

NETWORK SECURITY LAB

Stateful Firewalls

Lorenzo Angeli - 183847
Liviu Bogdan - 183121
Bertalan Borsos - 181419

Table of contents

Introduction 2

VMs and setup 3

General setup 3

Firewall 4

Alice 5

Bob 5

Tools and scripts 7

Wireshark 7

IPtables 8

Scripts 9

HTTP Server 11

Methodology 12

Exercises 13

Stateless and its limitations 14

Extensions of iptables 18

Recap and Reflection 21

Introduction
In this lab, we aim at exploring stateful firewalls by crafting a scenario that illustrates the
boundaries of stateless firewalls, and then proceeds to show how stateful extensions, or
extensions of iptables in general, fix the shortcomings of the first model.

Firewalls are appliances that operate between the network and transport layer of the
TCP/IP stack that filter packets based on header information.

Stateless firewalls, ​or first generation firewalls,​ ​inspect a packet’s TCP and IP header and
apply filters based on information such as source or destination IPs, ports and flags, and
do so by looking at each packet on its own, without keeping track of what may have
happened in the past. These firewalls are comparatively easier to configure, more
lightweight, and generally perform faster.

Stateful firewalls​, also known as second generation firewalls, on the other hand, keep
some sort of information about the history of the connection, and can apply “smarter”
filtering based, for example, on the amount of traffic generated, or by checking whether a
specific flag combination is acceptable in the current state of the connection.

Stateful firewalls are more sophisticated, less immediate to configure, but far more
powerful and flexible. This, however, often comes at the cost of a higher performance
overhead.

A further improvement of the firewall model is the so-called ​application layer firewall​, or
third generation firewall, that has the ability to deeply inspect traffic, examining packet
content and understanding specific application protocols, but it is out of scope of this lab.

VMs and setup

General setup

A key point in the lab we set up is that each student can control the communication
of the machines via iptables. Considering that iptables does not see packets sent with
scapy from the same computer, a two machine setup did not seem reasonable. This is
why we chose to use the following architecture.

We created two distinct subnets bridged by the firewall machine. That central

machine has two different network interfaces, one lying on Bob’s subnet, the other
connected to Alice’s. We set up the firewall machine to forward IPv4 packets between the
two subnets, as seen in the diagram above.

The idea behind this infrastructure is to have the firewall as a visible proxy that not only
forwards the packets between our two machines but also serves as the point of
interaction for the students. This way everyone can experience a semi-realistic scenario in
which they have to handle the situation to the best possible outcome.

Firewall
The firewall machine is configured to route packets between its two network

interfaces ​enp0s3 ​and ​enp0s8​. This is the only route Bob and Alice can use to
communicate with each other. For this reason the firewall is able to supervise this
channel.

The tools available on this middle machine are Wireshark, to easily display the packets
along with details of the communication, and iptables, used to create the rules.

The two interfaces are configured with static IPs:

● enp0s3 ​with ​192.168.0.1
● enp0s8 ​with ​10.0.0.1

Alice
Alice acts as the attacking machine and at the same time the every day user. This

is who the software embedded on the server is trying to contact and it has another
important role.
The machine is used by the students to contact the web server and check that it is
available. The firewall rules should never block the appropriate use of the service.

This machine has to have the default gateway set to the IP address of the Firewall’s
correct interface (​enp0s8​).
That way any machine not directly reachable by Alice is routed to the Firewall.

Finally, the only tool actually needed on Alice is Firefox. The web browser is used to check
that the HTTP Server on the other network is still reachable.

Bob
This machine emulates a web server providing actual content to a high number of

possible visitors.
In our scenario it is supposedly “​infected​” by a Trojan leaking sensitive information to our
outside attacker. The goal of the exercises is to create rules on the firewall machine so
that the web server is not disrupted but the information leakage is prevented.

To show this we have four scripts on this machine’s Desktop. Each emulating a stage of
this supposed attack. The scripts are written in python using the scapy module and will be
described in detail later.

