
Offensive technologies
My First Buffer Overflow: Tutorial

César Bernardini

University of Trento
cesar.bernardini@unitn.it

September 25, 2015

Requirement

The Playground

VirtualBox or QEMU Virtual Machine

Gentoo Linux

No security protections; no network support

Installed software: gcc (g++), gdb, nano, vi, python, perl

Available in your lab!

2

Motivation

Insecure Programming

http://community.coresecurity.com/~gera/

InsecureProgramming/

Aim

(Hack the program) to print you win!
3

http://community.coresecurity.com/~gera/InsecureProgramming/
http://community.coresecurity.com/~gera/InsecureProgramming/

Preliminaries

What is Hacking?

Hacker is a term for both those who write code and those
who exploit it.

Hacking is really just the act of finding a clever and
counterintuitive solution to a problem

If we want to find counterintuitive solutions...

We need to understand how technologies work in-depth

4

Preliminaries: Secure Programming
Regular programming vs Security-Flaw Exploitation

Regular Programming

Multi-platform target

Follow client specification (needs) – leads to many problems

Security-Flaw Exploitation

Look for implementation-errors

Fully-understand the environment

Single-platform target

5

Programming
Big Picture: Revision on the required technologies

Requirements

Basic knowledge on C

Basic knowledge on gcc, gdb

Basic Knowledge on Assembly language

Basic Knowledge on Linux OS

Aim of today...

We revisit the basis of everyone of these technologies

6

The C Language

The C language

Imperative, procedural programming language

Developed by Dennies Ritchie between 1969 and 1973

ISO 9899:1999

#inc lude < l i b s >

i n t main (void)
{

p r i n t f (” H e l l o World\n”) ;
return 1 ;

}

7

The x86 Processor

8086 CPU

First x86 Processor

Manufactured by Intel

Relative of 386 & i86

Composed of many multi-purpose registers

Modern Processors

Similar ideas, higher complexity

i.e. AMD64, x86 64 – uname -r

8

The x86 Processor

Registers

EAX, ECX, EDX, EBX are general purpose registers
(Accumulator, Counter, Data and Base registers – temporary
variables for the CPU)

ESP, EBP, ESI, EDI are used for pointers and indexes

Stack Pointer and Base Pointer (delimiters (start and end) of
the stack); Source Index; Destination Index

EIP – La Vedette – is the Instruction Pointe register

Next instruction to be executed by the processor

EFLAGS registers consists of several bit flags and are used for
comparison and memory segmentations

9

The x86 Processor
Instructions

Basic instruction

< operation >< destination >< source >

Examples

mov ebp, esp – move esp’s content into ebp’s content

sub esp, 0x8 – subscract 8 to esp’s content

http://ref.x86asm.net/

10

http://ref.x86asm.net/

Compiler

The GNU Compiler Collection (GCC)

GCC is a compiler system produced by the GNU Project
supporting various programming languages

GCC is a key component of the GNU toolchain

Well known features

-c, -o – compiling c file, creating object data

-g: Produce debugging information in the operating system’s
native format

11

Debugger – GDB

Basic instructions

breakpoint < search − tag > – Creates a break point into the
source code.

next – Executes the following instruction

inforegister < register − name > – get register value

x/5i$eip – Next 5 instructions to be executed.

list – list the program’s source code

x/o < memory − value > – get memory-value content

disass < search − tag > – get assembler code for a search-tag
function

12

Debugger – GDB

Exercise

1 Create a sample program in C with one pointer and one
assignation

2 Run the program with gdb

3 What is the difference between next and nexti?

4 Use info register $eip to understand execution of a program
(before and after nexti)

5 Use x/x and x/i to retrieve the location of the pointer in the
memory and its content

13

Debugger – Compiler

i n t main (void)
{

i n t b u f f e r [4 0] ;

return 0 ;
}

Exercise

1 Compile the previous program with the gcc parameter:
mpreferred-stack-boundary equal to 2,3,4.

2 Using GDB check how the original source of the program is
affected.

3 In the rest of the course, we suggest compiling every program
with mpreferred-stack-boundary=2. Why?

14

Operating System

Distributions

Debian OS, Ubuntu, LinuxMint, Gentoo, etc.

Windows XP, Windows 7, 8, 9, etc.

Mac OS X 9.3, ... Mac OS X 10.5, etc.

Differences

Different versions, and branches, of commons apps (i.e. gcc,
gdb)

Different Ways of handling memory

15

Back to the Basis

Types

char: smallest addressable unit of the machine that contains a
basic character set.

int: basic representation of a number.

float: single-precision floating-point type.

double: double-precision floating-point type.

Specifier

signed, usigned

short, long

16

Back to the Basis: Types

17

Back to the Basis: Complex Types

Types

Array

Signed, Unsigned, long and short int

Pointers

Command-line arguments

Variable Scoping

18

Back to the Basis: Arrays / Strings

Array

An array is simply a list of n element of a specific data type

String

Special case of Array where the data type is char and the last
character is a null byte (\0)

19

Back to the Basis: Arrays / Strings

Array

An array is simply a list of n element of a specific data type

String

Special case of Array where the data type is char and the last
character is a null byte (\0)

19

Back to the Basis: Signed, Unsigned

Why signs?

Numerical values in C are signed: negative or positive

Signed values allow positive and negative numbers

Unsigned values only allow positive numbers.

20

Back to the Basis: Signed, Unsigned

Why signs?

Numerical values in C are signed: negative or positive

Signed values allow positive and negative numbers

Unsigned values only allow positive numbers.

20

Back to the Basis: Long and Short

Short

Restraint to int data type with only 2 bytes (16 bits)

Long

Extension of int data type with 8 bytes (16 bits)

21

Back to the Basis: Pointers

Pointer

A pointer is a programming language object whose value
refers directly to another value stored elsewhere in the
computer memory using its address.

Useful to avoid copying large bulks of memory.

Instead of copying, we simply pass the address of a block.

C implementation

Pointers are defined with an integer data type (4 bytes)

Pointers are defined with a prefix (*)

Memory management is in charge of malloc/calloc/free
instructions

22

Back to the Basis: Pointers

Structure of Pointers

23

Back to the Basis: Pointers

Operations on Pointers

Pointers are memory addresses, which are numbers, as such
math operations apply

24

Back to the Basis: Command Line Arguments

Command Line Args in C

Sent through main function with two arguments (argc and
argv)

argc: argument counter, number of arguments

argv: arguments values, contain each of the arguments

25

Back to the Basis: Command Line Arguments

#inc lude <s t d i o . h>

i n t main (i n t argc , char ∗ a r g v)
{

i n t i ;
p r i n t f (”%d a r g s :\ n” , a r g c) ;

f o r (i =0; i< a r g c ; i ++)
{

p r i n t f (” a rg #%d:% s \n” , i , a r g v [i]) ;
}
return 0 ;

}

26

Back to the Basis: Command Line Arguments

27

