




#### **Goals for Designed Experiments**



## Modeling

- Understanding relationships between design parameters and product performance
- Understanding effects of noise factors

## Optimizing

- Reducing product or process variations
- Optimizing nominal performance

#### Why is this needed?



### RobocupJr Rules

 Teenagers 12-18yrs old try to build a fully functional autonomous robot to achieve a goal

#### RescueMaze

 Follow a black line on a white surface until you reach a room where you have balls of predefined size you have to collect.



18/05/18

Fabio Massacci - ICT Innovation

#### Why is this needed?



- Robocup Jr Process
  - Group first try locally at one's school, then regional selections, national finals and finally best group is selected for world finals
  - Map is almost the same, the only truly randomly placed things are the obstacle and the victims to be collected but they are in a confined area.
  - Some green spots are marked on the line to mark sharp corners
- What can possibly go wrong if you have done a spotless program that work in your lab?



18/05/18

Fabio Massacci - ICT Innovation

**▶** 5

#### Lack of Robustness...



- The world competion is done in a big Fair Hall with a slightly different lighting
  - Green looks therefore of a different hue from the innumerable test that you tried during the regional and national finals
- Your cheap Lego sensor has only a binary recognition of green, white and black
  - The "green spots" are no longer recognized as "green" by your sensors.
- Outcome?
  - First at national final, 13°/16 in World final.

18/05/18

Fabio Massacci - ICT Innovation

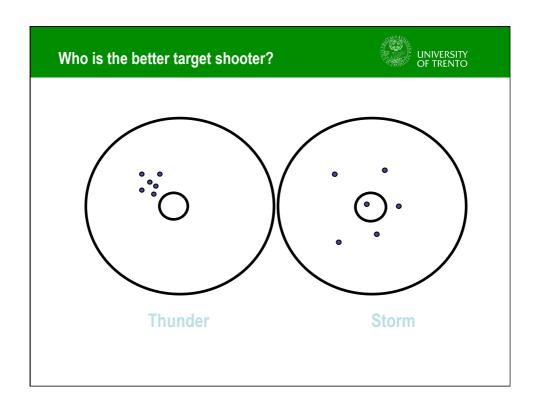
**▶** 6

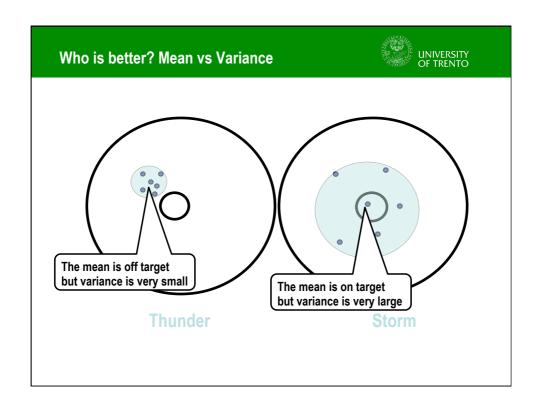
#### What if they were selling a product

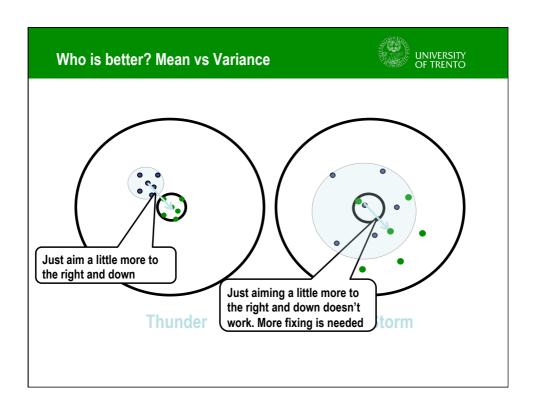


- You tested the product in the lab...
- You run the software, simulations etc.
- Customers return it back because it is crappy and they can't use
  - Missed sales
  - Lost reputation
- Example
  - server load → you didn't expect to have that many queries...
  - Washing Powder vs Washing Machine and Water → ...

