

Network Security

AA 2015/2016 System hardening (Authentication, Firewalls) Dr. Luca Allodi

Dr. Luca Allodi - Network Security - University of Trento, DISI (AA 2015/2016)

Default configurations

- All systems have a default configuration
 - Personal computers, servers, mainframes,..
- Fresh installation of an operating system
 - Some can be configured at installation time
 - Still limited access to full configuration settings
 - e.g. linux distro typically allows to select packets but not all packet functionalities
- Default services
 - DHCP, RCP, NetBIOS, ..
 - SSH, VNC, ..
 - Web servers, remote interfaces
- → Default configuration satisfies vast majority of user needs

Example of default configuration

TCP/IP NetBIOS Helper	Name 🛆	Description	Status	Startup Type	Log On As	
	Reprotected Storage	Provides pr	Started	Automatic	Local System	
<u>Stop</u> the service <u>Restart</u> the service	🖏 QoS RSVP	Provides n		Manual	Local System	
	Remote Access Aut	Creates a	Started	Manual	Local System	
	Remote Access Con	Creates a	Started	Manual	Local System	
Description: Enables support for NetBIOS over TCP/IP (NetBT) service and NetBIOS name resolution.	🍇 Remote Desktop He	Manages a		Manual	Local System	
	🍓 Remote Procedure	Provides th	Started	Automatic	Local System	
	🍓 Remote Procedure	Manages t		Manual	Network S	
	🆏 Removable Storage			Manual	Local System	
	🍓 Routing and Remot	Offers rout		Disabled	Local System	
	🆏 Secondary Logon	Enables st	Started	Automatic	Local System	
	🏶 Security Accounts	Stores sec	Started	Automatic	Local System	
	🎇 Server	Supports fil	Started	Automatic	Local System	
	🆏 Shell Hardware Det		Started	Automatic	Local System	
	🆓 Smart Card	Manages a		Manual	Local Service	
	🎇 Smart Card Helper	Enables su		Manual	Local Service	
	🎇 SSDP Discovery Ser	Enables dis	Started	Manual	Local Service	
	🏶 System Event Notifi	Tracks syst	Started	Automatic	Local System	
	🏶 System Restore Ser	Performs s	Started	Automatic	Local System	
	🆏 Task Scheduler	Enables a	Started	Automatic	Local System	
	TCP/IP NetBIOS Hel	Enables su	Started	Automatic	Local Service	
	🎇 Telephony	Provides T	Started	Manual	Local System	
	🆓 Terminal Services	Allows mult	Started	Manual	Local System	
	🍓 Themes	Provides u	Started	Automatic	Local System	

System hardening

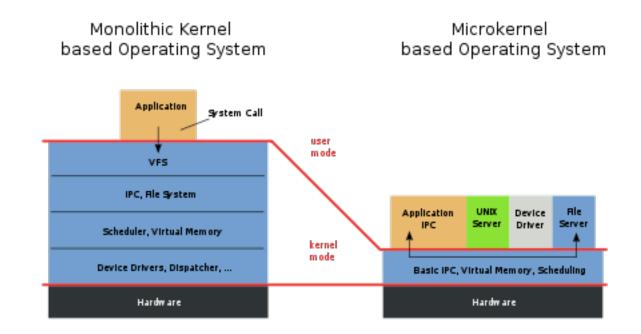
- System hardening is the process by which a system's configuration is tuned to improve its security without compromising its functionality
 - The 100% secure system is one that is turned off
- Sys hardening process takes into account
 - System functionality → what is the role of that system?
 - Home computer
 - File server
 - Web server
 - General purpose server
 - System security → how can the security of the system be improved?
 - Minimise the attack surface of the system

Attack surfaces

- An attack surface is the set of system resources that are exposed to the attacker
 - Weak passwords
 - Software vulnerabilities
 - Misconfigurations
 - Services listening on the network
 - Inaccurate access control
 - ..
- Golden rule of information security
 - "Minimality principle" → no user and no system component or process should be authorised or compiled to perform actions that are not strictly necessary for their normal operation
 - aka "If it's not there you can't brake it"

The minimality principle

- Can be applied at both system users and processes
- A system should be configured such that it does not embed or enable functionalities that are not needed for normal operation
 - example: microkernel → Liedtke's minimality principle:
 - A concept is tolerated inside the microkernel only if moving it outside the kernel, i.e., permitting competing implementations, would prevent the implementation of the system's required functionality.
- A user should be authorised to only access and modify resources that are necessary for their normal operation
 - If user is NOT authorised, they will NOT be able to accomplish their tasks



