UNIVERSITY OF TRENTO

Network Security Course

SQL INJECTION

Professor: Students:
Luca ALLODI Linda MICHELOTTI
Elena DONINI

Michele BENOLLI
Davide CUNIAL

Academic Year 2015-2016

Contents

1 Introduction 2
1.1 Laboratory Structure L. 3
1.2 Laboratory Setup 4

2 Theory about SQL 5
2.1 SQL Language 5

2.1.1 SELECT Query 6
2.1.2 WHERE Condition. 7
2.1.3 LIKE Operator 8
2.1.4 UNION Statement 9
2.1.5 NULL Value 9

3 SQL Injection 11
3.1 String SQL Injection oo Lo 12
3.2 Numeric SQL Injection 13
3.3 SQL Injection with UNION 13
3.4 Blind SQL Injection, 14
3.5 Second Order SQL Injection 15

3.5.1 Prepared Statements 15

4 Optional Exercises 17
4.1 BypassLogino oL 17
4.2 Addslashes Exercise L. 17
4.3 Smart Login 18
4.4 Second Order SQL Injection 19

5 Conclusion 21

Chapter 1

Introduction

The aim of our project is to propose an interactive and funny laboratory, where
students can learn about SQL and SQL injection and at the same time enjoy
those hours. For this reason, the structure of the lab is based on a game with
many and short exercises, each one characterized with a different score that
depends on the degree of difficulty.

The lab experience is divided in three parts:

1. Introduction to SQL
2. Introduction to SQL injection
3. Facultative exercises on SQL injection

The goal of the first part is to permit everyone (the ones that have already
studied SQL and the ones that will see SQL for the first time) to understand
the topic and how a query works. In the introduction it is explained the re-
lationship between a web page and the database and how they communicate,
what is SQL, how a query works and the basic principle of SQL injection. After
this short introduction, there is some theory about SQL: is explained how to
create a SELECT query and are illustrated statements with WHERE, LIKE,
UNION and NULL.

The second part is composed by some mandatory exercises about SQL injection,
that permit to finish the lab and access the ranking. These exercises are sorted
by complexity and cover the basic types of SQL injection, from the string injec-
tion type to the second order one. The first three exercises - string, numeric and
union injection - exploit the absence of validation in the parameters inserted by
the user. Following exercises are blind and second order injection, where pre-
pared statements are used and it is exploited another type of vulnerability.
The last part consists of elective exercises about SQL injection, that permit to
improve the score. These are more complex than the previous ones, because
they combine the features exploited in the mandatory exercises, but all have a
hint that helps to solve them. There are four exercises: the first one is based on
string injection, the second one analyses the function addslashes(), very used
on the defense side because permits to escape single quotes; the following level
shows how to overcome the function addslashes() with the use of multiple-byte
characters. The last exercise is based on a second order injection joined with
an UNION statement.

1.1 Laboratory Structure

An entire website was built for the practical part of the laboratory, with the
basic theory and exercises. Before starting the students have to sign up and
log in; this permits us to manage the session giving them a variable that is
associated to the numbers of exercises completed and to the score achieved.
Naturally this part of the website is secure against SQL injection.

The following figure 1.1 shows how the log in page looks like.

SQL Injection Lab Login

Login SQL Injection Lab

If you've never been here, you can sign up!
Figure 1.1: Login page

After the log in, it appears an index with the list of the exercises with all
the features associated: theory classification, score of each level, specification of
the type of attack, solved and not solved exercises. The following figure shows
how the web page is composed: in particular, according to figure 1.2:

1. This hat stands for theory exercises, that have no score because are used
in order to practice with SQL and so the word 'knowledge’ substitutes the
value of the exercise.

2. Enumerated list of SQL injection exercises;the theory exercise, instead, is
define by the label "Theory’.

3. Row stands for the exercises not yet completed.

4. Tic stands for the exercises completed. These are characterized by a score
gained according to the difficulty of the injection and also to the hint
usage.

