
Lab Session: Finite Fields

and Number Theoretic Reference Problems

Chan Nam Ngo
channam.ngo@unitn.it

University of Trento, Trento, Italy

September 28, 2018

1 Installation of the libsnark library

All the lab sessions assume the Linux platform (e.g. Ubuntu). Students using
other platforms should find equivalent alternatives. An easy solution would be
VirtualBox1 + Ubuntu2.

Students should follow the instruction on https://github.com/scipr-lab/

libsnark for installation. The libsnark library is useful because it provides
almost all necessary dependencies for all our lab sessions.

• GMP for handling big integers

• libff for elliptic curve finite fields

• libsnark itself is a zk-SNARK library

Other dependencies such as libssl (which also includes libcrypto) are also useful
for some crypto tasks, e.g. random number generations, etc.

2 Warm up with small integers

Students only need to use standard C/C++ library for doing this exercise. The
goal is to implement the following 3 fundamental algorithms for small integers.

2.1 Extended Euclidean algorithm in Z
The Extended Euclidean algorithm, takes as input two integers a and b, returns
not only the gcd (greatest common divisor) of a and b, but also two other
integers x and y such that a · x + b · y = gcd(a, b).

1https://www.virtualbox.org/wiki/Downloads
2https://www.ubuntu.com/

1

In case a coprimes b, i.e. gcd(a, b) = 1, the Extended Euclidean algorithm is
very useful, as it yields almost no overhead but returns x, which is the modular
multiplicative inverse of a modulo b, and y is the modular multiplicative inverse
of b modulo a.

(gcd,x,y) = EGCD(a,b)

1: procedure EGCD(a, b)
2: if b == 0 then
3: return (a, 1, 0)
4: end if
5: x2 = 1, x1 = 0, y2 = 0, y1 = 1
6: while b > 0 do
7: q = a/b, r = a− q ∗ b, x = x2 − q ∗ x1, y = y2 − q ∗ y1
8: a = b, b = r, x2 = x1, x1 = x, y2 = y1, y1 = y
9: end while

10: return (a, x2, y2)
11: end procedure

Students can check the algorithm output against the online implementation
at https://planetcalc.com/3298/ for correctness.

2.2 Computing multiplicative inverse in Zn

Students will use the implemented Extended Euclidean algorithm for computing
the multiplicative inverse of an integer a in Zn.

x = MultiplicativeInverse(a,n)

1: procedure MultiplicativeInverse(a, n)
2: (d, x, y) = EGCD(a, n)
3: if d > 1 then
4: return null
5: end if
6: return x
7: end procedure

2.3 Repeated square-and-multiply algorithm for exponen-
tiation in Zn

Let the binary representation of k be {ki}ti=0, the modular exponentiation ak

for a ∈ Zn can be efficiently computed as ak =
∏t

i=0 a
ki2

i

.

b = RSM(a,{ki}t
i=0, n)

1: procedure RSM(a, {ki}ti=0, n)
2: if k == 0 then
3: return 1
4: end if

2

5: A = a
6: if k0 == 1 then
7: b = a
8: end if
9: for (i = 1; i < t; i + +) do

10: A = A2 mod n
11: if ki == 1 then
12: b = A · b mod n
13: end if
14: end for
15: return b
16: end procedure

Students can check the output of the algorithm against the trivial version,
i.e. k multiplications of a mod n, for correctness.

Can you also explain the complexity difference between RSM and the trivial
version?

3 Handle big integers using the GMP library

Students will use the GMP library (a dependency of the libsnark library) to
handle big integers. Repeat the three algorithms in §2.

To use and link the GMP library, follow the instructions at https://gmplib.
org/manual/Headers-and-Libraries.html. Below you can find a simple ex-
ample. All arithmetic operations for Big Integer in GMP require function calls.

The add example.c is as follows.

