
Network Security
Stack Based Buffer Overflow laboratory

2015/2016

Adey, Daniel, Feleke & Getachew

University of Trento, DISI (2015/2016)

Group 13

Before we proceed – some theory

 Buffer Overflow?

 Copying source buffer into

destination buffer could result in
overflow when

 Source string length is greater than
destination string length.

 Stack Based buffer Overflow?

 A piece of the process memory

 Last-In-First-Out (LIFO) mechanism to

pass arguments to functions and refer

the local variables

 It acts like a buffer

Sample vulnerable C code

#include <string.h>

void do_something(char *Buffer)

{

char MyVar[40];

strcpy(MyVar, Buffer);

}

int main (int argc, char **argv)

{

do_something(argv[1]);

}

Group 13

Before we proceed – some theory

 Stack

 ESP : pointing to top of stack (lowest address)

 EBP : pointing to the base (highest address) of the

current invocation frame

 EIP :holds the address of the next instruction to be
executed

 Created at the beginning of the execution of

function and released at the end of it.

 Standard Entry Sequence

 PUSH EBP; save the value of EBP

 MOV EBP, ESP ; EBP now points to the top of the stack

 sub ESP, X; space allocated on the stack for the local
variables

Group 13

void do_something(char
*Buffer)

{

char MyVar[40];

strcpy(MyVar, Buffer);

}

Before overflow

 strcpy function

 This function will read data, from

the address pointed to by [Buffer]

 And store it in <space for MyVar>,

reading all data until it sees a null
byte (string terminator).

 The strcpy() does not use PUSH
instructions to put data on the

stack

 It basically reads a byte and

writes it to the stack.

Group 13

void do_something(char
*Buffer)

{

char MyVar[40];

strcpy(MyVar, Buffer);

}

After overflow

 If the data in [Buffer] is somewhat longer
than 0×40 bytes , the strcpy() will overwrite

saved EBP and eventually saved EIP (and

so on).

 Both EIP and EBP addresses are

overwritten by AAAA (0x41414141)

 We controlled EIP

Group 13

void do_something(char
*Buffer)

{

char MyVar[40];

strcpy(MyVar, Buffer);

}

Debugger (Immunity Debugger)

Group 13

 When application is loaded, immunity debugger opens

default window, CPU view.

Real scenario

 A stack based buffer overflow vulnerability found in Aviosoft Digital TV

Player Pro version 1.x.

 An overflow occurs when the process copies the content of a playlist file

on to the stack, which may result arbitrary code execution under the

context of the user.

 CVE-N/A

 https://www.rapid7.com/db/modules/exploit/windows/fileformat/aviosof

t_plf_buf

 https://www.exploit-db.com/exploits/22932/

 Techniques

 Black Box approach

 Debugging

Group 13

https://www.exploit-db.com/exploits/22932/

Group 13

Stack Based Buffer Overflow- Exploit writing

 What we need?

 Windows XP SP3 (OS)

 Debugger – Immunity

 Python

 Aviosoft Digital TV Player Professional

 Overflows (Stack Overflows)

 When such an overflow occurs there are two things we are looking for;

 Our buffer needs to overwrite EIP (Current Instruction Pointer)

 One of the CPU registers needs to contain our buffer

 How does it work

 Trigger vulnerability

 Determine the buffer size

 Find EIP (JMP to ESP)

 Execute shellcode (calc popup)

Trigger vulnerability (I)

 All python scripts are found on

Desktop in side exploit folder

 The simple crash script (01.py):

Group 13

Group 13

Trigger vulnerability (II)

 Run the python script

 Open terminal (Start ->run ->”cmd”-> Enter

 Go to exploit folder (cd Desktop\exploit)

 Run the python (python 01.py)

 It will create "crash-me01.PLF" file.

Group 13

Trigger vulnerability (III)

Group 13

 Now open “crash-me01.PLF” with Aviosoft DTV Player

 Start Aviosoft DTV Player

 Press Later to use 14-days trial version

Group 13

 Start Immunity debugger from desktop

 Go to file->attach

 Select Aviosoft DTV Player from the process list

 Click on >>Attach

 And finally Click on debug->Run (on the top left of the debugger

window)

Trigger vulnerability (IV)

Trigger vulnerability (V)

Group 13

 Right Click Here >>Play From >> Open Playlist>>Open crash-me01.PLF

 Open crash-me01.PLF file from exploit folder

Trigger vulnerability (VI)

Group 13

 It’s finally crashed and we saw ESP and EIP registers contains
"AAAAAAAA...." :

 clearly indicating that we control EIP which is mean the crash is really
exploitable(Explaining later!)

 Now it is time to find how many bytes the stack requiring for getting
overwritten EIP.

 We already know the application crashed since we sent 1000 Bytes
junk.