Minimal system configuration

- Heavily depends on system functionality
- There is not one "Best secure configuration" that fits all systems
- Best solution depends on a number of design/environment variables
- Example:
 - What's the system designed for?
 - General computation server
 - Does it need local/remote access? \rightarrow remote
 - If remote only, does it really need physical input interfaces? \rightarrow no, take keyboards out
 - Need for multiple users? \rightarrow yes, one admin and 20 students
 - What services should be accessible and from where?
 - Can devise environment conditions to regulate access? →yes, remote access only allowed from local area network → all activities logged → input devices disabled (e.g. no USB mount service)
- Default operating system installation often has several unnecessary functionalities enabled
 - Rely on documentation to decide what's necessary and what's not
 - You remove something useful \rightarrow brick the system
 - Compile your own kernel (when possible) → can be done as a trial-and-error by restoring previous kernel if something goes wrong

Example of minimal design for security: Microkernel structure

Minimal user privileges

- User should not be allowed to perform more actions on the system than necessary for their operation
- Typically implemented via user authentication
- Common policy requirement: restrict the behavior of a user
- To permit different users to do different things, we need a way to identify or distinguish between users
 - Identification mechanisms to indicate identity
 - Authentication mechanisms to validate identity

User Authentication

Dr. Luca Allodi - Network Security - University of Trento, DISI (AA 2015/2016)

User Authentication

- is the process of verifying an identity claimed by or for a system entity
- fundamental security building block
 - basis of access control \rightarrow user accountability
- has two steps:
 - identification presenting identifier to the security system
 - verification presenting information that corroborates the binding between entity (person) and identifier
- Final goal → link physical user of the system with their representation in the system
 - Typically done through the existence of a "secret" that only the physical person corresponding to that system representation can know/possess/derive
- distinct from message authentication

Means of User Authentication

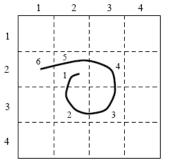
- four means of authenticating user's identity
- based one something the individual
 - knows e.g. password, PIN, graphical password
 - possesses e.g. key, token, smartcard
 - is (static biometrics) e.g. fingerprint, retina
 - does (dynamic biometrics) e.g. voice, sign
- can use alone or combined
- all can provide user authentication
- all have issues

Something you know: Password Authentication

- widely used user authentication method
 - user provides name/login and password
 - system compares password with that saved for specified login
- authenticates ID of user logging and
 - that the user is authorized to access system
 - determines the user's privileges
- Sequence of characters
 - Examples: 10 digits, a string of letters, etc.
 - Luca, Lyk4, !Luca!, !£L^y]k@#4!, ..
 - Generated randomly, by user, by computer with user input
 - 432432k-12312j-sdfjs1-24554g ← user-generated "random" string
- Sequence of words
 - Examples: pass-phrases
 - Luca started the Network Security course on the fiftheenth of February

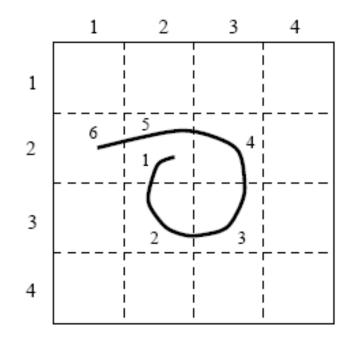
Problem: Password Storage

- Store as cleartext
 - If password file compromised, *all* passwords revealed
- Encrypt file
 - Need to have decryption, encryption keys in memory
 - Reduces to previous problem
- Store one-way hash of password
 - If file read, attacker must still guess passwords or invert the hash
- Hashed passwords
 - Password is concatenated with a random salt \rightarrow store H(salt+password)
 - Avoids problem whereby same passwords have same hash value


Password Aging

- "Frequently" change passwords decreases attack surfaces
 - Lower probability of having a breach
 - Less time for attacker to crack hash file
- Force users to change passwords after some time has expired
- Users will have to create and remember more passwords for one account
 - How do you force users not to re-use passwords?
 - Record hashes of previous passwords
 - Block changes for a period of time
 - Give users time to think of good passwords
 - Don't force them to change before they can log in
 - Warn them of expiration days in advance
- Balance between security and usability