SQL Injection Lab Ranking Logout

Sl ﬂjE‘CtiOﬂ Laboratory

Level Level name Your reward Completed

Figure 1.2: Index page of the website

1.2 Laboratory Setup

In the Malware Laboratory, there isn’t internet connection and so it’s not pos-
sible to access the website built. In order to overcome to this issue, we took
advantage of the LAN network already present which is composed by the lap-
tops of the lab. In other words, one of those PCs was chosen and used at the
server side, instead others laptops were used by the students at the client side.
In order to implement the configuration explained above, it’s employed a Linux
virtual machine with bridge configuration and a static IP address. Linux virtual
machine contains all the website files and also MySQL structure which permits
us to manage both the students and the exercises completed. Bridge configura-
tion allows the users at the client side to access the website inside the virtual
machine using the correct IP address. Forcing a static IP configuration in the
Linux system, the IP address of the VM can be set freely and so is possible to
interact with our website without issues.

We chose a Linux machine because permits to build a LAMP stack model which
is the acronym of the four components: Linux operating system, the Apache
HTTP Server, the MySQL relational database management system and the
PHP programming language. Software phpMyAdmin is used in order to inter-
act with the system.

Chapter 2

Theory about SQL

Every dynamic website has to interact with a database in order to extract the
information needed for the interaction with the users. An example is the login
that is required to identify the user and subsequently access to a personal section
of the website. Databases are used in order to store and retrieve data. A web
server can interact with a relational database through SQL statements. An
example is the login process, required to identify the user. In order to store
and retrieve data, web servers use databases with whom interact through SQL
statements as shown in figure 2.1.

Everyday we accessto a
website that requires a login.

=

Web servers use databases
to store and retrieve data

Figure 2.1: Example interaction user-server-database

2.1 SQL Language

SQL stands for Structured Query Language and it is a standard language for ac-
cessing and manipulating databases. The main actions that can be executed are
data insertion, selection, update and delete, schema creation and modification,
and data access control. In other words, SQL statements permit to interact
with a database and manipulate, insert, extract data of the user. In the case
of a login, the user sends to the server its credentials, username and password,
and the server - in order to control them - has to interact with the database
where this information is stored. This is done through a SELECT query which

asks to the database if there is someone saved with that particular combination

of name and password.

SELECT * FROM USERS
WHERE USER ="JERRY’ AND
PASSWORD ="12345";

Figure 2.2: Example of a query

The code associated with this request is:

SELECT

FROM table_name
WHERE username="Jerry > AND password=’12345"

2.1.1 SELECT Query

Data and information are stored in particular structures called tables, that are
identified by a name (e.g. “User” in figure 2.3) and are contained in databases.

userid email first_name last_name career

Figure 2.3: Example of table User

In order to extract the data from a table is used the statement SELECT
where the column names that follow the select keyword determine which columns

will be returned in the results.
SELECT column_name
FROM table_name

It’s possible select an arbitrary number of columns, or also all the columns
of the table using the star character (*) as shown in the following line of code.

SELECT x FROM table_name

EXERCISE Try to select from the user table the columns of the names and
emails.

first_name

Giulia

Matteo

Mario

2.1.2

The WHERE clause permits to specify which data values or rows will be re-
turned basing on the criteria described after the keyword where.

SELECT column_name
FROM table_name
WHERE column_name operator value;

e —"

=

SELECT first_name, email FROM user;

giulia.verdi@studenti.unitn.com
matteo.bianchi@studenti.unitn.it

mario.rossi@studenti.unitn.it

Figure 2.4: Exercise SELECT query

WHERE Condition

There are different conditional selections used in where clauses, some exam-
ples are the following:

v ANV

IA

— Equal;

— Greater than;

— Lesser than;

— Greater than or equal to;

— Lesser than or equal to;

<> — Not equal to.

EXERCISE Try to select from the user table the name of the Computer

[
E

SELECT * FROM user WHERE

career='"Computer Science’;

Science student.

userid email first_name ast_name career

giulia.verdi@studenti.unitn.com Giulia Verdi Computer Science

Figure 2.5: Exercise with WHERE condition

2.1.3 LIKE Operator

Another operator is LIKE, which can be used in a WHERE clause to search for
a specific pattern in a column. Like is a very powerful operator that allows you
to select only rows that that contain strings which are ”like” what you specify.

SELECT column_name

FROM table_name
WHERE column_name LIKE pattern;

EXERCISE Try to select from the user table the names ending with letter
o’. The sign “%” is a substitute for zero or more characters, instead “” is a

A%

SELECT * FROM user WHERE first_name

)

substitute for a single character.

1 |1
LIKE '%0";
userid email fHSLHEJ'H[’ ast_name career
2 matteo.bianchi@studenti.unitn.it Matteo Bianchi TLC
Mario Ross

mario.rossi@studenti.unitn.it

w

Figure 2.6: Exercise with LIKE operator

2.1.4 UNION Statement

The UNION operator is used to combine the result-set of two or more SELECT
statements. Notice that each SELECT statement within the UNION must have
the same number of columns and the columns must have the same type.