18/05/18


Fabio Massacci - ICT Innovation


▶ 7


#### How do we make sure this doesn't happen?



- Testing a laser-guided rifle
  - Thunder
  - Storm
- Experiment
  - Ask 6 soldiers to take aim and shoot
  - Identify best gun
- · Decide what to do in response



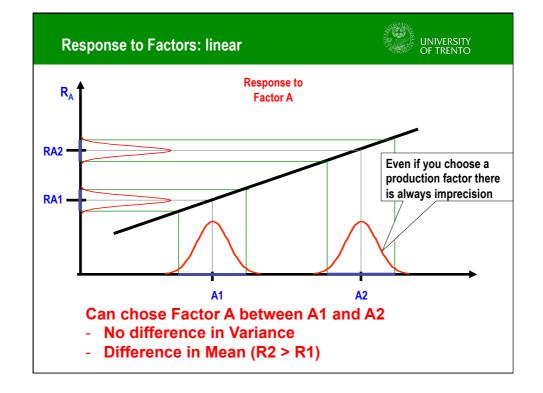


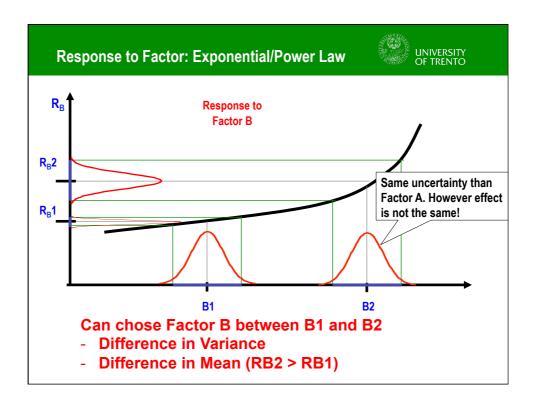


## **Robust Designs**



- Up to know: select product parameters based on best performance metric
  - Cost is included.
  - No point of buying an expensive 10-level green sensor if binary one works just fine.
- Next: select "robustly best" performance factor in presence of noise
  - A robust product or process performs correctly, even in the presence of noise factors
  - The notion of "best" might need to be adjusted
- Noise factors may include:
  - parameter variations
  - environmental changes
  - operating conditions
  - manufacturing variations
- Performance factor
  - Decide what it is based on your project
  - E.g. Bike → resistance to lateral torsion

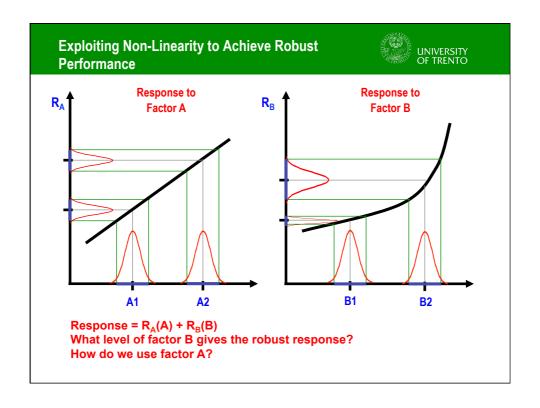

#### **Understanding Response**




**1**3

- · Typical design
  - Output: response factor
  - Input: different configuration parameter
- Key idea (mistaken) of software developers
  - Output is always the same give the input
  - No it is not because
    - · the configuration is never completely specified
    - Only for trivial programs and trivial inputs you can verify it → as soon as you had concurrency this is theoretically impossible
    - · You only specifies part of the output response
  - So we need to empircally test what happens and seen how a system actually respond to a input

18/05/18 Fabio Massacci - ICT Innovation

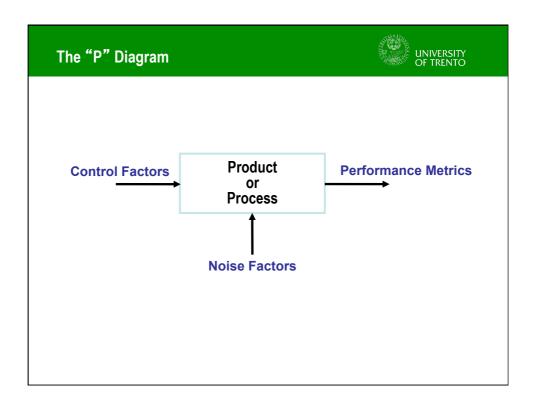


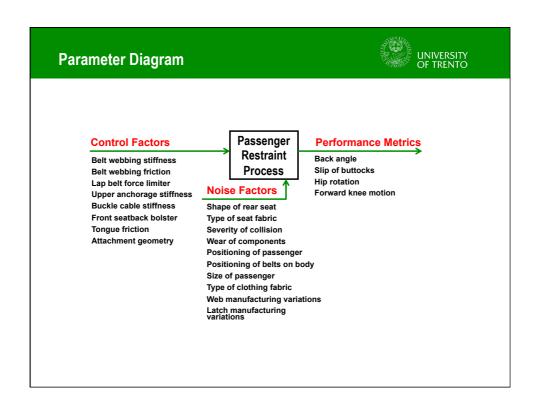



## **Robust Designs**



- A robust product or process performs correctly, even in the presence of noise factors
- e.g. shooters (aka users)
- Noise factors may include:
  - parameter variations
  - environmental changes
  - operating conditions
  - manufacturing variations
- · How do we find the robust design?