Draw-A-Secret (DAS) Scheme


• Password is picture drawn on a grid

- Users freed from having to remember alphanumeric string
- Pros:
 - Easier to remember
 - Low error rates
- Cons:
 - Adjacent coordinates more likely to be used in sequence
 - On touch screens could be easy to retrieve combination

Draw-A-Secret (DAS) Scheme

(2,2) (3,2) (3,3) (2,3) (2,2) (2,1) (5,5)

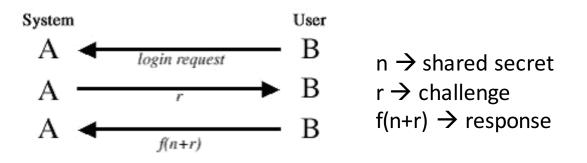
(5,5) is pen-up indicator

Another graphical password scheme

- To login, user is required to click within the circled red regions (chosen when created the password) in this picture.
 - The choice for the four regions is arbitrary \rightarrow user preference
- Known since the mid 1990s,
- "Graphical Passwords" → http://rutgersscholar.rutgers.edu/volume04/sobrbirg/sobrbirg.htm
- Drawbacks
 - Shoulder surfing \rightarrow the attacker can easily see the combination on screen
 - Unclear: easy to change for the user?

Something you have: Token Authentication

- Tokens objects that a user possesses to authenticate, e.g.:
 - embossed card
 - magnetic stripe card
 - memory card
 - smartcard


Hardware Support

- Token-based
 - Used to compute response to challenge (see challenge-response next)
 - May encipher or hash challenge
 - May require PIN from user
 - Temporal password generation
 - Every minute (or so) different number shown
 - Server knows what number to expect and when
 - User enters number and fixed password

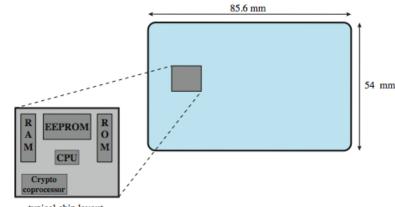
Challenge-response

- The attacker (MitM) can not observe actual value, but only the challenge and the response
 - Can not reverse function that computes the response

- f() can be any one-way function
 - Hash → computation by system
 - image random operations (rotation, shifts, ..) ightarrow computation by human
- Can be used to prevent shoulder surfing → even if attacker sees current value, can not predict next valid r

One-Time Passwords

- Password that can be used exactly once
 - Often generated by a token
 - Other means include text messages, phone applications, ...
 - After use, it is immediately invalidated
- Challenge-response mechanism
 - Depends on implementation
 - Most common is time-syncronization \rightarrow token and server have sync'd clock \rightarrow will generate same number r at a given time
 - r=f(shared_secret, time)
 - time is challenge
 - r is response = one-time password
 - UserID + PIN + r \rightarrow user authentication
- Problems
 - Synchronization of user, system
 - Generation of good random passwords
 - Password distribution problem

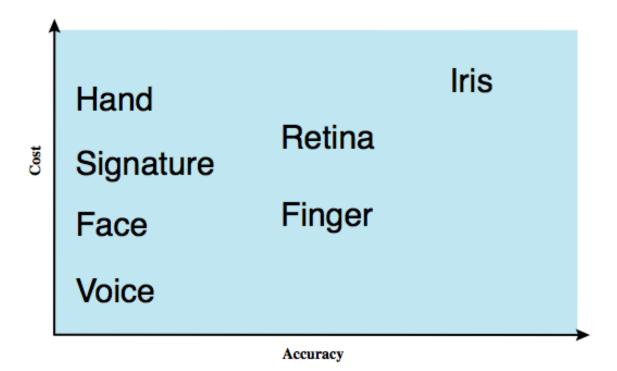

Memory Card

- store but do not process data
- magnetic stripe card, e.g. bank card
- electronic memory card
- used alone for physical access
- with password/PIN for computer use
- drawbacks of memory cards include:
 - need special reader \rightarrow a common card reader can copy/overwrite security code
 - loss of token
 - user dissatisfaction for computer use

Smartcards

- Have own processor, memory, I/O ports
 - wired or wireless access by reader
 - may have crypto co-processor
 - ROM, EEPROM, RAM memory
- Execute protocol to authenticate with reader/computer
 - also have USB dongles
- Can be used to store
 - enc keys (GPG)
 - Certificates (Bitlocker, Firefox)
- Tamper-resistant

