
University of Trento

Department of Information Engineering and Computer Science

Course of Network Security

DNS Cache Poisoning Lab

Report

Group 15:

Matteo Fioranzato
Matteo Mattivi
Andrea Simonelli
Michela Testolina

Teaching professor:

Dr. Luca Allodi

Academic Year 2015-2016

Contents

Introduction to Lab 2

1 Lab environment 4
1.1 Introduction to Netkit . 4
1.2 Lab setup . 5

2 DNS Cache Poisoning Attack 12
2.1 Scenario without poisoning . 12
2.2 Scenario with poisoning . 13
2.3 First step: Try the network out 14
2.4 Second step: Network discovery 17
2.5 Third step: scenario without poisoning in practice 19
2.6 Fourth step: Cache cleaning 21
2.7 Fifth step: DNS poisoning . 22
2.8 About Scapy function . 23

3 Results veri�cation 25
3.1 First step: Network discovery 25
3.2 Second step: Try the attack 27
3.3 Third step: Open the fake webpage 27
3.4 Fourth step: Cache content 28

A How to install Netkit 35

B How to start the VM of the lab 37

Bibliography 39

Introduction to Lab

The objective of this lab is to understand how DNS Cache Poisoning
works.
The laboratory is divided in the following step:

1. Introduction to the scenario

2. Understand how to create the attack

3. Poison the cache of the local DNS

4. Verify the results

To understand this activity initially is important know what is DNS. The
term DNS stands for "Domain Name System"; the DNS is a hierarchical
decentralized naming system for computers, services, or any resource con-
nected to the Internet or a private network. The main goal of DNS is to
translate a human-readable domain name (for instance facebook.com) into a
numerical IP address that is used to route communications between nodes.
Normally if the server doesn't know a requested translation it will ask an-
other server, and the process continues recursively. To improve e�ciency,
reduce DNS tra�c across the Internet, and increase performance in end-user
applications, a server will typically remember (cache) these translations for
a certain amount of time, so that, if it receives another request for the same
translation, it can reply without having to ask the other server again.
By providing a worldwide, distributed directory service, the Domain Name
System is an essential component of the functionality of the Internet.
As one example, if a client wants to know the address for "www.facebook.com",
it might send, to a recursive caching name server, a DNS request stating "I
would like the IPv4 address for 'www.facebook.com'." The recursive name
server will then query authoritative name servers until it gets an answer to
that query. On a subsequent query for "www.facebook.com", this process
can be greatly accelerated:

• if "www.facebook.com" is cached (and the time-to-live has not expired),
it can return the answer directly

• otherwise, if the nameservers for "facebook.com" are cached (and the
time-to-live has not expired), it can query the "facebook.com" servers
again

2

• otherwise, if the nameservers for ".com" are cached (and the time-to-
live has not expired), it can query the ".com" servers (and be referred
to the "facebook.com" servers again)

• otherwise, it must go to the root servers again.

When a DNS server has received a false translation and caches it for perfor-
mance optimization, it is considered poisoned, and it supplies the false data
to clients. If a DNS server is poisoned, it may return an incorrect IP address,
diverting tra�c to another computer (often an attacker's).

The following example, show the various step to reach a speci�c website.

Figure 1: How do we visit a website

1. Client asks to its local DNS to look in its cache for the information that
he wants, e.g. an IP of a website. If it is present, it must be stored as
a Resource Record "RR" which is the stardard DNS data element to
save and exchange informations.

2. If it doesn't have any clue, local DNS will ask to the root DNS.

3. If root DNS doesn't have any clue either, it will redirect us to the
authoritative DNS server that will answer to the local DNS.

4. The local DNS server stores the information in its cache and then it
tells to the client what it has discovered

5. The client contacts the website at the IP just given by the local DNS

3

1 Lab environment

In order to perform a DNS cache poisoning attack, we will use the man-
in-the middle technique. But what is it?

Figure 2: A typical man-in-the-middle attack

In this technique an attacker is in the middle of a connection between two
devices and sni�s the packets that are exchanged. Then it can partially or
totally modify those packets to its will.