# Robust Design Procedure Step 1: Parameter Diagram



- Step 1: Select appropriate controls, response, and noise factors to explore experimentally.
- Control factors (input parameters)
- Noise factors (uncontrollable)
- Performance metrics (response)







## **Example: Brownie Mix**



- Control Factors
  - Recipe Ingredients (quantity of eggs, flour, chocolate)
  - Recipe Directions (mixing, baking, cooling)
  - Equipment (bowls, pans, oven)
- Noise Factors
  - Quality of Ingredients (size of eggs, type of oil)
  - Following Directions (stirring time, measuring)
  - Equipment Variations (pan shape, oven temp)
- Performance Metrics
  - Taste Testing by Customers
  - Sweetness, Moisture, Density

## **Robust Design Procedure**



Step 2: Objective Function

Step 2: Define an objective function (of the response) to optimize.

- maximize desired performance
- minimize variations
- target value
- signal-to-noise ratio

## **Types of Objective Functions**



Larger-the-Better

e.g. performance  $\eta = \mu^2$ 

Nominal-the-Best

e.g. target η= 1/(μ–t)<sup>2</sup> **Smaller-the-Better** 

e.g. variance  $\eta = 1/\sigma^2$ 

Signal-to-Noise

e.g. trade-off  $\eta = 10\log[\mu^2/\sigma^2]$ 

#### **Example: Brownie Mix**



- Control Factors
  - Recipe Ingredients (quantity of eggs, flour, chocolate)
  - Recipe Directions (mixing, baking, cooling)
  - Equipment (bowls, pans, oveni)
- **Noise Factors** 
  - Quality of Ingredients (size of eggs, type of oil)
  - Following Directions (stirring time, measuring)
  - Equipment Variations (pan shape, oven temp)
- Performance Metrics
  - Taste Testing by Customers
  - Sweetness, Moisture, Density

- Experiment 1 (a and b)
  - 2 eggs, 200g of flour
  - Stir 5min 10 minutes -manually
  - Bake 30min at 180C and test
- Experiment 2 (a and b)
  - 2 eggs, 200g of flour
  - Stir 5min 10 minutes use a
  - Bake 30min at 180C and test
- Out of 4 5min mixer is best
- Experiment 3
  - 2 eggs, 200g of flour
  - Stir 5min with mixer
  - Bake at 30 at 200C
  - Bake at 25 att 180C

#### **Example: Brownie Mix**



- **Control Factors** 
  - Recipe Ingredients (quantity of eggs, flour, chocolate)
  - Recipe Directions (mixing, baking, cooling)
  - Equipment (bowls, pans, oven)
  - **Noise Factors** 
    - Quality of Ingredients (size of eggs, type of oil)
    - Following Directions (stirring time, measuring)
      Equipment Variations (pan shape,
    - oven temp)
- **Performance Metrics** 
  - Taste Testing by Customers
  - Sweetness, Moisture, Density

- Nominal
  - 2 eggs, 200g of flour
  - Stir 10min
  - Bake 30min at 180C and test
- Experiment 2
  - 1 eggs, 200g of flour
  - Stir 10min
  - Bake 30min at 180C and test
- Experiment 3
  - 3 eggs, 200g of flour
  - Stir 10min
  - Bake 30min at 180C and test
- Experiment 4
  - 2 eggs, 100g of flour
  - Stir 10min
  - Bake 30min at 180C and test
- Experiment ...
  - 2 eggs, 300g of flour
  - Stir 10min
  - Bake 30min at 180C and test

#### Robust Design Procedure Step 3: Plan the Experiment



- Step 3: Plan experimental runs to elicit desired effects.
  - Use full or fractional factorial designs to identify interactions.
  - Use an orthogonal array to identify main effects with minimum of trials.
  - Use inner and outer arrays to see the effects of noise factors.