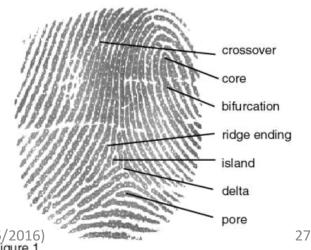
Something you are/do: Biometrics for Authentication


- A biometric is a physiological or behavioral characteristic of a human being that can distinguish one person from another and that can be used for identification or verification of identity."
- Biometric applications available today are categorized into 2 types:
 - Physiological (static): Iris, Fingerprints, Hand, Retinal and Face recognition

Behavioral (dynamic): Voice, Typing pattern, Hand Signature, gesture, gait

Biometric Authentication

 authenticate user based on one of their physical characteristics



Physiological

- Automated measurement of biological features that identify a person
 - Fingerprints: optical or electrical techniques
 - Several different types: arch, whorl, loop, ..
 - Maps fingerprint into a graph, then compares with database
 - Measurements imprecise, so approximate matching algorithms used

Physiological

- Can use several other characteristics
 - Eyes: patterns in irises unique
 - Measure patterns, determine if differences are random; or correlate images using statistical tests
 - Palm recognition: believed to be unique
 - Not very robust and easy to forge if readers are cheap
 - Statistical tests used
 - Faces: image, or specific characteristics like distance from nose to chin
 - Lighting, view of face, other noise can hinder this
 - Issue with face recognition

Behavioural

- Voices: speaker verification or recognition
 - Verification, recognition: uses statistical techniques to test hypothesis that speaker is who is claimed (speaker dependent), and recognize answer (content)
- Hand signature recognition
 - Speed, velocity, pressure
 - High user acceptance

Operation of a Biometric

Name (PIN)

Biometric Feature extractor sensor User interface (a) Enrollment Name (PIN) Biometric Feature sensor extractor Feature User interface true/false < matcher One template (b) Verification **Biometric** Feature sensor extractor Feature user's identity or User interface

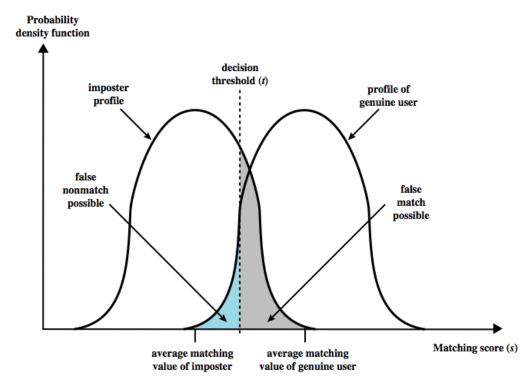
"user unidentified"

(c) Identification

Dr. Luca Allodi - Network Security -University of Trento, DISI (AA 2015/2016)

System

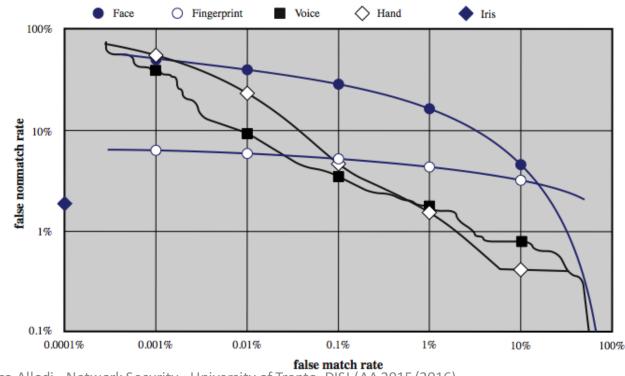
matcher


N templates

30

Biometric Accuracy

- never get identical templates
- problems of false match / false non-match



Dr. Luca Allodi - Network Security - University of Trento, DISI (AA 2015/2016)

