
APPLIED SECURITY PROJECT

Davide Martintoni

January 22, 2015

Abstract

This report explains my work on the exploitation of a known vulner-
ability in an historical version of Firefox. Here I show the result of my
analysis on the vulnerability and the creation of a malicious web page that
uses this issues in library included in some version of Firefox, in order to
inject shellcode into the client.

1 Introduction

For this research project I would have had to choose a known vulnerability of
an old version of Firefox and write a working exploit for it. I’ve scaned the web
in order to find a well documented vulnerability that seems to be exploitable.
After a quick research I’ve noticed that it’s really hard to find precise infor-
mation on most of them. However I decided to work on a vulnerability (CVE
2009-3373[1]) of the GIF management in the library ”libpr0n”.
This vulnerability was reported by iDefense to the security@mozilla.org. Credit
should go to regenrecht[2]. iDefense confirmed the existence of this vulnerabil-
ity using the Mozilla Firefox versions 3.0.13 and 3.5.2 on 32-bit Windows XP
SP3. Other versions, and potentially other applications using libpr0n, are also
suspected to be vulnerable.

2 Vulnerability CVE 2009-3373

This weakness is located in the GIF management system, on closer analysis in
the GIF color map parsing library that can lead to a remote exploitation of
a buffer overflow in the Mozilla Foundation’s libpr0n image processing library
allowing attackers to execute arbitrary code[2].

The libpr0n GIF parser was designed using a state machine which is repre-
sented as a series of switch/case statements. A particularly interesting state,
’gif image header’, is responsible for interpreting a single image/frame descrip-
tion record. One of the fields, ’depth’, specifies the number of bits per pixel in
the image. A single GIF file may contain many images, each one of them with

1



Figure 1: Vulnerable code of library ”libpr0n”

a different color map associated.

Consider the source code from ”mozilla\modules\libpr0n\decoders\gif2.cpp”[3]
in figure 1

The problem here is that it is possible to enter the ’gif image header’ state
more than once while still having ’mGIFStruct.images decoded’ equal to zero.
Normally ’images decoded’ is incremented after every whole image has been
decoded. However, by providing invalid LZW data, one can skip this step and
enter the ’gif image header’ state again.

On the second iteration, I have the first image already decoded but for this
bug I hit the ”else” part of the code in figure 1. Since the local color map was
already allocated in the previous iteration, the branch with ’PR MALLOC()’
will not be taken. As a result, the memory allocated for the color map remains
the same size regardless of the ’depth’ field of a second image. So after a few
other operation in the last line of the code in figure 1 the second image’s data
is copied into the buffer without respecting the buffer’s size. This results in an

2



exploitable heap overflow condition.

2.1 How to exploit CVE 2009-3373

This vulnerability allow me to overflow the heap right after the malformed GIF
that the browser load in the memory. Once I can overwrite the memory I should
use those bytes of memory to store a return address that point a memory location
in which I can store my shellcode. To load my shellcode in memory I can use a
Javascript based heap spray. All the detail of this process are presented in the
followings sections.

Exploitation of this vulnerability results in the execution of arbitrary code
with the privileges of the user running the vulnerable application. To exploit
this vulnerability, a targeted user must load a malicious Web page created by an
attacker that contains a malformed GIF that trigger the vulnerability and a few
line of javascript that store my shellcode in the heap at the desired address. An
attacker typically accomplishes the infection via social engineering or injecting
contents into compromised, trusted sites.

3 Environment Setup

Once gathered all the necessary information I’ve setup my working environment.
I’ve loaded a virtual machine with Winodows XP sp3, installed Firefox 3.5.2 and
I’ve also found some useful tools in order to deeply understand this vulnerability.

I’ve used ”OllyDbg[4]”, a debugger that allowed me to attach to the Firefox
process, check memory, registers, and disassmbled the memory. Furthermore I
could set conditional breakpoint on some calls (e.g I’ve used a breakpoint in the
”memcpy” instruction only when the ”EAX” register had a precise value). An-
other brilliant feature of this software is the opportunity of setting breakpoints
on memory location to access or write.