1.1 Introduction to Netkit

In this lab, we will use the software Netkit (http://wiki.netkit.org/); it
is an environment for setting up and performing networking simulations at
low cost and with little e�ort developed by the University of Rome.
It allows to create several virtual network devices such as routers, switches,
computers, that can be easily interconnected in order to form a network
on a single PC. Networking equipments are virtual but feature many of the
characteristics of the real ones, including the con�guration interface.
Emulating a network with Netkit is a matter of:

• Creating a folder that de�nes the lab

• Writing a simple �le describing the link-level topology of the network
to be emulated

• Writing some simple con�guration �les that are identical to those used
by real world networking tools

Netkit then takes care of starting the emulated network devices and of inter-
connecting them as required. Netkit exploits open source software (mostly
licensed under GPL) and is heavily based on the User Mode Linux (UML)

4

variant of the Linux kernel.
Instead of using di�erent virtual machines for every component of the net-
work, we use only one virtual machine with inside di�erent terminal windows
(that acts like virtual machines) corresponding to the di�erent components
of which the network is made.

1.2 Lab setup

Our lab in Netkit is composed by several �les and folders, where the main
folder that contains every �les is called cachePoisoningLab.

Figure 3: The network of the Lab

Each folder inside the lab de�nes a device of the network and the lab.conf
�le de�nes the connection between devices.

5

Inside the lab.conf �le we de�ne the LANs and the connections between all
interfaces.

Figure 4: Inside the �le lab.conf

Figure 5: Our network

Finally, the device.startup �les de�nes the type of device and its param-
eters. For example, inside the �le client.startup we will �nd a very basic
network con�guration.

• De�nition of the interfaces:

6

ifcon�g eth0 192.168.0.111 netmask 255.255.255.128 up

• De�nition of the routes:

route add default gw 192.168.0.1 dev eth0

Figure 6: Network con�guration of the client

For example inside the �le dns-root.startup we will �nd a very basic network
con�guration:

• De�nition of the interfaces:

ifcon�g eth0 10.0.0.4 netmask 255.255.255.0 up

• De�nition of the routes and DNS initialization:

route add -net 192.168.0.0/25 gw 10.0.0.1 dev eth0
route add -net 192.168.0.128/25 gw 10.0.0.2 dev

eth0/etc/init.d/bind start

7

Figure 7: Network con�guration of the dns-root

Inside the �le dns-local.startup we �nd the following parameters:

• db.local: the dns-local database parameters and static hosts (client)

• db.root: who is the DNS root?

• named.conf: de�nes the names of the zones as well as the hierarchy

8

The lab network setup is the following one:

Figure 8: The network of the Lab

As you can see in the �gure above there are several devices that composed
our network:

1. client: is the one that wants to go to a certain website and will be
addressed to the fake one

2. dns-local: is the local DNS server for the client. It has a cache for all
the most visited sites (which is supposed to be empty at the beginning
of the lab) and it knows the location of the root DNS.

3. dns-root: is the root DNS of the hierarchy, which knows the address
of all the top level domain DNS

4. dns-com: is the .com top level domain, which has the addresses of all
the sites with his domain

5. facebook: is the web server where is stored the web page that the
client wants to reach. Its name is facebook.com

9

6. attacker: is the one that poison the local DNS by putting on it a fake
IP address which will lead to his web page, located in its attserver

7. attserver: is the server where the attacker redirects the client

Figure 9: The LANs in the network

The network is characterized by three di�erent LANs and so there are two
routers that connect them.

• r1: connects respectively LAN A with LAN C

• r2: connects respectively LAN A with LAN B

• LAN A: with IP 192.168.0.0/25, holds only the client.

• LAN B: with IP 192.168.0.128/25, holds only the web server for the
site facebook.com

• LAN C: with IP 10.0.0.0/24, holds the three servers, the attacker and
its server

10

So in total, there are nine virtual machines which have a terminal opened.
When the lab is started it looks like this:

Figure 10: The VMs to use during the Lab

11

2 DNS Cache Poisoning Attack

It is important to understand what happens in a normal scenario with-
out cache poisoning and in a scenario with cache poisoning. The �rst two
subsection describe these di�erent situation.
The next subsections describe how to implement an attack.