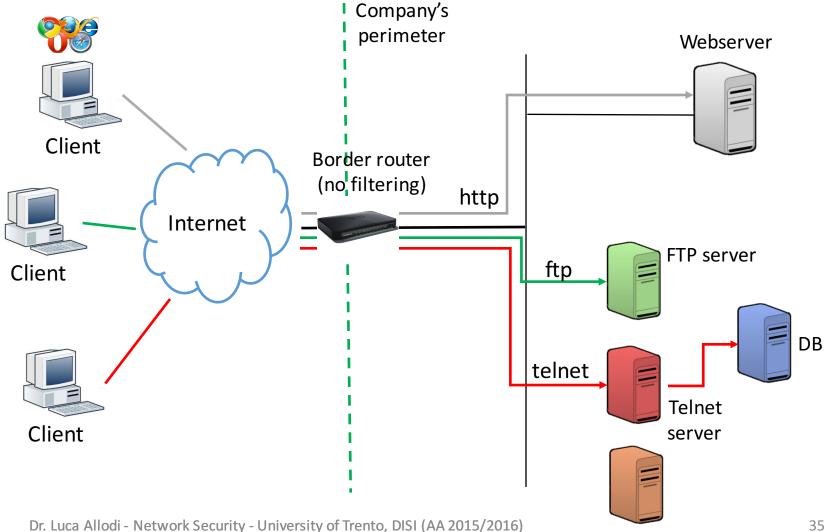
Biometric Accuracy

- can plot characteristic curve (ROC)
- pick threshold balancing error rates

Dr. Luca Allodi - Network Security - University of Trento, DISI (AA 2015/2016)

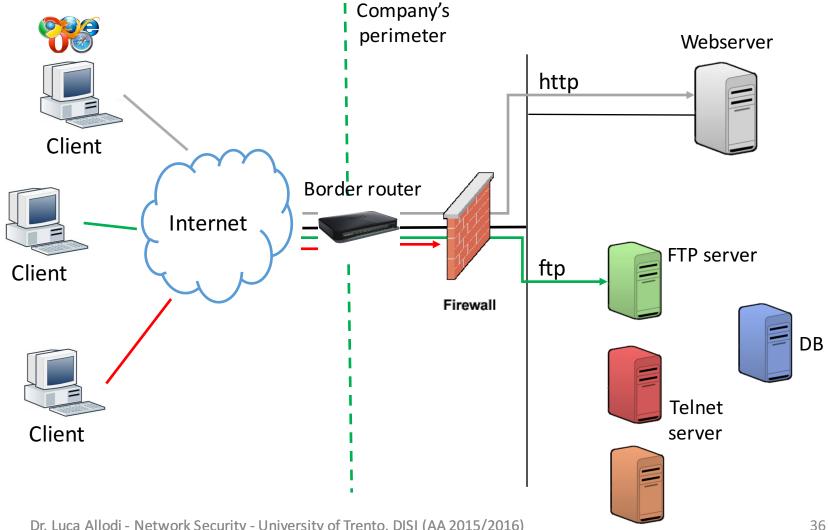
Firewalls

Dr. Luca Allodi - Network Security - University of Trento, DISI (AA 2015/2016)



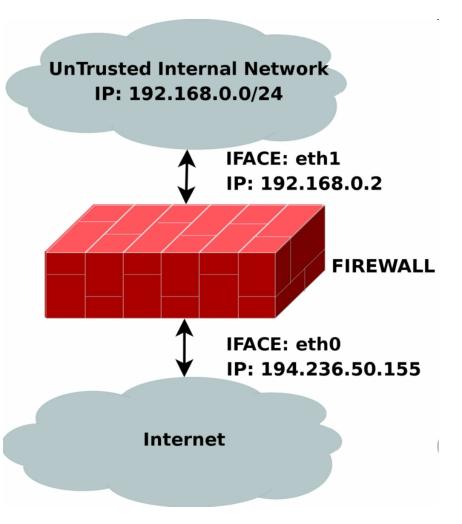
Firewalls for system minimality

- A system's minimal configuration may still have a higher attack surface than necessary
 - e.g. SSH is necessary for remote operation on server
 - However, SSH logins may only be allowed only if from an internal IP address
 - Additional network measures to minimise attack surface
- Firewalls are perimetral network components that filter incoming (outgoing) traffic from (to) the network
 - Physical or software firewalls


No perimetral defense

...

Perimetral defense


Dr. Luca Allodi - Network Security - University of Trento, DISI (AA 2015/2016)

...

