASP: the free and open software security community
https://www.owasp.org/index.php/Main_Page

* [5] The White Hat Security blog on Session Fixation prevention:
https://www.whitehatsec.com/blog/session-fixation-prevention-in-java/

* [6] The OWASP Enterprise Security API session handling example:
https://code.google.com/p/owasp-esapi-java/source/browse/trunk/src/main/
java/org/owasp/esapi/reference/DefaultHTTPUtilities.java

» [7] Secure Coding Guidelines for Java SE
http://www.oracle.com/technetwork/java/seccodequide-139067.html|

62

19/09/17

31

