
Offensive Security
My First Buffer Overflow: Tutorial

César Bernardini

University of Trento
cesar.bernardini@unitn.it

October 12, 2015

Cesar Bernardini

Postdoctoral Fellow at UNITN

PhD Student at INRIA-LORIA

Master in Computer Science at Universidad Nacional de
Córdoba, Argentina

Junior Security Research at Binamuse.com

CVE-2010-3429

http://www.loria.fr/~bernardc

2

http://www.loria.fr/~bernardc

Bibliography

Bibliography & Links

Hacking, The Art of Exploitation – Jon Erickson

The Shellcoder’s Handbook: Discovering and Exploiting
Security Holes – Chris Anley, John Headman, Felix Lindner
and Gerardo Richarte

BinAmuse.com – http://www.binamuse.com

3

http://www.binamuse.com

Hacking

What is Hacking?

Hacker is a term for both those who write code and those
who exploit it.

Hacking is really just the act of finding a clever and
counterintuitive solution to a problem

If we want to find counterintuitive solutions...

We need to understand how technologies work in-depth

4

How to Hack?

The Hacking Steps

1 Understand the program execution

2 Understand the environment

OS (Linux 2.6.x), Programming language (C), Compiler
(GCC), Processor (x86 32 bits)

3 Look for errors on the code

4 (when possible) Exploit

Assumptions on the course

Proficiency on the C language and and the GCC compiler

5

Outline

1 Understand Programs Execution

2 Understand the environment
Memory Segmentation
Stack

3 Common Programming Errors

4 Exploitation
Buffer Overflow
Buffer Stack Overflow

6

Understanding Programs Execution

How does Linux execute this program? (puts=printf)

7

Understanding Programs Execution
Assembla Version in Gentoo VM

Exercise: do the mapping between C++ and Assembly
8

Understanding Programs Execution

Program execution

1 As a program executes, the EIP is set to the first instruction
in the code segment

2 Reads the instruction that EIP is pointing to.

3 Adds the byte length of the instruction to EIP.

4 Executes the instruction that was read in step 2.

5 Goes back to step 2

9

Memory Segmentation

1 Understand Programs Execution

2 Understand the environment
Memory Segmentation
Stack

3 Common Programming Errors

4 Exploitation
Buffer Overflow
Buffer Stack Overflow

10

Memory Segmentation

Memory

Electronic components used to record/maintain data in a
computer

An Operating System is responsible for the administration of
these components

Memory unit is a word of certain number of bits (32 bits)

Every word has usually an associated address to reference it
(32 bits)

To manage the memory, The OS commonly subdivide it in
segments

Every segment holds certain information for the execution of
our program

11

Memory Segmentation

Memory Segments in Linux OS

Text/Code Segment

Data Segment

BSS Segment

Heap Segment

Stack Segment

Code Segment

The (assembler) Code is stored in the code segment

12

Data and BSS Segment

Data Segment

It is filled with initialized global and static variables.

fixed size

BSS Segment

It is filled with uninitialized global and static variables.

fixed size

Heap Segment

A segment that programmer can directly control.

It has variable size.

All this memory is managed with allocators/deallocators
13

Stack Segment

Stack Segment

It has variable size.

Temporary scratch pad to store local function variables and
context during function calls.

(i.e. GDB’s backtrace)

First-in, Last-out (FILO) data structure

When an item is placed (pushing), when an item is removed
(popping)

Our focus in this tutorial

Now, let us focus on practical examples

14

Stack Segment

Stack Segment

It has variable size.

Temporary scratch pad to store local function variables and
context during function calls.