2.1 Scenario without poisoning

Figure 11: The scenario without poisoning

A client decides to go on the website facebook.com:

1. Client asks to his local DNS the IP address of the server where the site
is located

2. Initially the cache of the local DNS is empty, so it will ask to the root

3. The root says that he doesn't know where the site is, so it says to the
local to ask to the .com top level domain DNS

4. The local asks to the top level domain where the server of facebook.com
is located

12

5. Top level domain replies with the real IP address of the server

6. The local will update his cache with IP address of facebook.com

7. DNS local replies to the client the IP address of facebook.com

8. Finally the client is able to reach facebook.com

2.2 Scenario with poisoning

Figure 12: The scenario with poisoning

A client decides to go on the website facebook.com:

1. Client asks to his local DNS the IP address of the server where the site
is located

2. Initially the cache of the local DNS is empty, so it will ask to the root

3. The root says that he doesn't know where the site is, so it says to the
local to ask to the .com top level domain DNS

13

4. The local asks to the top level domain where the server of facebook.com
is located

5. The attacker is located between the local and the passes in the network.
When it hears a packet passing between them, it sends to the local the
fake packet, quicker that the .com DNS.com DNS, it is listening what

6. The local will update his cache with the fake IP address and will reply
it to the client

7. DNS local replies to the client the fake IP address

8. Finally the client will reach the fake server

2.3 First step: Try the network out

Before starting, clean the cache of local DNS.

a. On the dns-local terminal and type:

rndc �ush

b. Repeat it also for dns-root and dns-com (all three green terminals)

Figure 13: Cache cleaning

Now the network is ready to go. We will try out some basic requests to �nd
out if the con�guration is working properly:

a. On the client terminal try to ping the server facebook.com:

ping facebook.com

In order to see what's happening, let the server listen to the tra�c.

14

b. On facebook terminal type:

tcpdump

You should now see something like this:

Figure 14: Ping the server facebook.com

c. To stop the process press Ctrl+C

Now we will go a step further, we will make an HTTP request to face-
book.com.

a. In order to see that the tra�c is really �owing, make dns-root and
facebook listen for http requests/responces:

tcpdump -n port 80

15

b. Proceed with the request. On client terminal type:

links facebook.com

Note: "links" is the browser of netkit which will perform an http request
and visualize the content of the page

16

Figure 15: http request to facebook.com

2.4 Second step: Network discovery

The second step is to discover the structure of the network using the
command dig. The command dig is a tool for querying DNS nameservers for
information about host addresses, mail exchanges, nameservers and related
information. This tool can be used from any Operating System based on
Unix. The most typical use of dig is to simply query a single host.
In order to �nd the IP of local DNS and the hostname of the authoritative
DNS of facebook.com from the client side follow the steps below:

a. On the client terminal type:

dig facebook.com

b. The output will display:

1. The IP of facebook.com (192.168.0.222)

2. The hostname of its DNS server (dnscom.com)

3. The IP address of dnscom.com (10.0.0.5)

4. The IP of our local DNS (10.0.0.3)

17

Figure 16: Network discovery from the client side

Now, to �nd the IP of local DNS and the hostname of the authoritative DNS
of facebook.com from the attacker side follow the steps below:

a. On the attacker terminal type:

dig facebook.com

b. The output will display:

1. The IP of facebook.com (192.168.0.222)

2. The hostname of its DNS server (dnscom.com)

3. The IP address of dnscom.com (10.0.0.5)

4. The IP of our local DNS (10.0.0.3)

18

Figure 17: Network discovery from the attacker side

2.5 Third step: scenario without poisoning in practice

• Cache cleaning: Which are the DNS request/responses exchanged during
the http request for facebook.com? Due to the fact that they already asked
for facebook.com before, the RR is already in the DNS servers cache.
Therefore we have to clean it:

a. Clean the cache of all the three DNS servers:

rndc �ush

b. Repeat it for dns-root, dns-local and dns-com

19

Figure 18: Cache cleaning on servers

• See the tra�c: In order to see the tra�c, make dns-root listen for DNS
requests/responses:

a. On dns-root terminal type:

tcpdump -n port 53

b. To generate tra�c, on client terminal type:

wget facebook.com

Figure 19: See the tra�c on DNS-root

1. The dnslocal (10.0.0.3) asked the dns-root for facebook.com

20

2. The dns-root (10.0.0.4) redirected the request to dns-com

3. The dns-com (10.0.0.5) server responded with 192.168.0.222

Now dns-local has a RR of type �A� in its cache saying that �facebook.com�
is at 192.168.0.222.

