
Libsnark Tutorial: Basic Gadgets

Chan Nam Ngo
channam.ngo@unitn.it

University of Trento, Trento, Italy

November 16, 2018

1 Common Scenario

Let us consider the following scenario where Alice wants to prove to Bob that
she is able to buy a certain amount v of his goods at price p but she does not
want Bob to find out how much cash available that she has.

1. Alice commits to her available cash cA, which gives her a commitment
CA = com(cA; rA) where rA is the randomness of the commitments.

2. Alice then only needs to prove in zk that the following conditions are
satisfied.

(a) CA = com(cA; rA)

(b) cA ≥ v ∗ p

Let us move on and make a transaction of the deal as well.

1. Suppose Bob has previously committed as well his cash cB which gives
him CB = com(cB ; rB) where he keeps also rB .

2. Alice then updates c′A = cA − v ∗ p while Bob updates c′B = cB + v ∗ p.

3. Both of them then commit to C ′
A and C ′

B respectively and prove in zk
that the following conditions are satisfied respectively.

(a) C ′
A = com(c′A; r′A)

(b) c′A = cA − v ∗ p

and

(a) C ′
B = com(c′B ; r′B)

(b) c′B = cB + v ∗ p

What about the goods amount? Simple, they can do the same for their respec-
tive amount vA and vB .

1



2 Dual Variable Gadget

Suppose that the commitment scheme is a SHA-256 hash function H, technically
we need to do the following, e.g. for cA:

1. Decompose cA, . . . into a bit vector of 256 bits {cA,i}256i=1, etc.

2. Pick a random bit vector {rA,i}256i=1 of 256 bits

3. Produce a commitment as a 256 bits hash {CA,i}256i=1 = H({cA,i}256i=1; {rA,i}256i=1)

The required conditions for cA, as shown above is cA ≥ v ∗ p where v and p are
numbers, not bit vectors. Hence it requires an additional condition where we
shows cA is consistent with {cA,i}256i=1.

The dual variable gadget is useful in this case.

template<typename FieldT>

class dual_variable_gadget : public gadget<FieldT> {

private:

std::shared_ptr<packing_gadget<FieldT> > consistency_check;

public:

pb_variable<FieldT> packed; // value c_A

pb_variable_array<FieldT> bits; // bit vector {c_A,i}

void generate_r1cs_witness_from_packed(); // c_A to {c_A,i}

void generate_r1cs_witness_from_bits(); // {c_A,i} to c_A

};

3 Comparison Gadget

So far we have declared cA as a variable, {cA,i}256i=1 as a variable array and used
dual variable gadget to guaranteed the consistency. We can move on and check
cA ≥ v ∗ p. For this purpose we will need additional variables.

As we can only describe constraints using R1CS, we have to covert all the
conditions into the format a ∗ b = c. As an example, we can declare x, v and p
as variables and add the constraint v ∗ p = x.

The rest is to compare cA and x where we can make use of the compari-
son gadget.

template<typename FieldT>

class comparison_gadget : public gadget<FieldT> {

const pb_linear_combination<FieldT> A;

const pb_linear_combination<FieldT> B;

const pb_variable<FieldT> less; // A < B

const pb_variable<FieldT> less_or_eq; // A <= B

void generate_r1cs_constraints();

void generate_r1cs_witness();

2



};

The example usage is as follows.

protoboard<FieldT> pb;

pb_variable<FieldT> A, B, less, less_or_eq;

A.allocate(pb, "A");

B.allocate(pb, "B");

less.allocate(pb, "less");

less_or_eq.allocate(pb, "less_or_eq");

comparison_gadget<FieldT> cmp(pb, n, A, B, less, less_or_eq,

"cmp");

cmp.generate_r1cs_constraints();

4 Multi-Packing Gadget

As we are working with bit vectors of 256 bits. It is useful to compress them
into Field elements to reduce the size of the statement.

// Connects hasher_output with circuit output

// (this->commitment)

this->commitment_packer

= make_shared<multipacking_gadget<FieldT>>(

pb, hasher_output.bits, this->commitment, FieldT::capacity(),

FMT(this->annotation_prefix, " commitment_packer"));

5 Other useful gadgets

All of the basic gadgets can be found in gadgetlib1’s basic gadgets file.

disjunction_gadget // OR

conjunction_gadget // AND

inner_product_gadget

6 What to do now?

The following examples are provided:

1. Comparison of a value and a constant

2. Comparison of two values

3. Range check for a value

3



Follow the example gadgets and try to implement the following scenario.

1. Alice commits to cA, her available cash, and vA, her holding goods.

2. Alice proves in zk that her total value cA + vA ∗ p is above a threshold t,
i.e. cA + vA ∗ p ≥ t where p and t are public values.

Hints:

1. There are two commitments CA and VA, so two variables

2. Two variable arrays are required to bind CA and VA to the hashers (two
hashers and two dual variable gadgets required)

3. Two variables are required for the public values p and t

4. One variable X is required to hold the value for X = vA ∗ p (1 constraint)

5. One variable Y is required to hold the value for cA + vA ∗ p = cA + X (1
constraint in the form Y = 1 ∗ (cA + X))

6. The comparison gadget then can be used with Y and t where B = Y and
A = t because we want to check Y ≥ t which means t ≤ Y .

4