(i.e. GDB’s backtrace)

First-in, Last-out (FILO) data structure

When an item is placed (pushing), when an item is removed
(popping)

Our focus in this tutorial

Now, let us focus on practical examples

14

Example

Indicate the segments where variables are stored in

i n t main (void)
{

i n t a ;
i n t b ;
i n t c ;
i n t d ;
return 0 ;

}

Memory Segments

Code is stored in the Code Segment

Variables a, b, c, d in the Stack Segment

15

Example

Indicate the segments where variables are stored in

i n t main (void)
{

i n t a ;
i n t b ;
i n t c ;
i n t d ;
return 0 ;

}

Memory Segments

Code is stored in the Code Segment

Variables a, b, c, d in the Stack Segment

15

Example - Stack Segment

Indicate the segments where variables are stored in

void t e s t f u n c t i o n (i n t a , i n t b , i n t c , i n t d){
i n t f l a g ; char b u f f e r [4] ;
f l a g = 31337 ;
b u f f e r [0] = ’A ’ ;

}
i n t main (void){

t e s t f u n c t i o n (1 , 2 , 3 , 4)
}

Memory Segments

flag and buffer are stored in the Stack Segment

16

Example - Stack Segment

Indicate the segments where variables are stored in

void t e s t f u n c t i o n (i n t a , i n t b , i n t c , i n t d){
i n t f l a g ; char b u f f e r [4] ;
f l a g = 31337 ;
b u f f e r [0] = ’A ’ ;

}
i n t main (void){

t e s t f u n c t i o n (1 , 2 , 3 , 4)
}

Memory Segments

flag and buffer are stored in the Stack Segment

16

Example - Data Segment

Indicate the segments where variables are stored in

i n t main (void)
{

g l o b a l i n t x =2;
s t a t i c char y [3] = [’ a ’ , ’B ’ , ’Z ’] ;
return 0 ;

}

Memory Segments

initialized static and global variables (i.e. x, y) are stored in
the Data Segment

17

Example - Data Segment

Indicate the segments where variables are stored in

i n t main (void)
{

g l o b a l i n t x =2;
s t a t i c char y [3] = [’ a ’ , ’B ’ , ’Z ’] ;
return 0 ;

}

Memory Segments

initialized static and global variables (i.e. x, y) are stored in
the Data Segment

17

Example - BSS Segment

Indicate the segments where variables are stored in

i n t main (void)
{

g l o b a l i n t x ;
s t a t i c char [3] y ;
return 0 ;

}

Memory Segments

uninitialized static and global variables (i.e. x, y) are stored in
the BSS Segment

18

Example - BSS Segment

Indicate the segments where variables are stored in

i n t main (void)
{

g l o b a l i n t x ;
s t a t i c char [3] y ;
return 0 ;

}

Memory Segments

uninitialized static and global variables (i.e. x, y) are stored in
the BSS Segment

18

Example - Heap Segment

Indicate the segments where variables are stored in

i n t main (void) {
char ∗ c h a r p t r ;
c h a r p t r = m a l l o c (5 0) ;

p r i n t f (” p o i n t e r : %p” , c h a r p t r) ;
f r e e (c h a r p t r) ;

}

Memory Segments

char ptr is stored in the stack

char ptr’s content (*char ptr is stored in the Heap seg.)

19

Example - Heap Segment

Indicate the segments where variables are stored in

i n t main (void) {
char ∗ c h a r p t r ;
c h a r p t r = m a l l o c (5 0) ;

p r i n t f (” p o i n t e r : %p” , c h a r p t r) ;
f r e e (c h a r p t r) ;

}

Memory Segments

char ptr is stored in the stack

char ptr’s content (*char ptr is stored in the Heap seg.)

19

Outline

1 Understand Programs Execution

2 Understand the environment
Memory Segmentation
Stack

3 Common Programming Errors

4 Exploitation
Buffer Overflow
Buffer Stack Overflow

20

Stack

Stack Segment

Last-In First-Out stack

Useful for context switching

ebp (Stack Base Pointer): initial address of the stack

esp (Stack Pointer): top address of the stack

21

Stack Operations

Operations

push < register >: decrements esp − 4 and places the content
of register in the top of the stack (esp)

pop < register >: removes the content of esp, place it into
the register and then increments esp + 4

22

Stack Operations: Push

push < register >: decrements esp − 4 and places the content of
register in the top of the stack (esp)

23

Stack Operations: Pop

pop < register >: removes the content of esp, place it into the
register and then increments esp + 4

24

Context Switching

Definition

A context switching is the change from one process to another

Context Switching (execution of a function)

Save Base Pointer (save ebp)

Save parameters of the function in the stack

Save return address

Remind...

