Offensive technologies

My First Buffer Overflow: Tutorial

César Bernardini

University of Trento
cesar.bernardini@unitn.it

September 25, 2015

Requirement

The Playground

VirtualBox or QEMU Virtual Machine

Gentoo Linux

|

|

m No security protections; no network support

m Installed software: gcc (g++), gdb, nano, vi, python, perl
|

Available in your lab!

Motivation

Insecure Programming

http://community.coresecurity.com/~gera/
InsecureProgramming/

—_—
|_| main.tex || slides.tex || slides.tex abol.cc

1 /* stackl.c *
2 * specially crafted to feed your brain by gera */

4 int main()

5 int cookie;

6 char buf[80];

7

8 printf("buf: %08x cookie: %08x\n", &buf, &cookie);
9 gets(buf);

18

11 if (cookie = 6

12 printf(“you w

131]

(Hack the program) to print you win!

http://community.coresecurity.com/~gera/InsecureProgramming/
http://community.coresecurity.com/~gera/InsecureProgramming/

Preliminaries

What is Hacking?

m Hacker is a term for both those who write code and those
who exploit it.

m Hacking is really just the act of finding a clever and
counterintuitive solution to a problem

If we want to find counterintuitive solutions...

We need to understand how technologies work in-depth

Preliminaries: Secure Programming
Regular programming vs Security-Flaw Exploitation

Regular Programming

m Multi-platform target

m Follow client specification (needs) — leads to many problems

Security-Flaw Exploitation

m Look for implementation-errors

m Fully-understand the environment

m Single-platform target

Programming

Big Picture: Revision on the required technologies

Basic knowledge on C

[
m Basic knowledge on gcc, gdb

m Basic Knowledge on Assembly language
[

Basic Knowledge on Linux OS

Aim of today...

We revisit the basis of everyone of these technologies

The C Language

The C language

m Imperative, procedural programming language
m Developed by Dennies Ritchie between 1969 and 1973
m ISO 9899:1999

#include <libs>

int main(void)

{
printf (" Hello_World\n");

return 1;

The x86 Processor

8086 CPU

m First x86 Processor
m Manufactured by Intel
m Relative of 386 & i86

m Composed of many multi-purpose registers

Modern Processors

m Similar ideas, higher complexity
m i.e. AMD64, x86_64 — uname -r

The x86 Processor

m EAX, ECX, EDX, EBX are general purpose registers
(Accumulator, Counter, Data and Base registers — temporary
variables for the CPU)

m ESP, EBP, ESI, EDI are used for pointers and indexes

m Stack Pointer and Base Pointer (delimiters (start and end) of
the stack); Source Index; Destination Index

m EIP — La Vedette — is the Instruction Pointe register
m Next instruction to be executed by the processor

m EFLAGS registers consists of several bit flags and are used for
comparison and memory segmentations

The x86 Processor

Instructions

Basic instruction

m < operation >< destination >< source >

Examples

® mov ebp, esp — move esp’s content into ebp’s content

m sub esp, 0x8 — subscract 8 to esp's content

http://ref .x86asm.net/

10

http://ref.x86asm.net/

Compiler

The GNU Compiler Collection (GCC)

m GCC is a compiler system produced by the GNU Project
supporting various programming languages
m GCC is a key component of the GNU toolchain
Well known features
m -c, -0 — compiling c file, creating object data

m -g:. Produce debugging information in the operating system's
native format

11

Debugger — GDB

Basic instructions

m breakpoint < search — tag > — Creates a break point into the
source code.

next — Executes the following instruction

inforegister < register — name > — get register value
x/5i%$eip — Next 5 instructions to be executed.

list — list the program's source code

x/o < memory — value > — get memory-value content

disass < search — tag > — get assembler code for a search-tag
function

12

Debugger — GDB

Create a sample program in C with one pointer and one
assignation

Run the program with gdb

What is the difference between next and nexti?

Use info register $eip to understand execution of a program
(before and after nexti)

Use x/x and x/i to retrieve the location of the pointer in the
memory and its content

13

Debugger — Compiler

int main(void)

{
int buffer[40];

return 0;

}

Compile the previous program with the gcc parameter:
mpreferred-stack-boundary equal to 2,3,4.

Using GDB check how the original source of the program is
affected.

In the rest of the course, we suggest compiling every program
with mpreferred-stack-boundary=2. Why?