{

#include <stdio.h>/* for printf */

#include <gmp.h>

int main(int argc, char *argv[])

{

mpz_t a, b; /* working numbers */

if (argc<3)

{ /* not enough words */

printf("Please supply two numbers to add.\n");

return 1;

}

mpz_init_set_str (a, argv[1], 10);

/* Assume decimal integers */

mpz_init_set_str (b, argv[2], 10);

/* Assume decimal integers */

mpz_add (a, a, b); /* a=a+b */

3

printf("%s + %s => %s\n", argv[1],

argv[2], mpz_get_str (NULL, 10, a));

return 0;

}

It can be built using the following command.

ubuntu:~$ gcc -o add_example add_example.c -lgmp -lm

See https://gmplib.org/manual/Integer-Functions.html for references.
Students can use the following functions of openssl to do some sub-tasks.

• openssl-prime3 for generating prime numbers for testing purposes.

ubuntu:~$ openssl prime -generate -safe -bits 128

329720161372808576669651325053333255543

• openssl-dhparam4 for generating Diffie-Hellman parameters (big prime
and generator) for testing purpose.

ubuntu:~$ openssl dhparam -text 128

Generating DH parameters, 128 bit long safe prime,

generator 2

This is going to take a long time

...

DH Parameters: (128 bit)

prime:

00:94:42:54:bd:bc:ee:37:f5:81:e2:0c:c6:10:a5:

6d:8b

generator: 2 (0x2)

The online implementation at https://planetcalc.com/3298/ is also ap-
plicable for big integers.

4 The Discrete Logarithm problem

Students will try to solve the DLOG problem using two algorithms (1) Exhaus-
tive Search and (2) Baby-Step Giant-Step.

** SHOULD TEST WITH SMALL NUMBERS FIRST**

3https://www.openssl.org/docs/manmaster/man1/openssl-prime.html
4https://www.openssl.org/docs/manmaster/man1/dhparam.html

4

4.1 Exhaustive Search using Repeated square-and-multiply
algorithm in Z∗

p

1: procedure ExhaustiveDLOG1(p, g, y)
2: for (k = 0; k < p; k + +) do
3: Let the binary representation of k be {ki}ti=0

4: if y == RSM(g, {ki}ti=0, p) then
5: return k
6: end if
7: end for
8: end procedure

Can you suggest another variant instead of deterministically going through
k from 0 to p? Can we pick k in a better way (by a heuristic)?

Can the following variant provide the correct answer? Explain why.

1: procedure ExhaustiveDLOG2(p, g, y)
2: for k = 0;k <

√
p; k + + do . Only consider k up to

√
p

3: Let the binary representation of k be {ki}ti=0

4: if y == RSM(g, {ki}ti=0, p) then
5: return k
6: end if
7: end for
8: end procedure

4.2 Baby-Step Giant-Step

1: procedure BSGSDLOG(p, g, y)
2: m =

√
n

3: J = ∅
4: for (j = 0; j < m; j + +) do
5: J = J ∪ (j, gj) . gj should be evaluated using RSM
6: end for
7: for (i = 0; i < m; i + +) do
8: z = y · gi
9: if ((j, z) ∈ J) then

10: return i ∗m + j
11: end if
12: end for
13: end procedure

How should J be stored and looked-up? Explain why.

5 The Diffie-Hellman Key Exchange protocol

Students need to implement the DHKE protocol as follows.

5

Alice Bob

x←$Zp

X ← gx

G, p, g,X

y←$Zp

Y ← gy

Y

kA ← Y x kB ← Xy

Write the algorithm (x, gx)← KeyGen(p, g) and (gxy)← KeyAgree(p, g, x, gy).

5.1 Breaking DH with DLOG

Write an algorithm to use a DLOG solving algorithm (e.g. BSGSGLOG) to solve
the following Diffie-Hellman problems.

1: procedure CDH(p, g, a, b)
2: Let a = gx, b = gy

3: return gxy

4: end procedure

1: procedure DDH(p, g, a, b, c)
2: Let a = gx, b = gy, c = gz

3: if (z = xy) then
4: return true
5: else
6: return false
7: end if
8: end procedure

Can we also use CDH or DDH to solve DLOG? Write such algorithms.

6

5.2 Man In The Middle attack

Alice Eve Bob

x←$Zp

X ← gx

G, p, g,X

z←$Zp

Z ← gz

Z G, p, g, Z

y←$Zp

Y ← gy

Y

kAE ← Zx kAE ← Xz kBE ← Zy

kBE ← Y z

Write a test program using KeyGen and KeyAgree above to simulate the
MITM attack.

7