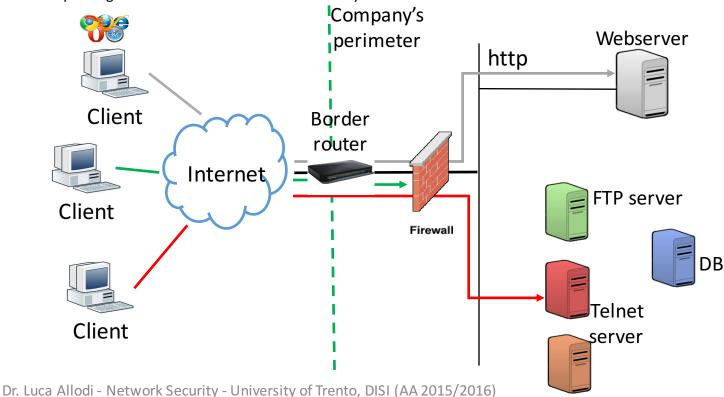
Networking with a firewall

- Internal network can be treated as untrusted
 - Do not trust outgoing traffic
 - Connections to remote servers can be regulated
 - E.g. remote storage services could be used to exfiltrate data from an organisation
- Firewalls have at least two network interfaces
 - One facing the external network
 - Or the router
 - This depends on firewall placement w.r.t border router
 - One facing internally
- More interfaces are possible if the firewall sits at the border with three or more networks

Firewall Characteristics

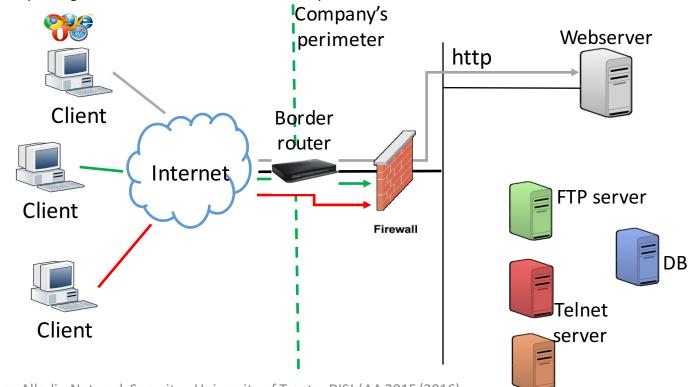
• Design goals

- All traffic from inside or outside must pass through the firewall (physically blocking all access to the local network except via the firewall)
- Only authorized traffic (defined by the local security policy) will be allowed to pass
- The firewall itself is immune to penetration (use of a trusted system with a secure operating system)


Default Policies

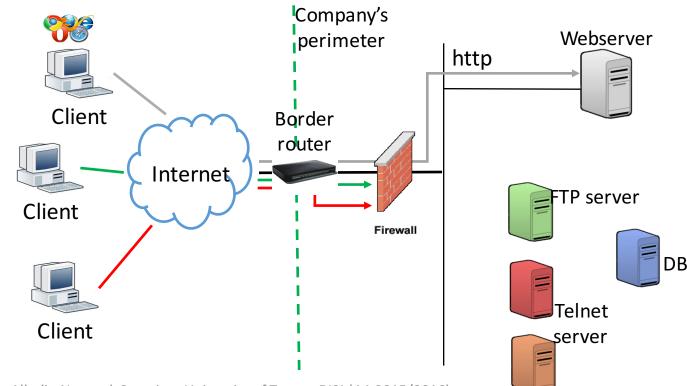
- Default deny:
 - All what is not explicitly allowed is denied
- Default permit:
 - All what is not explicitly denied is allowed

Default Permit


- Blacklist policy → list what is blocked
- Rules to remove/reduce services are specified when a problem is discovered
- Users have more freedom on what they can do
- Suitable for open organizations like universities or home systems
- Example permit policy Deny incoming ftp traffic Allow all

Default Permit

- Blacklist policy → list what is blocked
- Rules to remove/reduce services are specified when a problem is discovered
- Users have more freedom on what they can do
- Suitable for open organizations like universities or home systems
- Example permit policy Deny incoming ftp traffic Deny incoming telnet traffic Allow all



Dr. Luca Allodi - Network Security - University of Trento, DISI (AA 2015/2016)

Default Deny

- Whitelist policy \rightarrow list what is allowed
- Rules to allow a service are added after a careful analysis
- More visible to users (users are restricted at what they can do)
- Preferred default policy for business and governmental organizations
- Example deny policy Allow incoming http Deny all

Dr. Luca Allodi - Network Security - University of Trento, DISI (AA 2015/2016)