For the server we chose to use the ​SimpleHTTPServer​ python module as it is a more
primitive application and does not employ encoding so that the data is easy to see on the
firewall when inspected with wireshark and pattern matching can be performed easily.

The server is required to have python installed along with scapy and a static IP for obvious
reasons.

Once again the default gateway is set to route packets directed at unreachable hosts to
the Firewall on the latter’s ​enp0s3 ​network interface.

Setting up the networks in VirtualBox
As an additional step, you should take care to configure the networks correctly on
VirtualBox. To do so, you should have all network adapters on all VMs configured to
“Internal Network” (Select a machine → Settings → Network), with Alice’s machine and its
corresponding Firewall interface attached to the internal network with a name such as
“Alice”, and Bob’s machine and its Firewall interface attached to the internal network with
a name such as “Bob”.

Tools and scripts

Wireshark
Wireshark is an application we use to monitor network traffic. In our lab it serves as

the tool to visualize the details of the situation and highlight the problem at hand.
We primarily use it on the firewall machine since that is what we want to operate and filter
on but it could just as well be run on any of them. However if iptables rules are set up
traffic might not reach the other machines as packets could be dropped during the routing.

Wireshark can display all header information such as protocols, IPs, ports and
flags. It even allows the user to inspect the content of a packet byte by byte. In other
words this is going to be your best friend in solving the exercises.

IPtables
This firewall software comes preinstalled on most linux distributions. It is

commonly used to monitor, route, log and filter traffic.
In the lab we are going to be using the filter table. For this purpose there are three
predefined chains:

● INPUT
○ This chain is used to handle packets that are destined to this

machine.
● OUTPUT

○ This chain is used to handle packets that were created on this
machine and are about to be sent over the wire.

● FORWARD
○ The most important chain for us. It handles packets that this

computer is routing. All exercises will be using this chain as the
traffic we want to filter is between Alice and Bob.

The basic syntax of an iptables command is as follows.

iptables ­[command] [CHAINNAME] ­[options] [action]

Essentially, we first specify the set of criteria iptables will use to match packets and
afterwards we tell it how to handle these packets. A more detailed guide on the syntax can
be found in the cheat sheet document we submitted.

Scripts

The script on the server machine mimics the behavior of a Trojan Horse that is
trying to “call home” to a remote server and send valuable information back.
We have four versions of the script that serve as different attacks. These will have to be
prevented using different iptables methods.

● mal1.py​ - crafts and sends a simple packet usign the scapy IP and TCP modules.
The packet is sent from Bob’s ip address and destined to a randomized IP in the
attacker’s subnet. The ports however are static. An initial “SYN” flag is set and the
datagram contains a message along with a timestamp extracted at runtime from
the server machine.

Upon sending all the scripts start a timer with varying lengths. This is because we send the
packets with the ​sr1()​ function which awaits a reply.

If the reply does not arrive in the allotted time, the script throws a ​SIGALRM ​signal that is
caught by our signal_handler.
When this happens the script is terminated and a message is displayed, telling us that the
packet was indeed blocked at the firewall.

● mal2.py​ - this time the script randomizes ports. We leave the IP static (to that of

Alice) for convenience in order to observe the reply in Wireshark. Since that
machine is not listening for any incoming connections it will automatically respond
with a reset.

● mal3.py​ - moving on to the “third evolution” of our attack, the script now sends
“SYN-ACK” flags instead of “SYN” to better disguise the packets sent as legitimate
server traffic

● mal4.py​ - the final version of our script simply changes the payload message in
order to demonstrate the weakness of pattern matching

HTTP Server
In order to prevent trivial solutions for blocking the trojan such as dropping all

packets we introduced an extra condition. An HTTP server on Bob’s machine that should
always be kept alive and we should always be able to access from Alice without
disruptions.
For this task the ​SimpleHTTPServer​ module for python is used.

But why use this instead of something like Apache?

First of all it is very handy that this module displays an access log in the terminal it is
running which makes it easy to see the requests coming in.