SELECT column_name_1 FROM table_name_1

UNION
SELECT column_name_2 FROM table_name_2;

EXERCISE Using the union operator, select records of userid 1 and userid

2.
SELECT * FROM user WHERE userid=1 UNION
SELECT * FROM user WHERE userid=2;

userid email first_name last_name career

Figure 2.7: Exercise with UNION statement

2.1.5 NULL Value

If a column in a table is optional, we can insert a new record or update an
existing record without adding a value to this column. This means that the
field will be saved with a NULL value. NULL values are treated differently
from other values. NULL is used as a placeholder for unknown or inapplicable
values. It is possible to test for NULL values with IS NULL.

SELECT column_name
FROM table_name
WHERE column_name IS NULL;

EXERCISE Try to select only the records with NULL values in the career
column.

G

o

SELECT * FROM user WHERE career IS NULL;

userid email first_narme ast_name career

3 mario.rossi@studenti.unitn.it Mario Rossi

Figure 2.8: Example with NULL value.

10

Chapter 3

SQL Injection

SQL Injection is a technique by which malicious users can inject SQL commands
into an SQL statement via web page input. Injected SQL commands can alter
SQL statements and compromise the security of a web application and the
information stored in databases. In fact, the goal of this attack is to allow the
client attacker to access the database and the information stored with read,
write or delete privileges. There are many types of attacks, usually poorly
filtered or not correctly escaped queries are exploited, derived from a particular
insertion of malicious text into some input fields. One common vulnerability
exploits poorly filtered strings which are not filtered for escape characters. A
user can input a variable that can be passed on as an SQL statement, resulting
in a database input manipulation by the end user.

Another type of vulnerability exploited is incorrect type handling, which
occurs when an input is not checked for type constraints; for example when is
used a numeric ID field that is numeric, but there is no filtering in place to check
that the user input is numeric. With php, the function is_numeric() should
always be used when the field type is explicitly supposed to be a number, in
order to filter the input.There are many other types of injection, explained in
the following pages. Due to the fact that there are many points of vulnerability
between a webpage and a database, SQL injection is one of the most common
hacking techniques nowadays. In the OWASP (Open Web Application Security
Project) 72013 Top 10 List”, database injection is at the first place because of
their frequent occurrences and the easiness of the exploits.

Threat Agents Attack Vectors Security ~Weak- Technical Im- Business Impact
ness pacts
Application Spe- Exploitability Detectability Impact Severe Application
cific Easy Avg, Prevalence Business Specific
Common
Consider anyone Attacker sends Injection flaws Injection can re- Consider the
who can send un- simple text-based occur when an sult in data loss business value of
trusted data to the attacks that ex- application sends or corruption, lack the affected data
system, including ploit the syntax untrusted data of accountability, and the platform
external users, of the targeted in- to an interpreter. or denial of ac- running the in-
internal users, and terpreter. Almost Injection flaws are cess. Injection can terpreter. All
administrators. any source of data easy to discover sometimes lead data could be
can be an injection when examin- to complete host stolen, modified,
vector, including ing code, but takeover. or deleted. Could
internal sources. frequently hard your reputation be
to discover via harmed?
testing. Scanners

and fuzzers can
help attackers find
injection flaws.

11

3.1 String SQL Injection

SQL injections based on poorly filtered strings are caused by user input that is
not filtered to escape characters, this means that user can input a variable that
can be passed on as an SQL statement. Let us consider the example, where a
web server interacts with a server with the query shown in the figure 3.1.

[

_
$pass = $ GET['pass']:

$password = mysqgl query ("SELECT
password FROM users WHERE
password = '"". S$pass SR)

Figure 3.1: Example without validation

Password inserted by the user is taken and put in the query. The webpage
interacts with the database in order to check if the password is included in it.
The parameter added by the user is not filtered, so the text of an injection may
look something like: > OR ’1’ = ’1. Because of the OR statement in the
SQL query, the check for password = $var is insignificant, because 1 is equal
to 1. The query will return TRUE, resulting in a positive login.