Every C application is composed of functions (i.e. int main)...

25

Content Switching: Example

void t e s t f u n c t i o n (i n t a , i n t b , i n t c , i n t d){
i n t f l a g ; char b u f f e r [4] ;
f l a g = 31337 ;
b u f f e r [0] = ’A ’ ;

}
i n t main (void){

t e s t f u n c t i o n (1 , 2 , 3 , 4)
}

How do our computer execute this program?

26

Content Switching: Example

Let us build the stack for this program

27

Content Switching: Building the Stack 1/7

28

Content Switching: Building the Stack 2/7

29

Content Switching: Building the Stack 3/7

30

Content Switching: Building the Stack 4/7

call < addr >: stores return address into the stack and move EIP
into the beginning pointed by the address.

31

Content Switching: Building the Stack 5/7

32

Content Switching: Building the Stack 6/7

leave: move ebp, esp; pop ebp (prepare stack for the return)

33

Content Switching: Building the Stack 7/7

ret: pop instruction pointer from the stack and make an
inconditional jump to code segment.

34

Content Switching: Get your Hands dirty!

1 Open the virtual machine with VirtualBox (Gentoo 32 bits)

2 Get into InsecureProgramming folder

3 Type make to compile all the programs

4 Analyze and build the stack for stack1.c on paper
Check the source code of the program (stack1.c)
Run it on a debugger: gdb stack1; disass main
Make the mapping between the C and assembly code
Set a breakpoint into the main (b * [mem])
Check the registers (info reg $eip)
Using the ni instruction, follow the program step by step and
build the stack (x/x [mem])

35

Outline

1 Understand Programs Execution

2 Understand the environment
Memory Segmentation
Stack

3 Common Programming Errors

4 Exploitation
Buffer Overflow
Buffer Stack Overflow

36

Common Programming Errors

Common Programming Errors

Incorrect handling of buffer boundaries

Examples: gets() and strcpy() do not check buffer length.

Do not sanitize end-users input data

Weird characters, characters instead of numbers, ...

Do not sanitize filenames

Filenames could be used as program parameters

Do not consider empty case

All these errors are commonly found in the Internet as ready-to-use
code snipets

37

Common Programming Errors

Multipliers

Quick modification to expand capabilities of a program

Market Rules: as soon as possible

Example of Microsoft ISS webserver

Example Adobe Reader (PDF – 3D functionality)

38

Common Programming Errors

Check the following code

i n t main (void)
{

i n t f o o =0;
f o o = 1<<31;
p r i n t f (”%i ; ” , f o o) ;
foo−−;
p r i n t f (”%i \n” , f o o) ;
return 0 ;

}

Output: −2147483648; 2147483647. Why?

39

Outline

1 Understand Programs Execution

2 Understand the environment
Memory Segmentation
Stack

3 Common Programming Errors

4 Exploitation
Buffer Overflow
Buffer Stack Overflow

40

Exploitation

What is exploitation?

Exploiting a program is simply a clever way of getting the
computer to do anything you want it to do.

Procedure

Finding programmer errors

Understand the code

Alter normal program flow

41

Generalized Exploit Techniques

Motivation

Same types of mistakes repeated over and over

And when I mean over and over, it is millions of times

Exploit Techniques

Most exploits related to memory corruption

target is to take control of the target program’s execution flow
by running a piece of malicious code that has been smuggled
into memory

Search for unexpected cases that cause the program to crash

We aim always at executing arbitrary code

42

Generalized Exploit Techniques

Exploit Techniques

Buffer Overflow

Buffer Stack Overflow

Integer Overflow

Format String

and many more...