Secondly, one of the exercises we wanted students to perform was to do a pattern
matching on packet contents and drop traffic based on the result of that. Most
sophisticated servers employ some kind of scheme for compressing or encoding the
traffic which messes with the simple pattern matching algorithms we were intending to
use. Our python module is primitive enough so that it does not run into a problem like this.

Methodology
Moving on to the actual lab content, we feel we should make a methodological note.

This lab follows a “learning by doing” approach, and requires participants not to blindly
follow instructions, but to look for a solution themselves.

Therefore, the exercises might seem a bit simpler than other labs if they’re taken simply as
“type these commands in a sequence and results will magically happen”. ​If you want to try
to work the solution of your own, we suggest that you follow the slides, and only look at
the task description. Try to figure the solution on your own, then come back to the next
section of this document for a deeper explanation.​ To aid this process, syntax for the
iptables command has been collated in one single “cheat sheet”, so that focus can be put
on the meaning of the rules rather than how they should be written.

We also created a simple story, a scenario to guide students through the development of
the lab. We hope that this provides some meaningful context, helps understanding the
reasoning and, why not, gives you the chance to smile a bit.

In our scenario, Bob is a researcher at a particle accelerator. He decided to put up a
webserver on his workstation (why, Bob, oh, why?) to share with the world his unbound
love for his cat, and then decided to go out on vacation. Before going on vacation,
however, he also happened to get infected by a piece of malware, a trojan horse called
mal.py that will try to leak his information to Alice (note how the name trivially rhymes with
“Malice”... If that wasn’t subtle enough).

It is your duty as the particle accelerator’s sysadmin to save Bob from himself, and stop
the trojan horse from leaking Bob’s information without intervening on Bob’s machine,
since you don’t have access.

Truth to be told, for demonstration purposes, we’ll ask you to run mal.py from Bob’s
machine, but that should be the only operation you do from that VM.

While you’ll run through the lab, mal.py will “evolve” under certain conditions, much like a
more realistic piece of malware would try to evade defensive measures. To simulate this,
you will run different versions of the ​mal.py​ script.

Exercises

The lab follows an elevating scheme in which the students first hear the theory of
firewalls, the majority of which was already visited during the lectures. Then we present
the lab architecture and everyone tries the tools.

First thing to do is check that the forwarding works by pinging Alice from Bob or the other
way around and boots up Wireshark on the firewall machine to get a hang of the process.

 If the ICMP packets show up in the capture then everything is fine and we proceed to the
actual tasks.

Each task requires the participants to put up some iptables rules. The complexity of these
increases during the lab. It is also important to validate that the server is working with the
rules used to block the information leak. In the following section we describe the actual
tasks. The scripts each stage uses are described above in the tools section.

Each task can have a number of correct solutions so at the end of their description we just
show one possibility. Many others might do the job just as well.

Stateless and its limitations

IP Blocking

The first very simple exercise to get started consists in lauching ​mal1.py​ in a terminal on
Bob’s server as seen below.

We then observe, as suggested by the script, the packet it sends on to the Firewall using
Wireshark.

After looking at the packet header we see that the destination IP is in Alice’s subnet. The
first instinctive idea is to block the IP the information goes to.

Example: ​iptables ­A FORWARD ­d 10.0.0.x ­j DROP

If someone does that however the next time mal1.py runs it targets another IP in the
subnet.

Blocking a large number of IPs stops the leakage but is not feasible for our scenario, as
this subnet represents the whole world and blocking everything would make the server
unreachable.

Example: ​iptables ­A FORWARD ­d 10.0.0.0/255.255.255.0 ­j DROP

For convenience reasons in further exercises we use a static IP (Alice machine).

Port Blocking

Since we cannot block all IPs, after a bit more careful inspection we can see that
the packets use a static source and destination port.

Iptables can filter based on this as well, so creating a rule to block those specific ports
might work out.