/\

SELECT * FROM user WHERE
password="0OR"1'="1

Figure 3.2: Example of string SQL injection

EXERCISE This is the text of the proposed exercise:

Let’s begin from us. We are an egocentric group of developers, so we designed
a table with our names and our emails. If you put my name, Michele (the most
egocentric of the group), in the input field, my email is returned. You have to
find a way to print all the rows at once, or at least more than one.

12

3.2 Numeric SQL Injection

Numeric SQL injection occurs when an input is not checked for type constraints.
An example of this would be an ID field that is numeric, but there is no filter-
ing in place to check that the user input is only numeric. If it is possible the
insertion of a string in place of a number, a SQL injection attack may be done.
Let us consider the query in figure 3.3, where it’s employed the function isnumeric()
to filter the data in input. In fact this function checks if the data inserted by
the user is a number: returns TRUE if it’s a number, FALSE otherwise. This
kind of filtering will assure that the ID field is always numeric.

[

Q (is numeric($ GET['id?])) 2 $id =
P $7GET['id'] : $id = 1:;

$news = mysqgl query("SELECT * FROM "news’
WHERE “id" = $id ORDER BY "id" DESC LIMIT
053")%

Figure 3.3: Example of code with numeric validation

EXERCISE This is the text of the proposed exercise:

The table user contains some names and emails. Each person in the table has
a unique incremental numeric id. The following input field allows you to insert
the id value in order to get the email. You have to find a way to print all the
rows at once, or at least more than one.

3.3 SQL Injection with UNION

The UNION operator is used to combine the result-set of two or more SELECT
statements. As a constraint, each SELECT statement within the UNION must
have the same number of columns and the data type of the columns has to be the
same or similar. Union can be very useful in the contest of an injection attack.
We can take for example a harmful query which extract some information like
account_number, first_name, last_name, email from a table called user,
entering a numeric user_id. The query code is the following:

SELECT account_number, first_name , last_name, email
FROM user
WHERE userid= $user_id;

Using a UNION statement, it is possible to extract data from two different
tables. It does not matter whether the entered ID is valid or not, because the
second portion of the query (the injected part) is the only one really needed.
An important theoretical concept to remember is that the joined results of the
two queries must have the same number of columns.

13

EXERCISE This is the text of the proposed exercise.

Here you can enter a userid and some information will be displayed in the
table. Try to extract other information about cc_number and pin from the
table creditcard using UNION to concatenate another query.

SOLUTION The vulnerability exploited in this exercises is the missing val-
idation of the input field. It is possible to insert a string in it, containing a
SELECT query with a UNION statement just before. In this example, the ta-
ble user has four columns, and the table creditcard only two; in order to fill the
missing column names, it is possible to use the placeholder NULL. Injecting an
appropriate string in the query, it is possible to manipulate the output in order
to extract the desired values.

SELECT account_number, first_name , last_-name, email
FROM User WHERE userid= 999

UNION

SELECT cc_number, pin, NULL, NULL

FROM creditcard;

3.4 Blind SQL Injection

Most good production environments do not allow to see the result of a SQL
injection in the form of output error messages or extracted database fields. In
order to overcome this limitation an attack called blind SQL injection may be
done. This type of SQL Injection attack asks to the database true or false
questions and determines the answer based on the applications response. In the
case of partially blind injections, only slight changes can be seen in the resulting
page: for instance, an unsuccessful injection may redirect the attacker to the
main page and a successful attack returns a blank page. Totally blind injections
do not produce differences in output and it is harder to determine whether an
injection is actually taking place.

EXERCISE This is the text of the proposed exercise: Here you can check
whether an account_number associated to a user is valid or nor (eg. 1515 is valid,
1234 is not). The objective of this exercise is to discover the pin associated with
the cc_number 1111222233334444. Pins and credit card numbers are stored in
another table called pins. For this query we suggest that you use parenthesis!
When you are done just enter the pin in the input box to complete.

SOLUTION In order to solve this exercise, it is possible to use the error
message given in output by the server query. In particular, the form permits to
enter an account_number associated with a userID and checks its validity. The
only messages shown are: ’'valid userID’ and ’invalid userID’. The field is not
validated with any function, so it is possible to insert malicious code. In partic-
ular it is possible to concatenate two query with AND OR statements in order
to ask to the database if the pin associated to cc_number 1111222233334444 is
the one indicated. Remember how work OR and AND statement:

e 1515 AND 1=1 returns true;

14

e 1515 AND 1=2 returns false.