An additional help was ”VMMap[5]”, a useful software that allowed me
to check the memory of the process graphically, splitting it in heap, personal
data, stack and others. Thanks to this tool I’ve learned how and where Firefox
allocates data stored with javascript code.

4 Analysis

After the initial setup difficulty I’ve started to analyze the vulnerability by my-
self. First step I’ve written a C++ file that writes a ”malicious” GIF with two
images. The first one has associated a color map of 12 8-bit char of letter ”B”.
With this known character I can search inside the memory and dump it in order
to find where this header is stored. The second image contained a bigger (21
char) color map, but, without the last byte. Chopping that last byte is quite
important. Otherwise execution would go to the function ”ConvertColormap”,

3



Figure 2: Overwrite of memory locations that contains ”isSubFra”

Figure 3: Overwrite of memory locations that contains ”treeOwne”

where our overflown buffer full of RGBRGBRGB would turn into RGB + alpha
where alpha is set to 0xFF. Lead any important structure or function pointer
to 0xFFbbggrr would not be useful, as it would point outside the user space
memory. The second header, in the color map field, contains the address where
I want to redirect the programm flow. I have chosen the adress 0x0c0c0c0c for
heuristic reasons and so my header contains those characters to overflow impor-
tant things with my address. Javascript in a frash page will start to store string
near the 0x06000000 address and then increase the address until it ends to load
every string. Indeed 0x0c0c0c0c is certainly located after the start point of the
Javascript string location. Moreover 0x0c0c0c0c can be read from the computer
as an instruction and not only as an address but this will be explained in the
attack section.

Once prepared the GIF I’ve written a simple web page with those images
and I’ve attached my debugger to see what really causes my malicious GIF. I’ve
found out that the GIF management loads the header in a private heap, in the
middle of other information that this browser use to provide its service. Unfor-
tunately the heap management is not predictible and every time that I load my
GIF, the first header is stored in a different place, and my second header full of
”0c0c0c0c”, overflowing and overwriteing random information.

As we see in figure 2 and figure 3 my second GIF overflow after the header of
the first one (in figure 424242FF..) but this leads always to overwrite memory

4



cells that contains different information. This is caused by the heap management
of the browser that always store the GIF in a different place. So we can’t
predict what I’m going to overwrite with my header and this is a big threat to
my attack reliability. Indeed my analysis shows that sometimes those code that
I’ve overwrote isn’t used by the browser, so nothing happened. On the contrary,
when the browser hits my overflow this code arrives into the program execution
but always in a different way.

5 Heap Spray

Now that I have a way to redirect the execution of the program I need to inject
the shell code that I want to run in the client machine. So I have written a few
lines of JavaScript that allocate strings in the heap of my browser.

The heap management is not predictible so I can’t choose where my shellcode
are going to be stored. The only thing that I can do is to store a huge amount
of data in order to make it more likely, that at the desired address I have my
code. The first thing to do is to prepare the string: it’s almost impossible that
at my desired address I find the beginning of my shellcode. So the heap spray
technique suggests to append the malicious code after a huge amount of NOP
instructions[6][7].

So after a few attempts I discovered that Firefox uses the low memory ad-
dresses for its own memory and uses the bigger addreses to store data that
arrives from JavaScript code. As we see in figure 5 the low range of address is
really fragmented and so the probability of hitting wrong data is higher. Indeed
if we look in the highlighted range we can see that we have only private data
and so my predictible address should be there.

After a deep analysis with the VMMap tool and having read of a lot of
tutorials online, I’ve decided that my target should be 0x0c0c0c0c that every
time is above the limit where the data of the browser ends and where we can
find only our private data. Once I’ve taken this decision I noticed that is not so
simple to build an heap spray that always comprises my desired address. Often
between my memory chunks of NOP + shellcode I’ve empty space which is not
used by the browser.

Then I’ve understood that my browser doesn’t allocate the space for my
string in a precise way but it always store chunks of memory multiples of 512K
that can contains the desired string. So, for example, if my string’s length is
600K, my browser allocates a chunk of 1028K with the first 600K containing my
code and the remaining 400K empty but not usable by other strings. So when
I’ve tried to spray the heap there is always a range of address after every chunk
that I allocate, which are empty.