Eg:​ ​iptables ­A FORWARD ­p tcp ­­sport 1337 ­­dport 7331 ­j DROP

Notice the second “response” packet is never issued by the Firewall machine. This means
that the info leak is stopped while having the server available. (checked using Firefox on
Alice)

Job well done.
The problem at hand is actually solved.

 This point is where the script kicks into higher gear and we move on to mal2.py.

Blocking based on flags

We now run ​mal2.py​ from Bob’s Server and again check Wireshark.

This version randomizes the ports making it unfeasible to use port blocking successfully.

Someone might try to block all ports except 80 as an attempt to allow only HTTP traffic.
One way to do this is by setting our policy to drop all traffic while allowing any packet
referencing port 80.

Example: ​iptables ­P FORWARD DROP

 iptables ­A FORWARD ­p tcp ­­sport 80 ­­dport 80 ­j ACCEPT

This however would not work.
Since the client browser uses a randomized port number to connect to the server.

However these randomized ports are now blocked essentially rendering the server
unreachable. This can be witnessed both from Wireshark or through the browser which
would not load the page.

If we cannot block ports what can we do?

Digging a bit deeper we can inspect TCP flags in Wireshark.

The malicious packet has SYN set.
A server is very unlikely to initiate a connection, they need not send SYNs out.

So we can simply block all outgoing SYN flags statelessly.

Example solution:​ ​iptables ­A FORWARD ­p tcp ­s 192.168.0.2 ­­tcp­flags
ALL SYN ­j DROP

This prevents the leak while leaving the server available for access.

Note: ​A common mistake would be to block all SYN flags, regardless of source.
This makes the firewall drop all SYN packets including inbound ones; which is not an
acceptable solution as it blocks the service completely.

Experiencing this issue is also useful to better understand the mechanism of the TCP
handshake and the working syntax of iptables. While there are plenty of different correct
solutions to do this a suggestion is to specify the source ip.

Extensions of iptables

Pattern matching

Moving forward, we use ​mal3.py​ that is a little bit more clever than its predecessors.

Instead of a simple SYN which is used by the connection initiator in the TCP handshake, it
now uses a SYN-ACK.
This is the type of packet the server sends out every time it is contacted by a client so
blocking this flag configuration completely kills the service once again.

Iptables supports a module called ​string​ that enables the user to specify a string or a
pattern the firewall should look for. This goes into the packet content rather than looking
at the header only.

Giving a closer look to the packets sent out by our scripts we could observe that they all
contained the word “secret”.

The pattern matcher supports two algorithms: Boyer-Moore and the Knuth-Morris-Pratt
automat. Either of them works fine for our purposes.

Example solution:​ ​iptables ­A FORWARD ­m string ­­string “secret”
­­algo bm ­j DROP

If we set this rule up the information leak is blocked but the webpage does not load.

Note: ​Make sure to clear the Firefox’s cache beforehand because if the page was
previously loaded, the content may not be retransmitted if the page was not modified,
creating the illusion of a working webserver, when in reality new requests will never be
answered properly.

The reason for this is that in the HTML document we have the word secret in the code.

Since the pattern matching looks at every byte it finds and drops the packet when it is
being sent to the client.

Stateful Connection Tracking

The difference between mal3.py and mal4.py is only that in mal4.py we changed
the word secret for $ecret to showcase how weak pattern matching is.

The packets produced by ​mal4.py​ will no longer be blocked by our previous rule.

There is no major technical improvement from the previous one though. Here the job is to
set up an iptables rule that does not allows the malicious packet to be sent while
circumventing the server constraint, as always.

The weakness this final script has is that it sends an unsolicited SYN-ACK, one that does
not belong to any existing connection and does not initiate one either. Once again there
are many ways to drop invalid packets.

We expect students to try their hand with different options.

Example solution: ​iptables ­A FORWARD ­m state ­­state INVALID ­j DROP

Connection/Packet Limiting

A stateful firewall can also be used to mitigate ​Denial of Service​ attacks on our server.

The idea is to use a module that uses simple “Fuzzy” Logic, hence the name, to match
packets.
The following example matches packets based on an interval. Below the threshold, for
less than 100 incoming packets per second (pps) the rule does nothing.