2.6 Fourth step: Cache cleaning

Before starting the attack, we have to clean the cache of our local DNS.
Because during the discover process of the network with the dig command,
the correct address has been saved into the cache of the local DNS so the
attack would not work.

a. On the dns-local terminal type:

rndc �ush

b. Repeat it also for dns-root and dns-com (all three green terminals)

Figure 20: Cache cleaning on servers

21

2.7 Fifth step: DNS poisoning

If everything in the network is correct, we can starts with the attack.
Carefully follow those steps:

• Delay the dns-com machine: In a real scenario, there are many delays dur-
ing a communication, due to distances and congestions. On this network
this situation is simulated by delaying the dns-com machine (just one for
simplicity).

a. On the dns-com terminal type:

orig-tc qdisc add dev eth0 root netem delay 1000ms

This command apply a delay of 1000ms to the selected machine. Now the
machine has been delayed.

This attack is performed by using scapy. But what is it?
Scapy is a networking tool written in python. It is very useful as it allows
us to get our hands directly on packets to perform capturing, manipulation
and other operations.
In our lab we will use it for:

1. Sni�ng packets

2. Filter them by their characteristics

3. Read �elds of interest on them

4. Write a new packet and send it

• Create a fake packet using Scapy: For this lab a function in scapy that
creates fake packets it has been created, to run it follow the steps below:

a. On the attack terminal go on the directory where the scapy function
is stored:

cd /hosthome/Desktop/NetSecLab/scapy

b. Run the function:

python cachePoisoning.py

Since now, the attacker starts listening for the client and his request access
to facebook.com.

22

2.8 About Scapy function

Scapy is a powerful interactive packet manipulation program. It is able
to forge or decode packets of a wide number of protocols, send them on the
wire, capture them, match requests and replies and much more.
It can easily handle most classical tasks like scanning, tracerouting, probing,
unit tests, attacks or network discovery. It also performs very well at a lot of
other speci�c tasks that most other tools can't handle, like sending invalid
frames and combining technics.
The function is contained on the �le cachePoisoning.py:

Figure 21: The function Scapy

The keypoints of the function are:

1. Import all scapy's libraries

2. It is de�ned a function that reads:

• The input IP header

• Some input DNS header

These variables will used later.

3. It is de�ned a new DNS packet that contains:

• The source and destination IP address (dst & src)

23

• The input and the destination port (dport & sport)

• The transaction type (id)

• If it's a query or an answer (qr)

• If it's an authoritative answer (aa)

• The sequence number (qd)

• The real answer (an) where is reported the name of the web site
and his correlated IP address

4. This chunk is divided in two parts:

4.1 First part:

while 1: wakeUpPacket=sni�(�lter="port 53 and src host 192.168.0.111
and dst host 10.0.0.3", count=1, promisc=1)
if not wakeUpPacket[0].haslayer(DNS) or wakeUpPacket[0].qr:
continue

It de�nes the in�nite while loop that permits to the attacker to
listen on the network and wake up for a speci�c packet that:

� Use the port 53

� Has as source the host 192.168.0.111 (the user)

� Has as a destination the host 10.0.0.3 (the dnslocal)

4.2 Second part:

req2Attack=sni�(�lter="port 53 and src host 10.0.0.3 and dst host
10.0.0.5", count=1, promisc=1) send(attack(req2attacka[0]))

Now that the attacker has woken up, it will send the poisoning
packet created before, as it will see the request of the local dns.
That will contain:

� Use the port 53

� Has as source the host 10.0.3 (the local)

� Has as a destination the host 10.0.0.5 (the dns-com)

24

3 Results veri�cation

The network is con�gured and the attacker is ready to send fake packets
to the local DNS. The next step is the attack.

3.1 First step: Network discovery

What happens if we discover the network now? Lets try to listen what
pass now on the network, in particular on the dns-root (the centre of our
hierarchy) and on the server of facebook.com:

a. On the dns-root terminal listen what pass by:

tcpdump �n port 53

b. On the facebook terminal listen what pass by:

tcpdump �n src host 192.168.0.111 and port 80

c. On the client terminal ask again the location of facebook.com by:

wget facebook.com

d. When everything is done, press CTRL+C to stop listening both on
facebook and dns-root.