### **Experiment Design: Full Factorial**



- · Consider k factors, n levels each.
- · Test all combinations of the factors.
- The number of experiments is  $n^k$  .
- Generally this is too many experiments, but we are able to reveal all interactions.

| Expt # | Param A | Param B |
|--------|---------|---------|
| 1      | A1      | B1      |
| 2      | A1      | B2      |
| 3      | A1      | В3      |
| 4      | A2      | B1      |
| 5      | A2      | B2      |
| 6      | A2      | B3      |
| 7      | A3      | B1      |
| 8      | A3      | B2      |
| 9      | A3      | B3      |

2 factors, 3 levels each:  

$$n^k = 3^2 = 9 \text{ trials}$$

4 factors, 3 levels each:  

$$n^k = 3^4 = 81$$
 trials

#### **Experiment Design: One Factor at a Time**



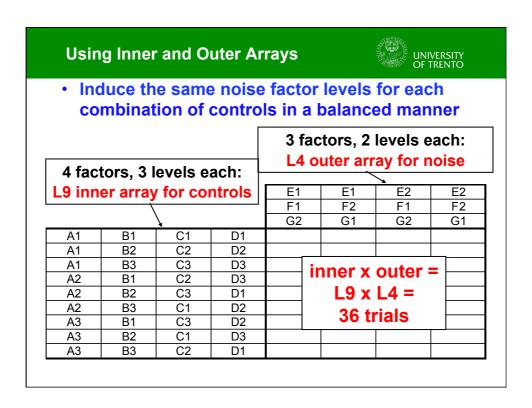
- · Consider k factors, n levels each.
- Test all levels of each factor while freezing the others at nominal level.
- The number of experiments is 1+k(n-1).
- · BUT this is an unbalanced experiment design.

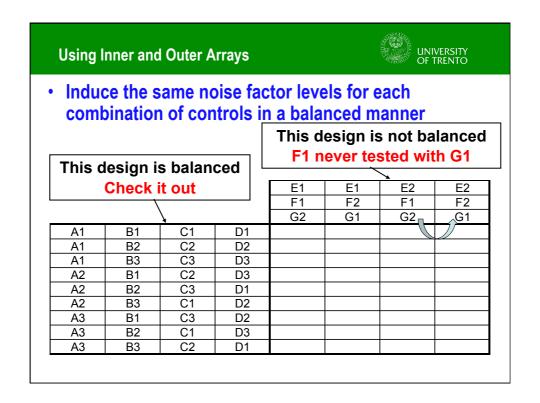
| Expt # | Param A | Param B | Param C | Param D |
|--------|---------|---------|---------|---------|
| 1      | A2      | B2      | C2      | D2      |
| 2      | A1      | B2      | C2      | D2      |
| 3      | A3      | B2      | C2      | D2      |
| 4      | A2      | B1      | C2      | D2      |
| 5      | A2      | B3      | C2      | D2      |
| 6      | A2      | B2      | C1      | D2      |
| 7      | A2      | B2      | C3      | D2      |
| 8      | A2      | B2      | C2      | D1      |
| 9      | A2      | B2      | C2      | D3      |

4 factors, 3 levels each 1+k(n-1) = 1+4x2 = 9 trials

#### **Experiment Design: Orthogonal Array**



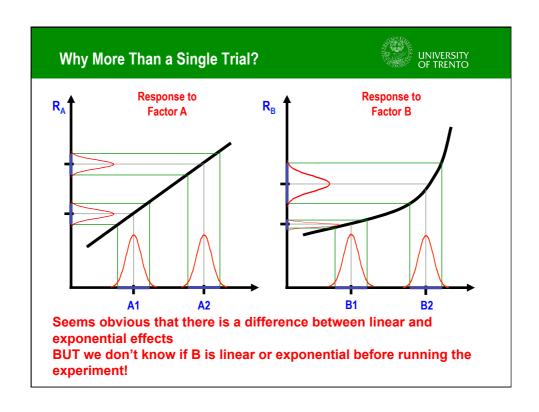

- · Consider k factors, n levels each.
- For every pair of factors each level of one factor is paired with all levels of the other factors
- The number of experiments is order of (k-1)n.
- This is the smallest balanced experiment design.
- Trade-off effects and interactions are confounded.