As soon as the moment I’ve noticed this problem, it was easy for me to
balance my NOP instruction in the blocks, in order to fill up almost exactly

5



Figure 4: Yellow blocks are my chunks of data sprayed with JS. The other
segments are other informations stored by the browser

6



Figure 5: We can see with VMMap that I’ve stored 307K of private data in
blocks of length 2.048K with everyone exactly 2.048K of commited data.

7



the size of the allocated chunk. Once I’ve prepared my string I decided with
an heuristic metrics the number of chunks to store. After many attempt I’ve
decided to store 58 blocks that, for my experiment results, is the number that
ensures me that I always manage to fill up a range of memory that exceed my
desired address, but keep the loading time of my page acceptably low.

Unfortunately, even with all this adjustments, the heap spray is a proba-
bilistic attack and so we have no security that my desired address is filled up
with my NOP instructions.

6 Attack

Now I’ve a GIF that overflows in the heap of firefox without any predictability
of what I’ve overwritten. With a lot of disassembly sessions I’ve discovered that
sometimes my value arrives in the execution flow but I’ve never seen that the
EIP register assumes directly the value of my overflown. Everytime that the
execution hits my code, this value arrives in one of the other registers, usually
EAX, ECX or ESI. Then this value can be stored in the stack or used as a
pointer to get the value that it contains.

For this reason I’ve sprayed my heap with ”0c0c0c0c” that can be a pointer
to my sprayed region or a kind of NOP instruction. If my programm use this
string as an instructions it becomes ”OR al,0xc”, that for my purpose is a NOP
because AL is an 8-bit register that is usually used to access to I\O port or to
perform arithmetical operations. So change this register value doesn’t alter the
program flow but is only a void operation that evaluate an OR between two
values. So with this value I have got an increased probability that this value
arrives in my EIP register and when it arrives those values are used as NOP
instructions to slide the program to my shellcode.

For example, in the screenshot in figure 6 the value of my overflow after a
push in the stack is loaded in the ECX register that, at that point, is supposed
to be the address of a memory cell. This value is the base and with an offset of
”0xc” is used to store the address of a function. So my code tries to look the
value in the cell 0x0c0c0c18 (0x0c0c0c0c + 0xc) where I have my NOP instruc-
tion. But my NOP instruction conicide with the address where I want to find
my spray. So the function called is stored at 0x0c0c0c0c where the execution
slides down the hill and gets to the shellcode that I’ve placed at the end of my
NOP instructions.

8



Figure 6: A call that leads to the execution of my injected shellcode

7 Reliability

At the end of my work I’ve found a lot of problems for the design of a working
attack that exploits this vulnerability. The main one is that I can’t know what
I’m going to overwrite with my GIF header. Most of the time the execution
doesn’t arrive in my overflown region and for this reason I’ve found a solution: I
placed in the header of my malicious webpage a metatag that reloaded my page
every second, so my GIF is loaded lots of times until something appened. The
problem is that this behavior is suspicious and I think that most of the users
will kill my page if they see a lot of reloads.

But even if my page triggers this exploit, I don’t have any security that the
execution leads to my code. Often there is only a crash of the browser or a loop,
because the code that I’ve overwritten doesn’t use my address as a pointer, but
for other purposes. Another reason that made me fail is that my heap spray
is not predictible as I said, so there is the possibility that I have an access fail
when I try to read the address 0x0c0c0c0c that may be not allocated.

As we can see in the table 7 I’ve made some tests and I’ve calculated that my
exploit have a reliability of approximately 20% on my windows XP sp3 environ-
ment. As we can see we need an avarage of ’8.7’ reloads of the page to trigger
the vulnerability and this make my execution really slow. Another important
that we can read in table 7 is that 30% of the fail are caused by access violation
of the memory, sign that my heap spray has failed to store my payload of NOP
and shell code in the address 0x0c0c0c0c. The others 60% of fails are Firefox’s
crash that are caused by various problem.