Take a look what pass into the facebook terminal. . . nothing!

Figure 22: What pass on facebook.com

And what about the dns-root?

25

Figure 23: What pass on dns-root

On the previous �gure you can see all the questions and answers exchanged
between the DNSs.
Here the focus is at the two last lines:

Figure 24: The most signi�cant lines

• The �rst line represents the answer from the local dns to the client with
the fake address for facebook.com

• The second line is the real answer from the dns-com to the dns-local

The real answer arrived later and will not be accepted, so the cache has been
poisoned!

26

3.2 Second step: Try the attack

To try the attack we simulate an HTTP request, so on the client terminal
type the command:

wget facebook.com

Now the request has been sent and if you take a look at the IP address of
facebook.com you won't see 192.168.0.222, but 10.0.0.9! The attack works!

Figure 25: Attack completed

So the client is redirected to the attacker's server rather than on facebook.com.

3.3 Third step: Open the fake webpage

To open a simple HTML webpage, on the client terminal type the com-
mand:

links facebook.com

This is the webpage of the attacker's server.

Figure 26: Fake webpage

27

3.4 Fourth step: Cache content

An important task is to see the cache content of the local DNS. Therefore
it is important to stop Netkit and modify a con�guration �le of local DNS
(named.conf) in order to enable a function that permits to write a �le with
the cache content. To do this follow the steps below:

a. Setup Netkit to see the cache content:

a.1 Open a new Ubuntu terminal window pressing CTRL + ALT + T

Figure 27: Terminal

a.2 On terminal, go on the laboratory directory, type:

cd /Desktop/NetSecLab/cachePoisoningLab

a.3 To stop Netkit type:

lcrash

After few minutes all the Netkit terminal will be closed.

a.4 After that every terminal is closed, it is possible to modify a the
con�guration �le of local DNS. First of all it is necessary reach
the folder where the �le is located. On Ubuntu terminal type:

cd /dns-local/etc/bind

a.5 To open the �le named.conf, on Ubuntu terminal type:

gedit named.conf

A new gedit window will open.

28

Figure 28: Con�guration �le

a.6 To enable the function that permits to write the cache content
on a �le, type on the third row before the bracket the following
command:

dump-�le "/var/cache/bind/dumb.db";

Figure 29: Con�guration �le with cache functionality

29

a.7 To save the �le press on Save button on the upper part of gedit.

Figure 30: Save con�guration �le

a.8 To close gedit windows press on X button on the top left corner
of the window

Figure 31: Close Gedit

30

a.9 To restart the Netkit laboratory is necessary to return at the lab-
oratory folder. On Ubuntu terminal type :

cd /Desktop/NetSecLab/cachePoisoningLab

a.10 To start Netkit laboratory on Ubuntu terminal type:

lstart

The process will take few minutes, when it will be �nished the
laboratory is ready to run.

b. Scenario without poisoning:

b.1 At the begin is necessary to clean all the cache of dns-root, dns-
local and dns-com, so on all three DNS type:

rndc �ush

Figure 32: Clean the cache of all DNS

b.2 To write the cache content on a �le it is necessary to generate
tra�c on the network, so on client terminal type:

wget facebook.com

b.3 To see the cache content, on dns-local terminal type:

nano /var/cache/bind dumb.db

31

Figure 33: Cache content in a scenario without poisoning

The underlined parts indicate:

1. Name server of authoritative DNS

2. IP adress of authoritative DNS

3. IP adress of web server that client wants to reash, in this case
facebook.com

4. IP address of root DNS

NOTE: To close the �le dumb.db press CTRL + SHIFT + X

c. Scenario with poisoning:

c.1 At the begin is necessary to clean all the cache of dns-root, dns-
local and dns-com, so on all three DNS type:

rndc �ush

Figure 34: Clean the cache of all DNS

32

c.2 To simulate delays during one communication, due to distances
and congestions, it is necessary to delay a DNS, for simplicity, the
delay is applied at DNS com. On dns-com type:

orig-tc qdisc add dev eth0 root netem delay 1000ms

c.3 To run scapy function to sni� packets that pass on the network
between root DNS and local DNS, need to reach the folder where
the function is located, so on attack terminal type:

cd /hosthome/Desktop/NetSecLab/scapy

c.4 To run scapy function, on attack terminal type:

python cachePoisoning.py

c.5 To write the cache content on a �le it is necessary to generate
tra�c on the network, so on client terminal type:

wget facebook.com

c.6 To see the cache content, on dns-local terminal type:

nano /var/cache/bind dumb.db

Figure 35: Cache content in a scenario with poisoning

33

The underlined parts indicate:

