
Group 3
Giulio Dallatorre
Tomas Bortoli
Alex Mariotto

12th NETWORK SECURITY LAB
BRO NIDS

We are going to present...
An introduction to Bro NIDS

● main features
● tools
● Language

Two examples attacks

● SQLI
● DNSI

Two example of detections
● SQLI Detect
● DNSI Detect

Overview - What is Bro?
Bro is a passive open-source network
traffic analyzer written in C++.
It is primarily a security monitor
that inspects all traffic on a link
in depth for signs of suspicious
activity.

It is fully-customisable; the owner
can perform specific observations of
events and notify (log) interesting
events.
It can also be used to evaluate the
performances of the network.

Interesting Features
By default bro is passive, but
it can also be configured to be
active (by writing scripts).

It does support signature based
detection but also anomaly based
detection.

Bro itself is a framework to
work with, to design defensive
solutions. Basically it provides
a high level interface to most
of the traffic generated by your
network through its scripting
language, bro (slide 6).

Bro logs
By default bro generates a
lot of high-level logs about
data going through the
network.

Some examples >

conn.log (log TCP/UDP/ICMP connections)

dhcp.log (log DHCP leases)

dns.log (log requests and responses)

ftp.log (ftp activity)

irc.log (log IRC commands and responses)

files.log (log file transmission under
different protocols)

reporter.log (Internal
error/warning/info messages)

packet_filter.log (List packet filters
that were applied)

ssl.log

Tool To manage logs
bro-cut helps human reading of bro logs,

EG: cat dns.log | bro-cut id.orig_h id.resp_h query

gives as output all the rows, by keeping only the columns named as id.orig_h, id.
resp_h, query. So, in simple words: origin_address, response_address, dns_query

head/tail -n outputs the first/last n lines,

uniq filter repeated lines,

sort very useful for sorting/grouping and filtering (a lot of options)

these tools can be combined for retrieve more specific log overview.

Bro scripting
Bro provides a scripting language
designed and developed by the bro
developers. It's aim is the processing of
the network traffic; bro scripts are given
in input to bro when started and are then
interpreted by the internal interpreter.

• easy and fast to
develop

• syntax highlighting
supported on Sublime
Text (by plug-in)

• need support from
online documentation
to discover needed
event and parameters
for a certain packet

Technical Features
Bro scripting is very
similar to c++.

• event driven,
to catch the
packets of
interest

• supports many
default types

• allows special
properties to
be set on
variables

It’s easy to run by simply
typing

bro -i $interface myscript.bro

This little example show a bro script that logs the
sender & receiver IPs and the requested URI of all
the http requests in transit on the net

Local variableName = 0;

Global variable2 = “string”;

function lookup(hash: string)

event bro_init() &priority=10
event http_request(c: connection, ...)

introduction.bro

VARIABLES!

FUNCTIONS!

EVENTS!

A PRACTICAL
EXAMPLE

Automatically called
functions

Questions?
Ready?

Go with the SQL
Injection!

SQL Injection Overview
SQL Injection is a technique
of injection that manipulates
the input query issued to the
sql server, fooling the PHP
code.

Usually for this kind of
injections, some defined
patterns are used: especially
some characters…...

Network setup overview

Attacker Server
Http GET request containing SQL injection

Http response

Attacker IP 192.168.53.3

We need to setup the attack
For this purpose we need to run the following VMs

● Server (net address 192.168.53.3)
● Attacker

By connecting to the server with http we can see a web interface in
which it will be simple to do some SQL Injections. (192.168.53.3
/injection.php)

The interesting part is detecting them using Bro language so we’ll
write a simple detection script.

Do you remember? *Bro* is event-oriented
Detect an http request event and some
of its parameters:

1. connection info (see next slide)
2. method (EG: “GET”, “POST”, ..)
3. original URI
4. unescaped URI
5. version

These will give us the informations
that we need to detect potentially
malicious HTTP GET requests.