3.5 Second Order SQL Injection

3.5.1 Prepared Statements

The most operational kind of defense from SQL injection are parametric queries,
in other words to use prepared statements that permit to avoid escaping all the
possible malicious code. In fact, input string are evaluated as characters and
not as code, so not ran. This is an example of using prepared statements:

<?php
//query declaration
$_query = ”"SELECT_x*_FROM._table WHERE_.name=":name’."” ;

//template preparation
$_stmt = $_name_database—>prepare($_query);

// Variable definition for placeholder substitution
$stmt—>bindValue(’:name’, $_username);

// instruction esecution
$_result = $_stmt—>execute ();
>

The aim of the query proposed is to extract all the data associated to the
user with name equal to a value inserted by the user. In the query definition
we use the placeholder :name in order to identify the place of the user input
parameter. Placeholder is substituted later by using blindValue() function that
permits to manage the inserted string as character and so to avoid SQL injec-
tion. But also this defense which seems quite secure can be exploited through
a second order injection attack.

Second Order attack occurs when user submitted values contain malicious code
are stored in the database, instead of getting executed immediately. This means
that in a second moment, when a query interact with the injected parame-
ters, will execute the code carried. This occurs because data coming from the
database are trusted as they are without validation with escaping or filtering
function.

Second order SQL injection is very unlikely in real world and this was only used
to demonstrate the exploitation of this vulnerability.

EXERCISE The aim of this exercise is to change the password of an user
already registered: this can be done having privileges as administrator but you
don’t have them! A possible solution, it’s to use second order injection: a SQL
injection payload is stored in the database and then later used by some other
functionality. The name of the user already registered is 'Elena’ and the goal is
to change her password to 'newpass’.

SOLUTION Create a new user with an appropriate first name which permits
you to inject a malicious First Name in the database, for example Elena’; #

15

. The name is injected correctly in the database because the query ran using
prepared statement and so apostrophe and hash marker are escaped. This is

the query ran:
INSERT INTO database (username, first_name , password)
VALUES (’attacker’, ’Elena’;# ’,.’Bella’);

The second part of the attack is done changing the password of attacker with
'newpass’: click on the button ‘Change Password’ and insert your attacker data.
The query ran is the following, where the part in blue is commented: even if
the password of Elena is unknown, it’s possible to change it exploiting the code

previously injected.

/\ﬁ

UPDATE datastore.datastore SET passwrd = 'newpass
WHERE fname='"Elena’; # AND passwrd='oldpass’;

Figure 3.4: Second order SQL injection

16

Chapter 4

Optional Exercises

The last part, instead, consists of elective exercises about SQL injection that
permit to improve own score. These are more complex than the previous ones,
because they combine the features exploited in the mandatory exercises, but all
of them have a hint that helps to achieve. There are four exercises: the first
one is based on string injection; the second one analyses function addslashes()
very used in defense because permits to escape single quote; the following one
shows how to overcome function addslashes() with multiple-byte characters.
The last one, instead, is based on a second order injection joined with an UNION
statement.

4.1 Bypass Login

This exercise is based on string SQL injection where there is no validation on
the input parameters. The main difference respect to previous exercises is due
to the fact that in the form there are two fields one regard the email and the
other the password. The values put in these two field have HTML constraints:
in fact they must be type email and password. This means that the email field
there have to be a string with (at) and (dot) characters.

EXERCISE This is the text of the exercises:
The following log in form has some vulnerabilities. Try to get access with your
nonexistent combination of username and password!

SOLUTION In order to solve this exercise, a fake email has to put in the
email feild, for example sql@injection.com. Instead the string injection has
to be entered in the password field.

4.2 Addslashes Exercise

Function addslashes() permits to validate the string in input avoiding malicious
code: in fact, this function escape the power of the apostrophe and also dou-
ble quotes by putting a backslash before them. Let us consider the following
example where the aim is to extract the data regarding a user identify by the
parameter first_name inserted by the user.

17

<?php

$_input = 7.’ _OR_.TRUE” ;

$_input //Case 1: not safe in a database query
addslashes ($_input) //Case 2: safe in a database query
$query="SELECT_x _FROM_table -WHERE_name=""". $_input.” ’”;
>

e Case 1: no validation of the inserted values with addlashes(). By putting
the value of the variable $input in the query, all the mail in the table are
selected.

SELECT x FROM table WHERE name=".’" OR TRUE;

e Case 2: validation of the values with addlashes() function. Using an
escaping function, only the mail corresponding to / user is selected, this
means that no mail is selected.

