Lab Session: Finite Fields and Number Theoretic Reference Problems

Chan Nam Ngo
channam.ngo@unitn.it
University of Trento, Trento, Italy

September 28, 2018

1 Installation of the libsnark library

All the lab sessions assume the Linux platform (e.g. Ubuntu). Students using other platforms should find equivalent alternatives. An easy solution would be VirtualBox ${ }^{1}+$ Ubuntu 2.

Students should follow the instruction on https://github.com/scipr-lab/ libsnark for installation. The libsnark library is useful because it provides almost all necessary dependencies for all our lab sessions.

- GMP for handling big integers
- libff for elliptic curve finite fields
- libsnark itself is a zk-SNARK library

Other dependencies such as libssl (which also includes libcrypto) are also useful for some crypto tasks, e.g. random number generations, etc.

2 Warm up with small integers

Students only need to use standard $\mathrm{C} / \mathrm{C}++$ library for doing this exercise. The goal is to implement the following 3 fundamental algorithms for small integers.

2.1 Extended Euclidean algorithm in \mathbb{Z}

The Extended Euclidean algorithm, takes as input two integers a and b, returns not only the gcd (greatest common divisor) of a and b, but also two other integers x and y such that $a \cdot x+b \cdot y=\operatorname{gcd}(a, b)$.

[^0]In case a coprimes b, i.e. $\operatorname{gcd}(a, b)=1$, the Extended Euclidean algorithm is very useful, as it yields almost no overhead but returns x, which is the modular multiplicative inverse of a modulo b, and y is the modular multiplicative inverse of b modulo a.

```
\((\operatorname{gcd}, \mathrm{x}, \mathrm{y})=\operatorname{EGCD}(\mathrm{a}, \mathrm{b})\)
    procedure \(\operatorname{EGCD}(a, b)\)
        if \(b==0\) then
            return \((a, 1,0)\)
        end if
        \(x_{2}=1, x_{1}=0, y_{2}=0, y_{1}=1\)
        while \(b>0\) do
            \(q=a / b, r=a-q * b, x=x_{2}-q * x_{1}, y=y_{2}-q * y_{1}\)
            \(a=b, b=r, x_{2}=x_{1}, x_{1}=x, y_{2}=y_{1}, y_{1}=y\)
        end while
        return \(\left(a, x_{2}, y_{2}\right)\)
    end procedure
```

Students can check the algorithm output against the online implementation at https://planetcalc.com/3298/ for correctness.

2.2 Computing multiplicative inverse in \mathbb{Z}_{n}

Students will use the implemented Extended Euclidean algorithm for computing the multiplicative inverse of an integer a in \mathbb{Z}_{n}.

```
\(x=\) MultiplicativeInverse( \(a, n\) )
    procedure MultiplicativeInverse ( \(a, n\) )
        \((d, x, y)=\operatorname{EGCD}(a, n)\)
    if \(d>1\) then
        return null
    end if
    return \(x\)
    end procedure
```


2.3 Repeated square-and-multiply algorithm for exponentiation in \mathbb{Z}_{n}

Let the binary representation of k be $\left\{k_{i}\right\}_{i=0}^{t}$, the modular exponentiation a^{k} for $a \in \mathbb{Z}_{n}$ can be efficiently computed as $a^{k}=\prod_{i=0}^{t} a^{k_{i} 2^{i}}$.

```
\(b=R S M\left(a,\left\{k_{i}\right\}_{i=0}^{t}, n\right)\)
    procedure \(\operatorname{RSM}\left(a,\left\{k_{i}\right\}_{i=0}^{t}, n\right)\)
        if \(k==0\) then
            return 1
        end if
```

```
    \(A=a\)
    if \(k_{0}==1\) then
        \(b=a\)
    end if
    for \((i=1 ; i<t ; i++)\) do
        \(A=A^{2} \bmod n\)
        if \(k_{i}==1\) then
        \(b=A \cdot b \bmod n\)
        end if
        end for
        return b
    end procedure
```

Students can check the output of the algorithm against the trivial version, i.e. k multiplications of $a \bmod n$, for correctness.

Can you also explain the complexity difference between RSM and the trivial version?

3 Handle big integers using the GMP library

Students will use the GMP library (a dependency of the libsnark library) to handle big integers. Repeat the three algorithms in $\S 2$.

To use and link the GMP library, follow the instructions at https://gmplib. org/manual/Headers-and-Libraries.html. Below you can find a simple example. All arithmetic operations for Big Integer in GMP require function calls.

```
The add_example.c is as follows.
{
#include <stdio.h>/* for printf */
#include <gmp.h>
int main(int argc, char *argv[])
{
    mpz_t a, b; /* working numbers */
    if (argc<3)
    { /* not enough words */
        printf("Please supply two numbers to add.\n");
        return 1;
    }
    mpz_init_set_str (a, argv[1], 10);
    /* Assume decimal integers */
    mpz_init_set_str (b, argv[2], 10);
    /* Assume decimal integers */
    mpz_add (a, a, b) ; /* a=a+b */
```

```
    printf("%s + %s => %s\n", argv[1],
        argv[2], mpz_get_str (NULL, 10, a));
    return 0;
}
```

It can be built using the following command.
ubuntu: \sim g gcc -o add_example add_example.c -lgmp -lm
See https://gmplib.org/manual/Integer-Functions.html for references.
Students can use the following functions of openssl to do some sub-tasks.