14

Operating System

Distributions

m Debian OS, Ubuntu, LinuxMint, Gentoo, etc.
m Windows XP, Windows 7, 8, 9, etc.
m Mac OS X 9.3, ... Mac OS X 10.5, etc.

m Different versions, and branches, of commons apps (i.e. gcc,
gdb)
m Different Ways of handling memory

15

Back to the Basis

m char: smallest addressable unit of the machine that contains a
basic character set.

m int: basic representation of a number.
m float: single-precision floating-point type.

m double: double-precision floating-point type.

m signed, usigned

m short, long

16

Back to the Basis: Types

Length
toes [s[z[efalsle[r[o] [[[[TLITTTLTITTIITITII]
(1 Byte = 8 bits)
I:IChar
-

Length
oty L2 lefslelle[[TLLTTTTTTTTITTTT T TTT T o
S\4n | Exponent | Fraction |
Double
Sign | Exponent | Fraction
Fraction
Float
Double

17

Back to the Basis: Complex Types

m Array

m Signed, Unsigned, long and short int
m Pointers

m Command-line arguments

m Variable Scoping

18

Back to the Basis: Arrays / Strings

An array is simply a list of n element of a specific data type

Special case of Array where the data type is char and the last
character is a null byte (\0)

10

Back to the Basis: Arrays / Strings

An array is simply a list of n element of a specific data type

Special case of Array where the data type is char and the last
character is a null byte (\0)

Length

ey 2[2zlefolelele] [[L LTLTLTLLTTATTLT I Fd
|:|Char
[ple[]t]e] fofoel[eppe] [T [T LT TTTL]]ererze

array[6]
10

Back to the Basis: Signed, Unsigned

Why signs?

m Numerical values in C are signed: negative or positive

m Signed values allow positive and negative numbers

m Unsigned values only allow positive numbers.

20

Back to the Basis: Signed, Unsigned

Why signs?

m Numerical values in C are signed: negative or positive

m Signed values allow positive and negative numbers

m Unsigned values only allow positive numbers.

ot [lelolelslelle[[LTTTLITTLITILITITITTT B
I:IChar
| | | Signed
Sign Value
| Unsigned
Value

signed: +/- 23 (2341 to +23L1)

Unsigned: 2 32 (0to +2 32-1)

20

Back to the Basis: Long and Short

m Restraint to int data type with only 2 bytes (16 bits)

m Extension of int data type with 8 bytes (16 bits)

21

Back to the Basis: Pointers

m A pointer is a programming language object whose value
refers directly to another value stored elsewhere in the
computer memory using its address.

m Useful to avoid copying large bulks of memory.

m Instead of copying, we simply pass the address of a block.

C implementation

m Pointers are defined with an integer data type (4 bytes)

m Pointers are defined with a prefix (*)

m Memory management is in charge of malloc/calloc/free
instructions

)

Back to the Basis: Pointers

ructure of Poi

Memory Addresses
0x0f43DBe3
Pointer 0x0f43DBe5

0x0f43DBe5
Memory
0x0f43DBe9

0x0f43DBed

23

Back to the Basis: Pointers

Operations on Pointers

m Pointers are memory addresses, which are numbers, as such
math operations apply

Memory Addresses
0x0f43DBe3

Pointer 0x0f43DBe5

0x0f43DBe5

Memory
0x0f43DBe5 + 2 0x0f43DBe9

0x0f43DBe5 + 8 0x0f43DBed

24

Back to the Basis: Command Line Arguments

Command Line Args in C

m Sent through main function with two arguments (argc and
argv)
m argc: argument counter, number of arguments

m argv: arguments values, contain each of the arguments

95

Back to the Basis: Command Line Arguments

#include <stdio.h>

int main(int argc, char xargv)

{
int i;
printf("%d_args:\n", argc);
for (i=0; i< argc; i++)

{
}

return O;

printf("arg #%d:%s\n", i, argv[i]);

26

Back to the Basis: Command Line Arguments

27

reader@hacking:~/booksrc $ gcc -o commandline commandline.c
reader@hacking:~/booksrc $./commandline

There were 1 arguments provided:

argument #0 - ./commandline
reader@hacking:~/booksrc $./commandline this is a test
There were 5 arguments provided:

argument #0 - ./commandline
argument #1 - this

argument #2 - is

argument #3 - a

argument #4 - test

reader@hacking:~/booksrc $