Between 100 and 1000 pps the mean acceptance rate drops from 100% (when we are at
100 pps) to 1% (when we are at 1000 pps). Finally, above the upper limit the acceptance
rate stays at 1%.

iptables ­A FORWARD ­m fuzzy ­­lower­limit 100 ­­upper­limit 1000 ­j
REJECT

Note: ​The main difference between the DROP and ​REJECT ​actions is that with the latter
the packets are not simply dropped but some sort of feedback is also sent back. By
default it is a ​icmp-port-unreachable​.

This module does not completely solve the ​DDOS​ problem as 1% of an attacker with a high
bandwidth is still accepted. Meaning that if the attack is orders of magnitude bigger the
server can still be flooded.

Note: ​Your version of iptables might not have the ​fuzzy​ module installed. If this is the case,
you will need to install the appropriate patch to be able to use this module by following the
instructions on the ​official documentation​.

Another thing iptables can do statefully is limit number of connections active at a time.

iptables ­A INPUT ­p tcp ­m state ­­state NEW ­m recent ­­update
­­seconds 60 ­­hitcount 50 ­j DROP
iptables ­A INPUT ­p tcp ­m state ­­state NEW ­m recent ­­ set ­j
ACCEPT

This pair of rules essentially drops any NEW connections coming in in a 60 second interval
if there are 50 connections already established.
The second rule is used to keep track of the connections.

http://www.netfilter.org/documentation/HOWTO/netfilter-extensions-HOWTO-2.html

Recap and Reflection

As a recap and a bit of reflection, here’s what we guided you through:

Stateless firewalls​ can be a good first measure to filter traffic, and can help with filtering by
IP, TCP ports, flags, and more, but if the attacker gets a bit smarter a stateless firewall
can’t tell apart a packet with a legitimate IP/port/flag combination from an illegitimate
one.

Of these three ways to filter that we have seen, these are their limitations:

Filtering IPs might sound like a good idea, except that this can be easily circumvented if
the IPs are spoofed, or if blocking an IP would actually block too many potentially
legitimate clients.

Filtering by port works better for this purpose, but it should be remembered that, for many
client-server protocols, the client often ​randomizes​ its port, and that malicious traffic might
still piggyback on a port that is needed to be open for normal operation.

Filtering by flags is also possible… With caution. TCP relies on flags to keep track of the
status of the connection, and if some flags are blocked, it might be impossible to even
establish a connection!

iptables can operate as a stateless firewall, and can do all of these operations, but it also
has extensions that allow it to inspect packets more in depth, such as the ​string​ module, or
transition to ​stateful​ operation altogether, such as the ​state​ module, or the ​fuzzy​ module.

Filtering by packet content allows to blacklist certain kinds of data from being transferred,
but this might cause side-effects that might deny the correct transmission of legitimate
data (for example, if you block the word “secret” but then you have “secret” written in one
of your webpages, the webpage would be blocked) or simply stem too many subcases to
be manageable.

Stateful firewalls​ on the other hand provide more control over the traffic, allowing for
example to filter out unsolicited SYN-ACK packets, without denying the server’s own
service by interrupting the normal flow of the TCP three-way handshake.

This is the case we have illustrated with the use of the ​state​ module, where we could
blacklist ​INVALID ​connections, thus discarding SYN-ACKS that were not corresponding to
a SYN.

And finally, in the last example, we have showed you how you can combine different
modules, for example, to mitigate a DDOS attack.

Hopefully, this lab has given you a chance to explore iptables and some of its extension
for finer control over network traffic.

More extensions (and a brief explanation of their use) can be found on the
netfilter/iptables documentation website at
http://ipset.netfilter.org/iptables-extensions.man.html

We couldn’t possibly cover all the extensions available, some for time constraints, some
for scenario constraints, but the syntax and semantics of these modules should be
familiar after running through the exercises.

http://ipset.netfilter.org/iptables-extensions.man.html

