
Libsnark Tutorial:

Fundamental Relations and Gadgets for FinTech

Chan Nam Ngo
channam.ngo@unitn.it

University of Trento, Trento, Italy

November 21, 2018

1 Common Scenario

Let us consider the following scenario. A FinTech system often comprises N
players. Each player Pi owns a secret inventory Ii. Suppose the secret inventory
Ii = (ci, ai) where ci is the current cash balance and ai is the current goods
amount of Pi. As a simple example allow a player Pi post an offer to trade
(buy or sell) a goods amount v at price p. For simplicity the system will halt
until another player Pj accepts the offer and make the transaction. Security
requirements of such system is simple: (1) the transactions are correct, (2) Ii
and Ij stay secret (the traded amount v can be public) and (3) players Pi and
Pj stay anonymous.

2 Crypto Implementation

Let us start slowly with an implementation that ignores player anonymity for
now assuming that there is a commitment scheme [x] = com(x) (the correspond-
ing randomness r(x) is omitted for the sake of description, we will mention the
randomness when necessary).

2.1 Initialization

A simple solution would be for all players to initially commit to his/her own
secret inventory.

For each player Pi in P

1. Commits to [ci] = com(ci)

2. Commits to [ai] = com(ai)

After this all players would store a list of tuples {([ci], [ai])}Ni=1.

1

2.2 Making an offer

To make an offer of amount v at price p. Let us agree on the convention that to
buy v > 0 and to sell v < 0. A player Pi making an offer can do the following.

Player Pi now owns a tuple ([ci], [ai]) proceeds as follows.

1. Locally updates c′i = ci − v · p

2. Locally updates a′i = ai + v

3. Commits to [c′i] = com(c′i)

4. Commits to [a′i] = com(a′i)

2.3 Accepting an offer

A player Pj accepting an offer can do the following.

Player Pj now owns a tuple ([cj], [aj]) proceeds as follows.

1. Locally updates c′j = cj + v · p

2. Locally updates a′j = aj − v

3. Commits to [c′j] = com(c′j)

4. Commits to [a′j] = com(a′j)

2.4 Maintaining Integrity

Zero-Knowledge Proof can be used for maintaining integrity in such systems.
Randomnesses for commitments are omitted for the sake of description.

Table 1: Maintaining Interity with Relations
Purpose Statement Witness Conditions
Can make a buy offer [ci], v, p ci ci ≥ v · p
Can make a sell offer [ai], v ai ai ≥ v
Pi updates correctly [ci], [ai], [c

′
i], [a

′
i], v, p ci, ai, c

′
i, a

′
i c′i = ci−v·p and

a′i = ai + v
Can accept a sell offer [cj], v, p cj cj ≥ v · p
Can accept a buy offer [aj], v aj aj ≥ v
Pj updates correctly [cj], [aj], [c

′
j], [a

′
j], v, p cj , aj , c

′
j , a

′
j c′j = cj + v · p

and a′j = aj − v

2

Table 2: Merkle Tree’s supported operations
Definition Description
ρ = Add(T, [x]) Adds a new leaf (the hash of [x]) to the tree and gener-

ates a new root root.
path = path(T, [x]) Returns the authentication path from [x] to ρ.
{0, 1} ← Auth(ρ, path, [x]) Authenticates [x] in T w.r.t. the authentication path

path (where output 1 means the authentication suc-
ceeded).

2.5 Maintaining Anonymity

The overall state can be captured by a token τi that is a commitment of all
values in the inventory (with fresh randomness r(τ)); initially, such value is only
known to the player itself. Each player keeps the token secret and broadcasts
a commitment to it in order to commit to a new inventory; such an inventory
is considered as unspent. At a later point, a player can reveal the token and
retrieve a previously committed inventory, in which case we say the inventory
is spent, as the corresponding token cannot be used anymore.

The anonymity of the inventory is guaranteed by relying on Merkle trees in
conjunction with the zero-knowledge proofs. Throughout the execution of the
protocol, a Merkle tree T based on a collision-resistant hash function (the same
one that), where the leafs are commitments, is maintained and updated. ρ
denotes the root of the tree, and path denotes the authentication path from a
leaf [v] to the root ρ. The number of leafs is not fixed a-priori, one can efficiently
update a Merkle tree by appending a new leaf, resulting in a new tree; this can
be done in time/space proportional to tree depth. Table 2 summarizes the
supported ops Add, path and Auth of a Merkle tree T : adding a node to the tree
(Add), returning an authentication path from the root to a value (path), and
a verification function that return 1 if the a path is authentic and 0 otherwise
(Auth). (see Table 2.)

Preserving Players’ Anonymity. The commitment (the retrieval) of trader
inventories to the Merkle Tree T is obtained by running a sub-protocols Πcom

(resp. Πret) as follows:

• In Πcom, the player broadcasts a commitment to the token corresponding
to the current inventory τi = com(ci||ai). Thus, the player proves that
the token is correctly constructed (similarly to proving consistency of a
commitment) and appended into the Merkle tree (with operation Add),
before broadcasting the new root of the tree. The other players will check
that the new root is correctly computed before accepting it.

• In Πret, a player can retrieve a previously committed inventory, and spend
it, by revealing the secret unspent token τi and proving that the newly
committed values are consistent updates of the values previously commit-
ted; this is done by proving: (1) [τi] is a leaf of the current tree and the

3

new values are correctly updated (see the maintaining integrity part). Ev-
ery time an inventory is retrieved, two sets of commitments are generated
corresponding to the inventory values before and after the update. The
token τi is now marked as spent and will not be usable for retrieving any
inventory.

4