For the other infos, check bro
resources

event http_request (

c: connection,

method: string,

original_URI: string,

unescaped_URI: string,

version: string

) { ….?sniff function body spoof¿…}

https://www.bro.org/sphinx/script-
reference/proto-analyzers.html

The connection info parameter
Out connection parameter, comes
with many interesting features, for
example:

● cidorig_h
● cidorig_p

And obviously:

● cidresp_h
● cidresp_p

Connection object notation [like
‘.’ in Java or ‘::’ in C++]

We have a variable that lists the
IP addresses:

● Sender IP address
● Sender port
● Receiver IP
● Receiver port

More on: https://www.bro.
org/sphinx/scripts/base/bif/bro.
bif.bro.html

Other interesting methods & constructs
to_lower() -> transforms the Uppercase words to lowercase
ones, where to_upper() is the inverse.

fmt(“Hello %s!”, “world”) -> format strings, extremely
similar to the printf.

Regarding the print, for, if and variables the syntax is the
same as C++.

Fill the methods in the
mySqlDetect.bro script

In the server VM…..plz

1 - Start bro with the
detect.bro script. Type:

“ sudo su “

“ bro –Ci eth0 mySqlDetect.
bro “

4 - Then check the BRO
console output.

2 - Open the browser and
load the insecure webpage
by connecting to the
webserver (using its IP).

“(server_address)
/injection.php”

3 - Execute some queries
on the example webpage,
try to execute some SQL
injection.

Server Attacker
Workflow Overview

Observations

Have you noticed the false positives given by the
application?

With the command “ subl sqli/detect.bro “ you can edit the
script (our). Sublime text will have syntax highlight for
BRO scripts.

How would you make the script better?

An example of our solution
#array of patterns the sqli
global patterns = set("+or+","+and+","'");

#event
event http_request (c: connection, method: string, original_URI: string,
unescaped_URI: string, version: string){

for(p in patterns){
if(p in to_lower(unescaped_URI)){

print fmt("SQLInjection detected from %s",cidorig_h);
break;

}
}
print fmt("%s -> %s",cidorig_h,unescaped_URI);
print "";

}

Ready?
Go with the
Poisoning!

DNS Poisoning Overview
DNS Poisoning is another interesting technique that acts as
MITM attack.

The attacker makes the victim think that the required
server is on a different IP address.

This method will “poison” periodically the DNS cache table
of the victim using DNS requests and so permits to
associate a different IP address to a certain nameserver.

And of course this different IP should be the attacker’s
one.

Network setup overview - half duplex

Victim

Attacker
DNS Server

Man In the middle

ARP poisoning

IP forwarding to
follow the packet

Server response

DNS Request to
the server

192.168.53.3

We need to setup the attack

For this attack we need again the Server and Attacker
VMs plus the Victim one.

Using the Victim open a terminal window and then
execute the command “nslookup brolab.com”. Make sure
that you get an answer pointing to the Server VM.

Let’s play with data structures:

dns_cache: table[string] of addr &create_expire=5 sec;

The previous stmt declares a table that contains addresses and uses
string as indexes. Furthermore the expiration time of any entry is set
to 5sec. It’s a hint…

event dns_A_reply(c: connection, msg: dns_msg, ans: dns_answer, a:
addr){

This will be called in case of a DNS A type reply.

Other interesting features! DNS_MSG

Fill the methods in the
mySpoofDetect.bro script

In the VICTIM VM…..plz

1 - Open a new terminal
window, execute the bro
script dns_spoof_detect.bro

“Sudo su “

“bro –i eth0 mySpoofDetect.bro ”

4 - execute again the
“nslookup brolab.com”
command.

2 - On a terminal grant
yourself “super user”
privileges by running
“sudo su”.

3 - Then execute the
script “./inject.sh”

Victim Attacker

An example of our solution
#the table of address
global dns_cache: table[string] of addr &create_expire=5 sec;
#the event
event dns_A_reply(c: connection, msg: dns_msg, ans: dns_answer, a: addr) {

local s:string;
s=(fmt("%d",msg$id));
if(!(s in dns_cache)) {

dns_cache[s]=a;
}
else{

if(dns_cache[s]!=a){
print "DNS Injection detected";
#print fmt("%s,%s",dns_cache[fmt("%s",c$id)],a);

}
}
print fmt("A record:%s %s",a,msg);
print "";

}

Observations
Has the address been spoofed?

What does the Victim’s BRO console says?

Terminating the attack script will the cache return working
normally? Why?

Is Iceweasel browser is affected by the attack? Why?

So...
We have seen that Bro provides a rich
framework to monitor and detect
unusual behaviours inside a network.

If you feel good with programming the
only limit is your fantasy.

Find more on: https://www.bro.org

Thank you