At the end this is not a vulnerability that can be exploited to be used for a
real working attack because this statistic is not enough to be useful. Moreover
for the test I used a Windows XP sp3 environment that with default settings

9



Table 1: Test on Windows XP sp3 of the exploit
RunID Success Nr of Reload Why it failed
#1 No 4 Access violation on reading 0x0c0c0c0c
#2 Yes 13 -
#3 No 2 My overwrite leads to a loop
#4 No 18 Access violation on reading 0x0c0c0c0c
#5 No 8 -
#6 No 11 Access violation on overwriting
#7 Yes 5 -
#8 No 9 My overwrite leads to a loop
#9 No 4 Access violation on reading 0x0c0c0c0c
#10 No 6 -
#11 No 14 Firefox freeze and crash
#12 No 16 Firefox freeze and crash
#13 Yes 7 -
#14 No 4 Access violation on reading 0x0c0c0c0c
#15 No 6 My overwrite leads to a loop
#16 No 2 Access violation on reading 0x0c0c0c0c
#17 No 8 My overwrite leads to a loop
#18 No 16 Firefox freeze and crash
#19 Yes 9 -
#20 No 12 Access violation on overwriting

has DEP (Data Execution Prevention) enabled only for software and services
essential for Windows. Once I’ve tested my exploit I tried to activate this
control on all the programs and after that the reliability of my program his
fall to 0%. With active DEP the heap in whitch I have stored my shellcode is
flagged as non-executable and so my exploit can’t work. Another interesting
case would be the test of my exploit in a system with ASLR (Address Space
Layout Randomization) but this feature is implemented only from Windows
Vista so in my Windows XP is not available and I can’t test with this feature
activated.

10



References

[1] NVD. Nvd report on vulnerability cve 2009-3373. http://nvd.nist.gov/

view/vuln/detail?vulnId=CVE-2009-3373, 2009. [Online; last read 06-
Dec-2014].

[2] Brandon Sterne. Bugzilla report on vulnerability cve 2009-3373. https:

//bugzilla.mozilla.org/show_bug.cgi?id=511689, 2009. [Online; last
read 06-Dec-2014].

[3] Mozilla. Mozilla 1.9.2 modules. http://hg.mozilla.org/releases/

mozilla-1.9.2/file/3bc177bd871f/modules/libpr0n/decoders/gif/

nsGIFDecoder2.cpp, 2001. [Online; last read 06-Dec-2014].

[4] OllyDbg. Ollydbg official website. http://www.ollydbg.de, 2000. [Online;
last read 06-Dec-2014].

[5] Mark Russinovich and Bryce Cogswell. Vmmap web page. http://technet.
microsoft.com/en-us/sysinternals/dd535533.aspx, 2014. [Online; last
read 06-Dec-2014].

[6] Corelan. Corelan exploit tutorial part 11: Heap
spray. https://www.corelan.be/index.php/2011/12/31/

exploit-writing-tutorial-part-11-heap-spraying-demystified/,
2011. [Online; last read 06-Dec-2014].

[7] Jon Erickson. Hacking: The Art of Exploitation, 2Nd Edition. No Starch
Press, San Francisco, CA, USA, second edition, 2008.

11

http://nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3373
http://nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3373
https://bugzilla.mozilla.org/show_bug.cgi?id=511689
https://bugzilla.mozilla.org/show_bug.cgi?id=511689
http://hg.mozilla.org/releases/mozilla-1.9.2/file/3bc177bd871f/modules/libpr0n/decoders/gif/nsGIFDecoder2.cpp
http://hg.mozilla.org/releases/mozilla-1.9.2/file/3bc177bd871f/modules/libpr0n/decoders/gif/nsGIFDecoder2.cpp
http://hg.mozilla.org/releases/mozilla-1.9.2/file/3bc177bd871f/modules/libpr0n/decoders/gif/nsGIFDecoder2.cpp
http://www.ollydbg.de
http://technet.microsoft.com/en-us/sysinternals/dd535533.aspx
http://technet.microsoft.com/en-us/sysinternals/dd535533.aspx
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

	Introduction
	Vulnerability CVE 2009-3373
	How to exploit CVE 2009-3373

	Environment Setup
	Analysis
	Heap Spray
	Attack
	Reliability
	Bibliografia