| Expt # | Param A | Param B | Param C | Param D |
|--------|---------|---------|---------|---------|
| 1      | A1      | B1      | C1      | D1      |
| 2      | A1      | B2      | C2      | D2      |
| 3      | A1      | В3      | C3      | D3      |
| 4      | A2      | B1      | C2      | D3      |
| 5      | A2      | B2      | C3      | D1      |
| 6      | A2      | B3      | C1      | D2      |
| 7      | A3      | B1      | C3      | D2      |
| 8      | A3      | B2      | C1      | D3      |
| 9      | A3      | B3      | C2      | D1      |

4 factors, 3 levels each:

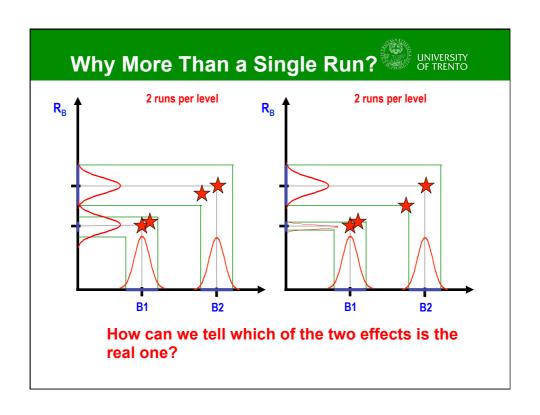
(k-1)n =

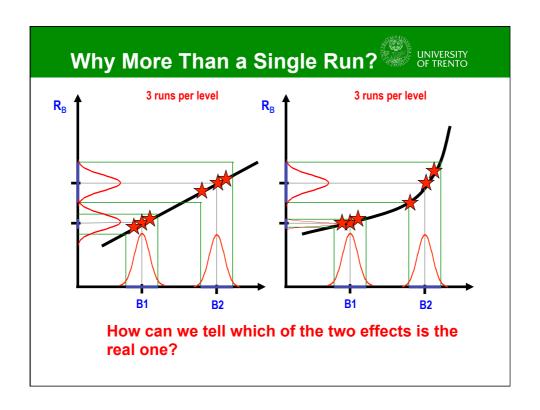
(4-1)3 = 9 trials







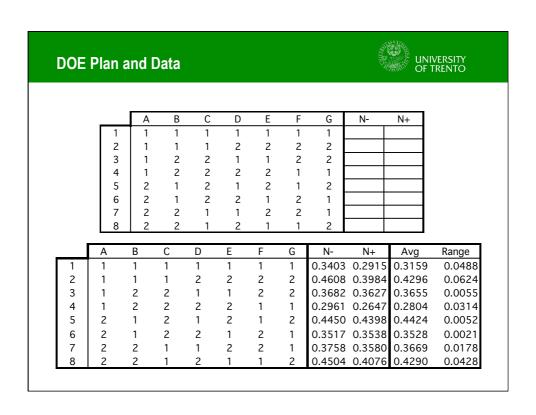

#### Robust Design Procedure Step 4: Run the Experiment

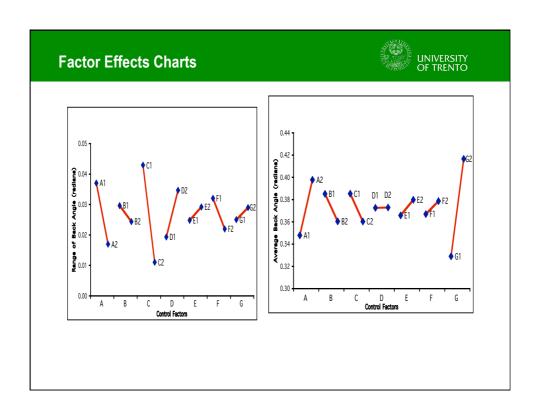



- Step 4: Conduct the experiment.
- Vary the control and noise factors
- Record the performance metrics
- Compute the objective function
- Possibly more than one single run for each trial!
  - So total is (k-1) factors \* n levels \* m runs








## Robust Design Procedure Step 5: Conduct Analysis

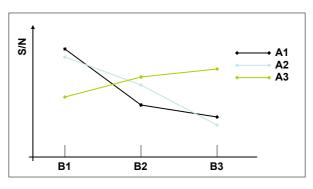


- Step 5: Perform analysis of means and variance.
  - Compute the mean value of the objective function for each factor setting.
  - Identify which control factors reduce the effects of noise and which ones can be used to scale the response. (2-Step Optimization)





#### Robust Design Procedure Step 6: Select Setpoints




- Step 6: Select control factor setpoints.
  - Choose settings to maximize or minimize objective function.
  - Consider variations carefully. (Use means or variance to understand variation explicitly.)
- Advanced use:
  - Conduct confirming experiments.
  - Set scaling factors to tune response.
  - Iterate to find optimal point.
  - Use higher fractions to find interaction effects.
- Test additional control and noise factors.