We focus on Buffer Overflow

43

Outline

1 Understand Programs Execution

2 Understand the environment
Memory Segmentation
Stack

3 Common Programming Errors

4 Exploitation
Buffer Overflow
Buffer Stack Overflow

44

Buffer Overflow

Precondition

C assummes the programmer is responsible for Data Integrity

Two-edges sword: no integrity check in exchange for velocity

Target

Allocate more data into a buffer that allocated previously less
space

If a critical piece of data is overwritten, the program will crash.

45

Buffer Overflow

Principle

Developers forget to check variable’s boundaries

An Attacker overwrites memory in adjacent locations

46

Buffer Overflow: Our first Hack, step by step

i n t main () {
i n t c o o k i e ;
char buf [8 0] ;

p r i n t f (” buf : %08x c o o k i e : %08x\n” ,
&buf , &c o o k i e) ;
g e t s (buf) ;

i f (c o o k i e == 0 x41424344)
p r i n t f (” you win !\ n”) ;

}

Buffer Overflow

How can we hack this program to print you win!?

47

Buffer Overflow: Our first Hack, step by step

lea < mem >< reg >: places the address specified by first
operand into the register specified into the second operand.

48

Buffer Overflow: Our first Hack, step by step

49

Buffer Overflow: Our first Hack, step by step

50

Outline

1 Understand Programs Execution

2 Understand the environment
Memory Segmentation
Stack

3 Common Programming Errors

4 Exploitation
Buffer Overflow
Buffer Stack Overflow

51

Buffer Stack Overflow: Principles
Now, we go for the stack

Precondition

C assummes the programmer is responsible for Data Integrity

Two-edges sword: no integrity check in exchange for velocity

User has not control of the stack!

Target

Allocate more data into a buffer that allocated previously less
space

We overwrite a critical pointer of the stack

Full-knowledge of the memory organization

52

Buffer Stack Overflow: Principles

Principle

Developers forget to check variable’s boundaries

An Attacker overwrites memory in adjacent locations

The Attacker corrupts the stack to control the execution flow

53

Buffer Stack Overflow: Abo #1

Advanced Buffer Overflow (Abo) #1

How can we hack this program to print you win!?

i n t main (i n t argc , char ∗∗ a r g v) {
char buf [8 0] ;

s t r c p y (buf , a r g v [1]) ;
}

54

Buffer Stack Overflow: Abo #1

55

Buffer Stack Overflow: Abo #1

Set a breakpoint at line 11

Insert 4A into the memory and check the stack

x/x $ebp-0x54

Insert AAAABBBB and check the stack

x/10i $ebp-0x54

Insert 80*A + 4B and check the stack and cookie’s value

x/x $ebp-0x4

Put 80× A and ABCD and check value of cookie

Put 80× A and DCBA and check value of cookie (endianess)

Test without gdb

56

Suggested Literature

http://phrack.org/issues/49/14.html

http://phrack.org/issues/55/8.html

https://www.blackhat.com/presentations/

bh-europe-09/Fritsch/

Blackhat-Europe-2009-Fritsch-Buffer-Overflows-Linux-whitepaper.

pdf

57

http://phrack.org/issues/49/14.html
http://phrack.org/issues/55/8.html
https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Buffer-Overflows-Linux-whitepaper.pdf
https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Buffer-Overflows-Linux-whitepaper.pdf
https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Buffer-Overflows-Linux-whitepaper.pdf
https://www.blackhat.com/presentations/bh-europe-09/Fritsch/Blackhat-Europe-2009-Fritsch-Buffer-Overflows-Linux-whitepaper.pdf

Questions

THANK YOU

58

	Understand Programs Execution
	Understand the environment
	Memory Segmentation
	Stack

	Common Programming Errors
	Exploitation
	Buffer Overflow
	Buffer Stack Overflow