Determining the buffer size to write exactly into EIP (I)

 First let’s set our default working folder for Mona:

 !mona config -set workingfolder C:\Documents and
Settings\Owner\Desktop\exploit\mona\%p

Group 13

Group 13

Determining the buffer size to write exactly into EIP (II)

 In order to find the exact location of EIP, we’ll use mona script from

immunity debugger command line.

 !mona pattern_create 1000 (It will generate a string that contains

unique patterns.)

 It just created a file in C:\Documents and

Settings\Owner\Desktop\exploit\mona\AviosoftDTV called

"pattern.txt"

Group 13

Group 13

Determining the buffer size to write exactly into EIP (III)

 Open 02.py script with notepad++ and edit in the following way.

 Replacing "A"*1000 with pattern generated by mona.

 Now open "crash-me02.PLF" file and open with AviSoft DTV(Already attached
with debugger) . So the application crashed again but with mona's Cycling

pattern instead "AAAAAA..." .

 So we need to take note of EIP value. In our case it is "37694136" :

Group 13

Determining the buffer size to write exactly into EIP (IV)

 we need to figure out the exact bytes to overwrite EIP using mona.

 !mona pattern_offset 37694136

 We need 260 bytes to overwrite stack and we need more 4 bytes to overwrite
EIP (260+4=264 bytes)

 Once again lets open 03.py python script with notepad++ and modify line 7 , 8
and 9 as shown in the above python script.

 Replace the patter with 260 bytes "A" and more 4 bytes to overwrite EIP with
"BBBB" then 736 bytes (1000-264). If first junk(260 bytes) length is okay then EIP
will be "BBBB“=>0x42424242.

Group 13

Determining the buffer size to write exactly into EIP (V)

 EIP is 42424242=BBBB and ESP(Stack Pointer) is contains CCCC..

 In Immunity debugger, you can see the contents of the stack at ESP by looking at the
lower right hand window.

 But here we can see another problem that after EIP some "CCCC":

 We really need to jump over these nasty junk.

Group 13

Sum up

 Our exploit buffer so far looks like this:

 We need to find the right EIP address to redirect our execution in to ESP

address.

 Our Next goal will be:

 Replacing "BBBB" with valid pointer(Pointer to ESP and ESP will hold shellcode)

 Solving an(CCCC... after EIP) easy problem.

 Replacing "CCCCCC..." with real shellcode.

Group 13

Find EIP(I)

 We are going to find EIP from application's DLL (Aviosoft DTV)

 We use mona => !mona jmp -r esp (Be patient it will take 1 min searching JMP EIP)

 It will create a file called "jmp.txt" in “..\mona\AviosoftDTV" and which

contains following possible addresses:

 Here we use 0x6411a7ab address which is found in line 223 (when we open

the jmp.txt file using notepad++)

 You can search (Ctrl + g) line number

Group 13

Find EIP(II)

 We need to modify the script replace the address in EIP variable

instead "BBBB".

 Open 04.py with notepad++ and edit line 8 and 9 as follows:

 We should remember that windows uses little endian notation , means we

need reverse the address so EIP should become

0x6411a7ab=>”\xab\xa7\x11\x64".

 Remember that there was a nasty junk b/n EIP and ESP now we filled with 100
nop (0x90 no opration just to pass the execution ….)

 It’s good idea to use some nops (0x90) before and after our shellocde.

Group 13

Verify JMP EIP(I)

 Run the 04.py script (python 04.py)

 Setting breakpoint at EIP address 0x6411a7ab to make sure that our exploit is
reaching to the right address.

 Run the application through debugger

 Right click>>Go to >>Expression

 When new window will pop up , search the EIP address

Group 13

Verify JMP EIP(II)

 Now press F2. It may warn you about break pointing to this address but

you can ignore the warning

 Now open crash-me04.PLF with debugger

 We notice that EIP contains our correct address as expected

 What is next?

 Let's put real shellcode instead “CCCCCCCCCC---“

 Since ESP contains “CCCC ---” we put our shellcode in ESP

Group 13

Execute shellcode
 There is calc pop up shellcode inside your working directory called

“shellcode.txt” open it

 Open exploit.py and copy paste your shellocde in line 9.

 Run expoit.py script (python exploit.py)

 It will create “exploit-me.PLF” , open it with AviSoft DTV and it will execute
calc.exe

Game Over!!!!

Group 13

For More details

 Notes: -

 Exploit writing is much more about research. Without researching it is not

possible to be an exploit writer.

 If you want to learn more about exploit development(In details):

 https://www.fuzzysecurity.com

 https://www.corelan.be

 https://www.exploit-db.com

Questions?

E-mail: vulnexplo@gmail.com

Thank you!!!

Group 13

https://www.fuzzysecurity.com/
https://www.corelan.be/
https://www.exploit-db.com/
mailto:vulnexplo@gmail.com