## **Confounding Interactions**



- Generally the main effects dominate the response.
   BUT sometimes <u>interactions</u> are important. This is generally the case when the confirming trial fails.
- To explore interactions, use a fractional factorial experiment design.



#### **Adaptive Factor: Hill Climbing**



- · Consider k factors, n levels each.
- · Start at nominal levels.
- Test each level of each factor one at a time, while freezing the previous ones at best level so far.
- The number of experiments is nk+1.
- Since this is an unbalanced experiment design, you can stop anytime (you have no info anyway).
- · Helpful to sequence factors for strongest effects first.
- · In some cases it work well when interactions are present.

| 4 factors, 2 levels each: |             | Response | Param D | Param C | Param B | Param A | Expt # |
|---------------------------|-------------|----------|---------|---------|---------|---------|--------|
| ·                         |             | 5.95     | D2      | C2      | B2      | A2      | 1      |
| nk+1 =                    |             | 5.63     | D2      | C2      | B2      | A1      | 2      |
|                           | <b>A3</b>   | 6.22     | D2      | C2      | B2      | A3      | 3      |
| 2x4+1 = 9 trials          | < <u>B1</u> | 6.70     | D2      | C2      | B1      | A3      | 4      |
| 2X4 · 1 - 3 trial3        | ,           | 6.58     | D2      | C2      | В3      | A3      | 5      |
|                           |             | 4.85     | D2      | C1      | B1      | A3      | 6      |
|                           | C2          | 5.69     | D2      | C3      | B1      | A3      | 7      |
|                           | ,           | 6.60     | D1      | C2      | B1      | A3      | 8      |
|                           | <b>◯</b> D3 | 6.98     | D3      | C2      | B1      | A3      | 9      |
|                           | •           |          |         |         |         |         |        |

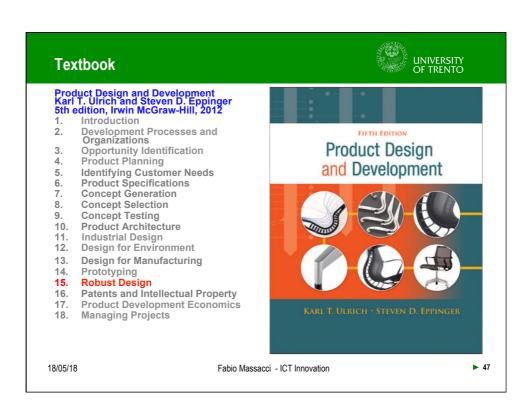
#### **Key Concepts of Robust Design**



- Variation causes quality loss
- Two-step optimization
- Matrix experiments (orthogonal arrays)
- Inducing noise (outer array or repetition)
- Data analysis and prediction
- Interactions and confirmation

#### References




- Taguchi, Genichi and Clausing, Don "Robust Quality"

  Harvard Business Review, Jan-Feb 1990.
- Byrne, Diane M. and Taguchi, Shin "The Taguchi Approach to Parameter Design" Quality Progress, Dec 1987.
- Phadke, Madhav S.
   Quality Engineering Using Robust Design Prentice Hall, Englewood Cliffs, 1989.
- Ross, Phillip J.
   Taguchi Techniques for Quality Engineering McGraw-Hill, New York, 1988.

#### **Paper Airplane Experiment**



| Expt # | Weight | Winglet | Nose | Wing | Trials | Mean | Std Dev | S/N |
|--------|--------|---------|------|------|--------|------|---------|-----|
| 1      | A1     | B1      | C1   | D1   |        |      |         |     |
| 2      | A1     | B2      | C2   | D2   |        |      |         |     |
| 3      | A1     | B3      | C3   | D3   |        |      |         |     |
| 4      | A2     | B1      | C2   | D3   |        |      |         |     |
| 5      | A2     | B2      | C3   | D1   |        |      |         |     |
| 6      | A2     | В3      | C1   | D2   |        |      |         |     |
| 7      | A3     | B1      | C3   | D2   |        |      |         |     |
| 8      | A3     | B2      | C1   | D3   |        |      |         |     |
| 9      | A3     | B3      | C2   | D1   |        |      |         |     |