1. Name server of authoritative DNS

2. IP adress of authoritative DNS

3. IP adress of server that client wants to reash, in this case
the fake facebook.com

4. IP address of root DNS

NOTE: To close the �le dumb.db press CTRL + SHIFT + X

34

A How to install Netkit

The installation of netkit is performed for every version of linux distribu-
tion, for this laboratory we have used ubuntu 10.04.
To install netkit follow these steps:

1. Download all these packets:

• wget http://www.netkit.org/download/netkit/netkit-2.8.tar.bz2

• wget http://www.netkit.org/download/netkit-�lesystem/netkit-�lesystem-
i386-F5.2.tar.bz2

• wget http://www.netkit.org/download/netkit-kernel/netkit-kernel-
i386-K2.8.tar.bz2

2. Extract all the packets:

• tar xvfj netkit/netkit-2.8.tar.bz2

• tar xvfj netkit-�lesystem-i386-F5.2.tar.bz2

• tar xvfj netkit-kernel-i386-K2.8.tar.bz2

3. Open the �le .bashrc, from terminal type:

• gedit /.bashrc

4. At the end of the �le add the following lines by substituting at /netkit
the path where the netkit folder is in your computer, for example if
netkit is on /home/user/netkit , you have to substitute /netkit with
/home/user/netkit

• export NETKIT_HOME = /netkit

• export MANPATH =: $NETKIT_HOME/man

• export PATH = $NETKIT_HOME/bin : $PATH

5. Finally close and open a new terminal window, then you go on netkit
folder ad run check_con�guration.sh:

• cd /netkit

• sudo ./check_con�guration.sh

35

If on terminal you see:

[READY] Congratulations! Your Netkit setup is now complete! Enjoy
Netkit!

netkit is successfully installed.

6. If you are running 64 bit versione of linux distribution, check_con�guration.sh
shows you the packet that you have to install the 32 bit version libraries,
so from terminal type:

• sudo apt-get update

• sudo apt-get install ia32-libs

• apt-get install libc6-i386

To try the lab just go to the folder where it is located through the termi-
nal of the virtual machine:

cd /home/student/Desktop/NetSecLab

Then, to start the lab type:

lstart

36

B How to start the VM of the lab

First of all, download the VM of the lab from the following link:

https : //drive.google.com/open?id = 0B7jIs3OFqr4UThIR2dmdl9TcU0

The �le that you are downloading is a compressed �le calledG15.ubuntu.10.04.zip
stored in a shared folder.
When the download is �nished, you have to extract all the �les compressed
and then open Virtual Box and select:

Machine -> Add...

Now you have to enter in the folder "ubuntu.10.04" just extracted and select:

ubuntu.10.04.vbox

Now you have to follow these four step:

37

1. Select the machine just added ubuntu.10.04(For_report)

2. Select the tab called Snapshots

3. Select the snapshot For_report

4. Restore the snapshot selecting the icon Restore

Now you see a popup; follow these steps:

1. Deselect Create a snapshot of the current machine state

2. Select Restore

As the last step you have to click:

Start

38

Bibliography

• William Stallings, "Cryptography and Network Security", �fth
edition, Prentice Hall

• Giuseppe Di Battista, Maurizio Patrignani, Maurizio Pizzonia, Mas-
simo Rimondin, "http://wiki.netkit.org/"

• Bryan Burns, Dave Killion, Nicolas Beauchesne, Eric Moret, Julien
Sobrier, Michael Lynn, Eric Markham, Chris Iezzoni, Philippe Biondi,
Jennifer Stisa Granick, Steve Manzuik, Paul Guersch, "Security Power
Tools", O'Reilly Media, 2007

• Scapy references "http://www.secdev.org/projects/scapy/index.html"

39