SELECT * FROM table WHERE name='\’ OR TRUE;

Other type of defenses used are the following.

e sprintf() can be used with conversion specifications to ensure that the
dynamic argument is treated the way it’s supposed to be treated. For
example, if a call for the users’ ID number were in the string, %d would
be used to ensure the argument is treated as an integer, and presented as
a (signed) decimal number.

e htmlentities() in conjunction with the optional second parameter, al-
lows the use of ENT_QUOTES, which will convert both double and single
quotes. This will work in the same sense as addslashes() in regards to
quotation marks, however, instead of prepending a backslash, it will use
the HTML entity of the quotation mark.

EXERCISE Let’s take a look about security: we have to sanitize our input
fields. In PHP we can use a string replacement method or — for example - the
function string addslashes (string $str). It returns a string with backslashes
before characters that need to be escaped: single and double quote, backslash
and the NULL byte. In this level you have to use this wonderful function, in
order to prevent the SQL injection attack.

4.3 Smart Login

The vulnerability found regard the GBK mapping code of the character and
permits to avoid the validation done by the function addslashes(), so to inject
malicious code in the query. Usually a letter is encoded in 8 bit, this means
that we can represent 256 unique values, but in some alphabet (as GBK) are
employed multi-byte character encoding to express more than 256 letters. If
it’s not applied a multibyte-aware function (as in our case), it’s not possible
to determine correctly the beginning and the ending of a string. The following

18

exercise makes visible that addslashes() is not enough to sanitize an input string;
in fact, with a smart use of multi-byte characters, we can construct a single quote
exploiting the way in which addslashes() works.

EXERCISE This login form simply requires a password to enter in the magic
world of the administrators. But is a smart login form the input is sanitized
with the function addslashes(), which returns a string with backslashes before
characters that need to be escaped. These characters are single quote ’, double
quote ”, backslash and the NULL byte. Try to insert a query with prohibited
characters! You can exploit poorly coded websites that make use of addslashes()
if their database uses the GBK char-set, common in China. Wonderful, this is
the case! The way in which we can circumvent addslashes()’s protection is using
multi-byte characters.

SOLUTION The query ran in the php file is the following;:

<?php

$username = addslashes($username);
$query = ”SELECT_x _FROM_users WHERE_ username._=.’$username’” ;
$result = mysqli_query ($query);
>

In order to exploit the vulnerability, a username like this has to be inserted:
chr(0x87) ” .> OR TRUE; — . The function addslashes() tries to escape
the single quote before the OR operator by inserting a backslash (\ or 0x5C),
thus, successfully constructing our “grumble” character (0x875C). There is no
backslash escaping our single quote now.

Instead of chr(0x87) we would insert any GBK character whose rightmost byte
is 0x87. Why? Because the byte sequence would be something like 0x?? + 0x87
of our special GBK character plus 0x5C of addslashes()’s backslash, ending up
with 0x?7875C which means a successful consumption of that backslash. But
why does that special GBK character has to end in 0x877 It does not always
have to be like this, just look for any character that ends in 0x5C, look at its
first byte, and the character you are looking for is any one that ends in that
byte.

Does this happen in UTF-87 Nope; this encoding does not have characters that
end in 0x5C.

4.4 Second Order SQL Injection

The aim of this exercise is to extract meaningful data from the database using
a second order injection, in particular the version of the system used (MySQL
and UBUNTU). That can be done through a second order injection: as explain
above, some data, like the value of first name, are extracted from the database
without validation. If something is injected in the first name field, it’s possible
to extract some meaningful information.

EXERCISE The aim of this exercise is to extract some from data from the

database: this can be done having privileges as administrator but you don’t have
them! A possible solution, it’s to use second order injection: a SQL injection

19

payload is stored in the database and then later used by some other functionality.
Extract the version of the system using this function SELECT VERSION() in
the injection.

SOLUTION In this exercise there are two form, the first one permits to cre-
ate a user and the second one to see the characteristics associated to an user.
So it’s possible to guess that the first form uses an INSERT/UPDATE query,
instead the second uses a SELECT query. This means that it’s possible to insert
in the first form an UNION statement in order to extract the the version of the
system.

Create a new user with an appropriate first name which permits you to in-
ject a malicious First Name in the database. Remember also in this case, that
the number of the columns returned by the two queries has to be the same:
the first query returns three value (username, first name and password); in-
stead SELECT VERSION() function only one. For example it can be injected
aa’ UNION SELECT VERSION(),2,’r.