- openssl-prime ${ }^{3}$ for generating prime numbers for testing purposes.

```
ubuntu:~$ openssl prime -generate -safe -bits 128
329720161372808576669651325053333255543
```

- openssl-dhparam ${ }^{4}$ for generating Diffie-Hellman parameters (big prime and generator) for testing purpose.

```
ubuntu:~$ openssl dhparam -text 128
Generating DH parameters, 128 bit long safe prime,
generator 2
This is going to take a long time
DH Parameters: (128 bit)
prime:
00:94:42:54:bd:bc:ee:37:f5:81:e2:0c:c6:10:a5:
6d:8b
generator: 2 (0x2)
```

The online implementation at https://planetcalc.com/3298/ is also applicable for big integers.

4 The Discrete Logarithm problem

Students will try to solve the DLOG problem using two algorithms (1) Exhaustive Search and (2) Baby-Step Giant-Step.
** SHOULD TEST WITH SMALL NUMBERS FIRST**
${ }^{3}$ https://www.openssl.org/docs/manmaster/man1/openssl-prime.html
${ }^{4}$ https://www.openssl.org/docs/manmaster/man1/dhparam.html

4.1 Exhaustive Search using Repeated square-and-multiply algorithm in \mathbb{Z}_{p}^{*}

```
procedure ExhaustiveDLOG1( }p,g,y
        for ( }k=0;k<p;k++) d
            Let the binary representation of k}\mathrm{ be {}\mp@subsup{k}{i}{}\mp@subsup{}}{i=0}{t
            if y== RSM}(g,{\mp@subsup{k}{i}{}\mp@subsup{}}{i=0}{t},p)\mathrm{ then
                return }
            end if
        end for
end procedure
```

Can you suggest another variant instead of deterministically going through k from 0 to p ? Can we pick k in a better way (by a heuristic)?

Can the following variant provide the correct answer? Explain why.

```
procedure ExhaustiveDLOG2 \((p, g, y)\)
    for \(k=0 ; \boldsymbol{k}<\sqrt{\boldsymbol{p}} ; k++\) do \(\quad \triangleright\) Only consider \(k\) up to \(\sqrt{p}\)
        Let the binary representation of \(k\) be \(\left\{k_{i}\right\}_{i=0}^{t}\)
        if \(y==\operatorname{RSM}\left(g,\left\{k_{i}\right\}_{i=0}^{t}, p\right)\) then
            return \(k\)
        end if
    end for
end procedure
```


4.2 Baby-Step Giant-Step

```
procedure \(\operatorname{BSGSDLOG}(p, g, y)\)
        \(m=\sqrt{n}\)
        \(J=\emptyset\)
        for \((j=0 ; j<m ; j++)\) do
            \(J=J \cup\left(j, g^{j}\right) \quad \triangleright g^{j}\) should be evaluated using RSM
        end for
        for ( \(i=0 ; i<m ; i++\) ) do
            \(z=y \cdot g^{i}\)
            if \(((j, z) \in J)\) then
                return \(i * m+j\)
            end if
    end for
end procedure
```

How should J be stored and looked-up? Explain why.

5 The Diffie-Hellman Key Exchange protocol

Students need to implement the DHKE protocol as follows.

Alice		Bob
$x \leftarrow s \mathbb{Z}_{p}$		
$X \leftarrow g^{x}$		
	\mathbb{G}, p, g, X	
		$Y \leftarrow \varangle \mathbb{Z}_{p}$
		$Y \leftarrow g^{y}$
		$\mathrm{k}_{B} \leftarrow X^{y}$

Write the algorithm $\left(x, g^{x}\right) \leftarrow \operatorname{KeyGen}(p, g)$ and $\left(g^{x y}\right) \leftarrow \operatorname{Key} \operatorname{Agree}\left(p, g, x, g^{y}\right)$.

5.1 Breaking DH with DLOG

Write an algorithm to use a DLOG solving algorithm (e.g. BSGSGLOG) to solve the following Diffie-Hellman problems.

```
procedure \(\mathrm{CDH}(p, g, a, b)\)
    Let \(a=g^{x}, b=g^{y}\)
    return \(g^{x y}\)
end procedure
procedure \(\operatorname{DDH}(p, g, a, b, c)\)
    Let \(a=g^{x}, b=g^{y}, c=g^{z}\)
    if \((z=x y)\) then
            return true
    else
            return false
    end if
end procedure
```

Can we also use CDH or DDH to solve DLOG? Write such algorithms.

5.2 Man In The Middle attack

Alice		Eve		Bob
$x \leftarrow \mathbb{Z}_{p}$				
$X \leftarrow g^{x}$				
	\mathbb{G}, p, g, X			
		$z \leftarrow s \mathbb{Z}_{p}$		
		$Z \leftarrow g^{z}$		
	Z	\mathbb{G}, p, g, Z		
			$y \leftarrow s \mathbb{Z}_{p}$	
			$Y \leftarrow g^{y}$	
		Y		
$\mathrm{k}_{A E} \leftarrow Z^{x}$		$\mathrm{k}_{A E} \leftarrow X^{z}$	$\mathrm{k}_{B E} \leftarrow Z^{y}$	
		$\mathrm{k}_{B E} \leftarrow Y^{z}$		

Write a test program using KeyGen and KeyAgree above to simulate the MITM attack.

[^0]: ${ }^{1}$ https://www.virtualbox.org/wiki/Downloads
 ${ }^{2}$ https://www.ubuntu.com/

