
Network Security
Stack Based Buffer Overflow laboratory

2015/2016

Adey, Daniel, Feleke & Getachew

University of Trento, DISI (2015/2016)

Group 13

Before we proceed – some theory

 Buffer Overflow?

 Copying source buffer into

destination buffer could result in
overflow when

 Source string length is greater than
destination string length.

 Stack Based buffer Overflow?

 A piece of the process memory

 Last-In-First-Out (LIFO) mechanism to

pass arguments to functions and refer

the local variables

 It acts like a buffer

Sample vulnerable C code

#include <string.h>

void do_something(char *Buffer)

{

char MyVar[40];

strcpy(MyVar, Buffer);

}

int main (int argc, char **argv)

{

do_something(argv[1]);

}

Group 13

Before we proceed – some theory

 Stack

 ESP : pointing to top of stack (lowest address)

 EBP : pointing to the base (highest address) of the

current invocation frame

 EIP :holds the address of the next instruction to be
executed

 Created at the beginning of the execution of

function and released at the end of it.

 Standard Entry Sequence

 PUSH EBP; save the value of EBP

 MOV EBP, ESP ; EBP now points to the top of the stack

 sub ESP, X; space allocated on the stack for the local
variables

Group 13

void do_something(char
*Buffer)

{

char MyVar[40];

strcpy(MyVar, Buffer);

}

Before overflow

 strcpy function

 This function will read data, from

the address pointed to by [Buffer]

 And store it in <space for MyVar>,

reading all data until it sees a null
byte (string terminator).

 The strcpy() does not use PUSH
instructions to put data on the

stack

 It basically reads a byte and

writes it to the stack.

Group 13

void do_something(char
*Buffer)

{

char MyVar[40];

strcpy(MyVar, Buffer);

}

After overflow

 If the data in [Buffer] is somewhat longer
than 0×40 bytes , the strcpy() will overwrite

saved EBP and eventually saved EIP (and

so on).

 Both EIP and EBP addresses are

overwritten by AAAA (0x41414141)

 We controlled EIP

Group 13

void do_something(char
*Buffer)

{

char MyVar[40];

strcpy(MyVar, Buffer);

}

Debugger (Immunity Debugger)

Group 13

 When application is loaded, immunity debugger opens

default window, CPU view.

Real scenario

 A stack based buffer overflow vulnerability found in Aviosoft Digital TV

Player Pro version 1.x.

 An overflow occurs when the process copies the content of a playlist file

on to the stack, which may result arbitrary code execution under the

context of the user.

 CVE-N/A

 https://www.rapid7.com/db/modules/exploit/windows/fileformat/aviosof

t_plf_buf

 https://www.exploit-db.com/exploits/22932/

 Techniques

 Black Box approach

 Debugging

Group 13

https://www.exploit-db.com/exploits/22932/

Group 13

Stack Based Buffer Overflow- Exploit writing

 What we need?

 Windows XP SP3 (OS)

 Debugger – Immunity

 Python

 Aviosoft Digital TV Player Professional

 Overflows (Stack Overflows)

 When such an overflow occurs there are two things we are looking for;

 Our buffer needs to overwrite EIP (Current Instruction Pointer)

 One of the CPU registers needs to contain our buffer

 How does it work

 Trigger vulnerability

 Determine the buffer size

 Find EIP (JMP to ESP)

 Execute shellcode (calc popup)

Trigger vulnerability (I)

 All python scripts are found on

Desktop in side exploit folder

 The simple crash script (01.py):

Group 13

Group 13

Trigger vulnerability (II)

 Run the python script

 Open terminal (Start ->run ->”cmd”-> Enter

 Go to exploit folder (cd Desktop\exploit)

 Run the python (python 01.py)

 It will create "crash-me01.PLF" file.

Group 13

Trigger vulnerability (III)

Group 13

 Now open “crash-me01.PLF” with Aviosoft DTV Player

 Start Aviosoft DTV Player

 Press Later to use 14-days trial version

Group 13

 Start Immunity debugger from desktop

 Go to file->attach

 Select Aviosoft DTV Player from the process list

 Click on >>Attach

 And finally Click on debug->Run (on the top left of the debugger

window)

Trigger vulnerability (IV)

Trigger vulnerability (V)

Group 13

 Right Click Here >>Play From >> Open Playlist>>Open crash-me01.PLF

 Open crash-me01.PLF file from exploit folder

Trigger vulnerability (VI)

Group 13

 It’s finally crashed and we saw ESP and EIP registers contains
"AAAAAAAA...." :

 clearly indicating that we control EIP which is mean the crash is really
exploitable(Explaining later!)

 Now it is time to find how many bytes the stack requiring for getting
overwritten EIP.

 We already know the application crashed since we sent 1000 Bytes
junk.