The name is injected correctly in the database because the query ran using pre-
pared statement and so apostrophe and hash marker are escaped. This is the
query ran:

INSERT INTO database (username, first_name , password)
VALUES (’attacker’,’aa’ UNION SELECT VERSION(),2,’r’ ,
"Bella’);

The second part of the attack consists to run the injected code using the
select form: when someone tries to select the data associated to the user inserted
previously, the query ran is the following.

SELECT x FROM database
WHERE first_-name="aa’ UNION SELECT VERSION(),2,'r’;

The output of this query are the data associated to the username ’aa’ and the
version of the system.

20

Chapter 5

Conclusion

The aim of our lab was to transmit something about SQL theory and injection
to the students, for this reason the lab is composed by many short exercises. In
order to monitor the results of the students and to make the lab funny, at each
exercises completed is associate a score depending on the usage of the hint.

In the final ranking, many of the students have reach the maximum score,
instead the others achieve something less because of the hints’ usage. In con-
clusion, all the students learned something about programming in SQL and the
basis of SQL injection.

During the lab, we saw that all the students try to understand and com-
plete all the exercises by their-selves. In particular, the lab was structured in
this way: the exercises regarding SQL theory was done together, one of us was
explaining using slides, instead the others were between the student answering
to questions.

Instead for the mandatory exercises of SQL injection we chose to adopt an-
other technique: the aim of the exercises and the vulnerability exploited were
explained briefly. Then the students completed the exercise using hints and
asking to us. When all of them had finished mandatory exercises, the game was
on and they tried to solve optional ones by their own using also in this case hint
and asking to us.

Analyzing received questions, it’s possible to say that the students were very
careful and interested in what were explained. As it could expect, there were
many well working groups and some that had same difficulty. But we tried
to explain and to repeat them the concept many time, this permitted them to
complete also the mandatory exercises.

During the lab all the basics types of SQL injection exercises were seen, but
not all them are common in real word of SQL injection. In fact in real website,
the entered values are always validate and sanitized. This means that only blind
and second order injection are frequently used: pay attention that in order to
use second order injection you have to know very well the query ran.

21

HI, THIS 15 OH, DEAR - DID HE
YOUR SON SCHOOL. | BREAK SOMETHING?
ggrrl?a HAVING Song N A LAY -

\%m

2

DID YOU REALLY
NAME YOUR SON
Robert'); DROP

TABLE Students; -~ 7

{

~ OH.YES. LITNE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECERDS.
T HOPE YOURE HAPPY.

AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS,

Figure 5.1: A joke, to conclude with some fun!

22

References

[1] Slides of Network Security course, prof. Allodi.

[2] LAMP tutorial: https://www.digitalocean.com/community/tutorials/
how-to-install-linux-apache-mysql-php-lamp-stack-on-ubuntu-
14-04

[3] PhpMyAdmin tutorial: https://www.digitalocean.com/community/
tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-14-
04

[4] SQL theory: http://www.w3schools.com/sql/
[5] PHP theory: http://www.w3schools.com/php/default.asp

[6] Top 10 attacks ranking in 2013: https://www.owasp.org/index.php/Top_
10_2013-A1-Injection

[7] SQL Injection: http://www.dis.uniromal.it/~damore/was/slides/
sqlinjectionENG.pdf

[8] SQL Injection: https://www.owasp.org/index.php/SQL_Injection

[9] SQL Injection Exercises: http://www.unixwiz.net/techtips/sql-
injection.html

[10] SQL Injection Exercises: http://www.cis.syr.edu/~wedu/seed/Labs/
Attacks_SQL_Injection/SQL_Injection.pdf

[11] Numeric SQL injeciton http://php.net/manual/en/function.is-
numeric.php

[12] Prepared Statements: http://dev.mysql.com/doc/refman/5.7/en/sql-
syntax-prepared-statements.html

[13] Second order injection: https://haiderm.com/second-order-sql-
injection-explained-example/

[14] Blind SQL injection: https://www.owasp.org/index.php/Blind_SQL_
Injection

[15] Addslashes function: http://php.net/manual/en/function.
addslashes.php

23

[16] Smart Login: https://epadillas.wordpress.com/2012/12/29/
multibyte-sql-injection-mysql-and-php-case-study/

[17] Second order injection: http://www.esecforte.com/second-order-sql-
injection/

24

