Testing Exploits and Malware in an isolated environment

The MalwareLab

The MalwareLab

Laboratory to measure malware as a
“software artifact”

Does the malware/exploit work?

Under which circumstances?

How does it perform under different assumptions?
Disconnected from the network
At the moment located in Povo2, Floor 1
Soon to be moved and renovated

MalwareLab structure

VICTIM 1 VICTIM 2 VICTIM 3
Virtualizes: —)| Virtualizes Virtualizes
*XPSPo 1| Vista SPo *Seven SPo
*XP SP1 _ | *VistaSP1 Seven SP1
*XP SP2 Vista SP2
*XPSP3 ~ o

Malware Distribution Server
(MDS)

MalwareLab functionalities

Python infrastructure

Automatically operate on Virtual Machines
Create, delete, restore VM Snapshots

Automatically install and verify software

configurations on the VMs

Configuration file contains list of software
Script pushes the software on VM, lunches silent install
Possibility to verify the install with a batch file

Firefox, Opera, Java, Quicktime, Flash, Adobe Reader
Automated mechanism to verify exploit
successfulness.

Fully modularized - Easy to add functionalities /
software/malware

Run example: testing Exploit Kits (1)

1

1. Requests web page to .M
malicious server

3. If exploitis successful,
shellcode downloads _

malware of some sort
4. Computeris infected

Run example: testing Exploit Kits (2)

Question: How resilent are cybercrime ekits to
software updates?

Exploit kits span from (2007-2011)

How we chose the exploit kits
Release date
Popularity (as reported in industry reports)
CrimePack, Eleonore, Bleeding Life, Shaman, ...
Software: most popular one
Windows XP, Vista, Seven

All service packs are treated like independent operating systems
Browsers: Firefox, Internet explorer
Plugins: Flash, Acrobat Reader, Java
247 software versions
spanning from 2005 to 2013

We randomly generate 180 sw combinations (times g Operating
Systems) to be the configurations we test

Virtualizes:
*XPSPo
-Conf 1..
*XP SPa
-Conf 1..
*XP SP2
-Conf1..
*XPSP3
-Confa..

= Virtualizes —) Virtualizes (—ﬁ
——| *VistaSPo — *Seven SPo —
180 4 -Conf1..180 4 -Conf1..180 “ 4
*Vista SP1 *Seven SP1
180 <o -Conf1..180 ~ %P -Conf1..180 C) o
*Vista SP2 ‘
180 -Conf1..180
180

=

« Exploit kit 1 ’
* Exploit kit 2 L :
. = o Malware Distribution Server
« Exploit kit 10 - (MDS)
T

Configuration example

One configuration for: Windows XP Service Pack 2
Firefox 1.5.0.5
Flash 9.0.28.0
Acrobat Reader 8.0.0.0
Quicktime 7.0.4.0

Javai1.5.0.7
One configuration for: Windows Seven Service Pack 1

Firefox 8.0.1.0

Flash 10.3.183.10
Acrobat Reader 10.1.1.0
Quicktime: No version
Java 6.27

Experiment setup (2)

Configuration
Selection

no

Automated yes no
sw installation

Tested

e [End of run]

All confs?
Configuration
Snapshot
Runon
Restore new Ekit / Tested yes Delete
Conf. Snapshot all Ekits? Snapshot

no

Experiment run (read: Example of

MalwareLab functionalities)

VICTIM 1

Configuration Snapshot (attacked)

Virtual Box Interface

([B ﬁ%m Brploi’Kits”
Oli] uration 1

bt sty
&dgt%?“&%ﬁﬁ&ﬁ&‘ﬁﬁﬂ%ﬂéﬁ'ﬁ?&?’it

Control Scripts in Python

Malware Distribution Server

(MD5) Linux Ubuntu

Assess Exploit Successfulness

VICTIM 1 VICTIM 2 VICTIM 3

%
)
= r lw

2

If exploit is successful
-> Requests "Casper”
From MDS

Set
'ISUGcepsbul 1<t/
In MDS table Infections

Malware Distribution Server
(MDS)

/., Casper
/ The “good-ghost-in-the-browser”
~ malware

Some results

120
100 >\

Bleeding Life

80

60

IcePac
40 Seo AdPack

A\

2005-2007 2006-2008 2007-2009 2008-2010 2009-2011 2010-2012

===AdPack ===Bleeding Life=CrimePack ===Eleonore ElFiesta

gPack IcePack mPack Seo Shaman

2011-2013

Useful Reads

MalwarelLab & Ekits:
CSET ‘13: MalwareLab: Experimentation with Cybercrime Attack Tools.
ESSoS “13: Anatomy of Exploit Kits - Preliminary Analysis of Exploit Kits as Software Artefacts.

Exploitation 102
[BOOK] HACKING: The Art of Exploitation — Erickson
Phrack Magazine: Smashing The Stack For Fun And Profit

Advanced exploitation

Usenix ‘11 — Q: Exploit Hardening Made Easy

Blackhat 2013 - JUST-IN-TIME CODE REUSE: THE MORE THINGS CHANGE, THE MORE THEY
STAY THE SAME

Usenix ‘14 - ROP is Still Dangerous: Breaking Modern Defenses

Usenix '14 - Size Does Matter: Why Using Gadget - Chain Length to Prevent Code-Reuse
Attacks is Hard

IEEE Symposium on Security & Privacy ‘14: Framing Signals — A Return to Portable Shellcode

Tools
Damn Vulnerable Linux
gcc, gdb
MalwarelLab

Showtime

Exploit kit inner workings

Overview of an exploit
Acrobat Reader, CVE-2010-0188

Demo of attack

Buffer overflow vulnerability

Buffer overflow: a variable can grow arbitrarily
big in memory

No control over its size
If the attacker can control the variable, he can
write into memory outside of the variable
boundaries
It is possible to hijack program execution by
redirecting it to a shellcode injected by the
attacker
Shellcode can execute actions such as
downloading and executing malware

Memory layout

High memory address

RET Return Address in stack frame
RET overfill
RET
. <
Instruction n g
® 9
Shellcode =
® o
: o a
Instruction 1 S o
D g
& R
NOP o o
2 7
o
NOP Sled NOP o
<
NOP
Variable's first byte First byte where the overflow star

Low memory address