Firewall Types

- Static packet filtering
- Stateful packet filtering
- Proxies
 - Application-level gateways
 - Circuit-level gateways

Static Packet Filtering

- Applies a set of rules to each *incoming IP packet* to decide whether it should be forwarded or discarded.
- *Header information* is used for filtering (e.g, protocol number, source and destination IP, source and destination port numbers, etc.)
- Stateless: each IP packet is examined isolated from what has happened in the past.
- Often *implemented* by a router
- Simple and fast \rightarrow low demand on resources

Access lists

- Defined by CISCO format
 - Standard ACLs

access-list \$number \$action \$src [wild card]

- Number \rightarrow identifies rule
- Action \rightarrow accept/deny
- Src \rightarrow source ip
- Wild card \rightarrow inverse of subnet mask \rightarrow says which part of the IP should be checked for and which ignored
 - e.g. 192.168.3.1 [0.0.255.255] → "0.0.3.1" is the subnet of interest
- Extended ACLs

access-list \$number \$action \$type \$src [wild card] \$opt \$dest [wild card] [log]

- Type \rightarrow IP, tcp, udp, ...
- Opt \rightarrow ports for TCP/UDP, type/code for ICMP, ...
- Log \rightarrow write in log when event is triggered
- Can assign values to variables
 - e.g. internal_net:=192.168.1.0/24

Packet Filtering

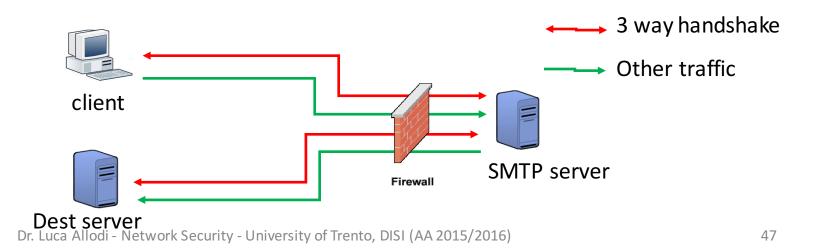
Do we actually need this?

- Yes, if default allow
- No, if default deny

Notice that this is last in the list

• First rule that matches is used

Example of (explicit) policies:


- 1. deny all incoming tcp connections to SSH;
- 2. allow outgoing TCP connections to SSH

action	SrC	port	dest	dport	flags	comment
allow	192.168.2.0/24	*	*	22	*	Our outgoing traffic to remote ssh servers
allow	*	22	192.168.2.0/24	*	S	Their SYN ACK
					ACK	
allow	*	22	192.168.2.0/24	*	ACK	Rest of communication
action	src	port	dest	dport	flags	comment
deny	*	*	192.168.2.0/24	22	S	We do not allow remote connections to local SSH
Dr.	Luca Allodi - Network	servers 46				

Note of caution

- Some protocols are easy to implement
 - Clear distinction between client and server
 - Other protocols are not as straightforward
- e.g. want to restrict SMTP operations
 - SMTP server acts both as a client (receives mail) and as a server (forwards mail to next server)
 - Firewall rules must match both cases

Exercise: SMTP rules

- Explicitly allow incoming SMTP traffic from 10.1.1.1 to SMTP-srv
- Allow all outgoing SMTP traffic

action	src	port	dest	dport	flags	comment
allow	10.1.1.1	*	SMTP-srv	25	*	allow everything from trusted client
allow	SMTP-srv	25	10.1.1.1	*	S ACK	allow server answer
allow	SMTP-srv	25	10.1.1.1	*	ACK	Allow rest of communication
allow	SMTP-srv	*	*	25	S xor A	Allow initiation of connection to remote SMTP
allow	*	25	SMTP-srv	*	SA	
allow	*	25	SMTP-srv	*	A	
deny _{Dr}	* Luca Allodi - Network	* Security - L	* Iniversity of Trento, DIS	* I (AA 2015/2	* 1016)	48

Packet Filtering: Pros and cons

- Pros
 - Transparent. It does not change the traffic flow or characteristics either passes it through or doesn't
 - Simple
 - Easy to implement rules to prevent IP spoofing
 - e.g. no outgoing traffic from non-private IP address space
 - Control and log attempts to remotely connect to private services
 - Cheap
- Cons
 - It does not prevent application-specific attacks
 - Unsophisticated (protects against simple attacks)
 - Calibrating rule set may be tricky
 - Limited logging