Determining the buffer size to write exactly into EIP (I)

 First let’s set our default working folder for Mona:

 !mona config -set workingfolder C:\Documents and
Settings\Owner\Desktop\exploit\mona\%p

Group 13

Group 13

Determining the buffer size to write exactly into EIP (II)

 In order to find the exact location of EIP, we’ll use mona script from

immunity debugger command line.

 !mona pattern_create 1000 (It will generate a string that contains

unique patterns.)

 It just created a file in C:\Documents and

Settings\Owner\Desktop\exploit\mona\AviosoftDTV called

"pattern.txt"

Group 13

Group 13

Determining the buffer size to write exactly into EIP (III)

 Open 02.py script with notepad++ and edit in the following way.

 Replacing "A"*1000 with pattern generated by mona.

 Now open "crash-me02.PLF" file and open with AviSoft DTV(Already attached
with debugger) . So the application crashed again but with mona's Cycling

pattern instead "AAAAAA..." .

 So we need to take note of EIP value. In our case it is "37694136" :

Group 13

Determining the buffer size to write exactly into EIP (IV)

 we need to figure out the exact bytes to overwrite EIP using mona.

 !mona pattern_offset 37694136

 We need 260 bytes to overwrite stack and we need more 4 bytes to overwrite
EIP (260+4=264 bytes)

 Once again lets open 03.py python script with notepad++ and modify line 7 , 8
and 9 as shown in the above python script.

 Replace the patter with 260 bytes "A" and more 4 bytes to overwrite EIP with
"BBBB" then 736 bytes (1000-264). If first junk(260 bytes) length is okay then EIP
will be "BBBB“=>0x42424242.

Group 13

Determining the buffer size to write exactly into EIP (V)

 EIP is 42424242=BBBB and ESP(Stack Pointer) is contains CCCC..

 In Immunity debugger, you can see the contents of the stack at ESP by looking at the
lower right hand window.

 But here we can see another problem that after EIP some "CCCC":

 We really need to jump over these nasty junk.

Group 13

Sum up

 Our exploit buffer so far looks like this:

 We need to find the right EIP address to redirect our execution in to ESP

address.

 Our Next goal will be:

 Replacing "BBBB" with valid pointer(Pointer to ESP and ESP will hold shellcode)

 Solving an(CCCC... after EIP) easy problem.

 Replacing "CCCCCC..." with real shellcode.

Group 13

Find EIP(I)

 We are going to find EIP from application's DLL (Aviosoft DTV)

 We use mona => !mona jmp -r esp (Be patient it will take 1 min searching JMP EIP)

 It will create a file called "jmp.txt" in “..\mona\AviosoftDTV" and which

contains following possible addresses:

 Here we use 0x6411a7ab address which is found in line 223 (when we open

the jmp.txt file using notepad++)

 You can search (Ctrl + g) line number

Group 13

Find EIP(II)

 We need to modify the script replace the address in EIP variable

instead "BBBB".

 Open 04.py with notepad++ and edit line 8 and 9 as follows:

 We should remember that windows uses little endian notation , means we

need reverse the address so EIP should become

0x6411a7ab=>”\xab\xa7\x11\x64".

 Remember that there was a nasty junk b/n EIP and ESP now we filled with 100
nop (0x90 no opration just to pass the execution ….)

 It’s good idea to use some nops (0x90) before and after our shellocde.

Group 13

Verify JMP EIP(I)

 Run the 04.py script (python 04.py)

 Setting breakpoint at EIP address 0x6411a7ab to make sure that our exploit is
reaching to the right address.

 Run the application through debugger

 Right click>>Go to >>Expression

 When new window will pop up , search the EIP address

Group 13

Verify JMP EIP(II)

 Now press F2. It may warn you about break pointing to this address but

you can ignore the warning

 Now open crash-me04.PLF with debugger

 We notice that EIP contains our correct address as expected

 What is next?

 Let's put real shellcode instead “CCCCCCCCCC---“

 Since ESP contains “CCCC ---” we put our shellcode in ESP

Group 13

Execute shellcode
 There is calc pop up shellcode inside your working directory called

“shellcode.txt” open it

 Open exploit.py and copy paste your shellocde in line 9.

 Run expoit.py script (python exploit.py)

 It will create “exploit-me.PLF” , open it with AviSoft DTV and it will execute
calc.exe

Game Over!!!!

Group 13

For More details

 Notes: -

 Exploit writing is much more about research. Without researching it is not

possible to be an exploit writer.

 If you want to learn more about exploit development(In details):

 https://www.fuzzysecurity.com

 https://www.corelan.be

 https://www.exploit-db.com

Questions?

E-mail: vulnexplo@gmail.com

Thank you!!!

Group 13

https://www.fuzzysecurity.com/
https://www.corelan.be/
https://www.exploit-db.com/
mailto:vulnexplo@gmail.com

