

Complexity, Cryptography, and Financial Technologies

Lecture 8 – Digital Signature Chan Nam Ngo

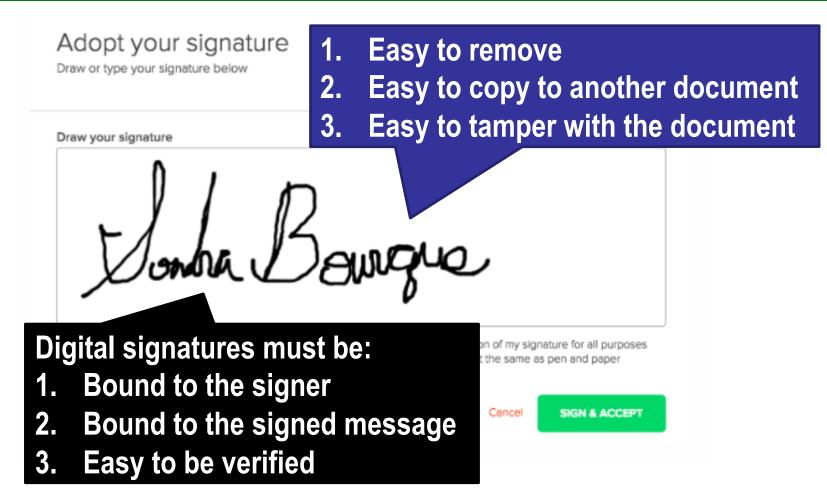
Signature in digital form?

Source: https://www.proposify.com/blog/how-to-use-electronic-signatures

Signature in digital form? (2)

Source: https://www.proposify.com/blog/how-to-use-electronic-signatures

Signature in digital form? (3)



Source: https://www.proposify.com/blog/how-to-use-electronic-signatures

- Verifying Key
 - 0402bce88f7016f91de2a196d95c7bff83479efe025f8dfd31f1122c b1a5df1bf9019c524236c438b50e88ce77422b4a4c15c08bed702f ea32c9502824d534a2b0
- Signing Key
 - 117ba01c2c5140767d2a916e30780ad0d4e538a5b709f98ab1c5d c923647e60f
- Message
 - Hello World!
- Digital Signature
 - 3046022100ff41e1cee95fbd3b02f78977307d325f83fd112c69115 64fd87ba7fd4bb41148022100fced62e118ebd3684bd1fc6612075 ede28f88dccbcd02a858a2bc21d996db4df

Generated with: https://kjur.github.io/jsrsasign/sample/sample-ecdsa.html

Digital Signature

- Key Generation
 - (vk, sk) ← KeyGen()
 - vk is called the (public) verifying key
 - sk is called the (private) signing key
- Signature Generation
 - $-s \leftarrow Sign(sk,m)$
 - m is the (PUBLIC) message to be signed
 - s is the signature on m
- Signature Verification
 - $\{0,1\} \leftarrow \text{Verify}(\text{vk}, \frac{\text{s,m}}{\text{s,m}})$
 - Return 1 if s is a valid signature on m
 - Return 0 otherwise

Digital Signature Algorithm (DSA)

- (vk,sk) ← KeyGen()
 - Fix a large prime p, a group Z_p and a generator g
 - Randomly pick x in Z_p
 - Compute $y = g^x$
 - Return vk = (p,g,y) and sk = (x)
- s ← Sign(sk,m)
 - Randomly pick k in Z_p s.t. gcd(k,p-1) = 1
 - Compute $R = g^k \pmod{p}$
 - Compute S = (m-xR)/k (mod p-1)= (m xg^k)/k \rightarrow m = Sk + xR
 - Return s = (R,S)
- {0,1} ← Verify(vk,s,m)
 - Return 1 if $g^m = y^R R^S \pmod{p-1}$
 - $g^m = g^{Sk + xR} = g^{xR} g^{kS} = y^R R^S$

EC Digital Signature Algorithm (ECDSA)

- (vk,sk) ← KeyGen()
 - Fix a large prime p,
 - Generate an EC
 - x, y $\in Z_p$, y² = x³ + bx +c
 - Fix a based point G on E
 - Randomly pick k in Z_p
 - Compute Y = kG
 - Return vk = (p,G,Y) and sk = (k)
- s ← Sign(sk,m) (m is not a point but an integer)
 - Randomly pick r in Z_p s.t. gcd(r,n) = 1 (n is the number of points in E)
 - Compute R = rG = (u,v)
 - Compute S = (m ku)/r (mod n) \rightarrow m = Sr + ku
 - Return s = (R,S)
- {0,1} ← Verify(vk,s,m)
 - Return 1 if mG = uY + SR
 - mG = (Sr + ku)G = ukG + SrG = uY SR

RSA Signature

• $\phi(N)$ – Euler's totient function

- numbers of positive integers in [1,N] that coprime N
- e.g. N = 10, $\phi(10) = 4$ (1,3,7,9 coprime 10)
- (vk,sk) ← KeyGen()
 - Fix two large primes p and q
 - Compute $N = p^*q$
 - Pick e s.t. 1 < e < $\phi(N)$ and gcd(e, $\phi(N)$) = 1
 - Find d s.t. $e^*d = 1$
 - Return vk = (N,e) and sk = (d)
- s ← Sign(sk,m)
 - Return s = m^d
- {0,1} ← Verify(vk,s,m)
 - Return 1 if $m = s^e$
 - s^e = m^{de} = m¹ = m

Blind Signature

Blind Signature

 A client can obtain a signature from a server for a message m without the server knowing m.

• 5 algorithms

- Key Generation
 - (vk, sk) ← BKeyGen()
 - vk is called the verifying key
 - sk is called the signing key
- Message Blinding
 - $(x,r) \leftarrow Blind(vk,m)$
 - m is the message to be signed
 - r is called the blinding factor
 - x is called the blinded message

- Blind Signing
 - y ← Sign(sk,x)
 - y is called the blind signature
- Signature Unblinding
 - s = Unblind(y,r)
 - s is the signature on m
- Signature Verification
 - {0,1} ← Verify(vk,m,s)
 - Return 1 if s is a valid signature on m
 - Return 0 otherwise

RSA Blind Signature

- (vk,sk) ← KeyGen()
 - Fix two large primes p and q
 - Compute $N = p^*q$
 - Fix e s.t. 1 < e < $\phi(N)$ and gcd(e, $\phi(N)$) = 1
 - Find d s.t. e*d = 1
 - Return vk = (N,e) and sk = (d)
- (x,r) ← Blind(vk,m)
 - Randomly pick r s.t. gcd(r,N) = 1
 - Compute $x = r^{e}m$
- y ← Sign(sk,m)
 - Return y = $x^d = (r^e m)^d = r^{ed} m^d = r^1 m^d = rm^d$

RSA Blind Signature (2)

s ← Sign(sk,m)

- Return s = $x^d = (r^e m)^d = r^{ed} m^d = r^1 m^d = rm^d$

• s = Unblind(y,r)

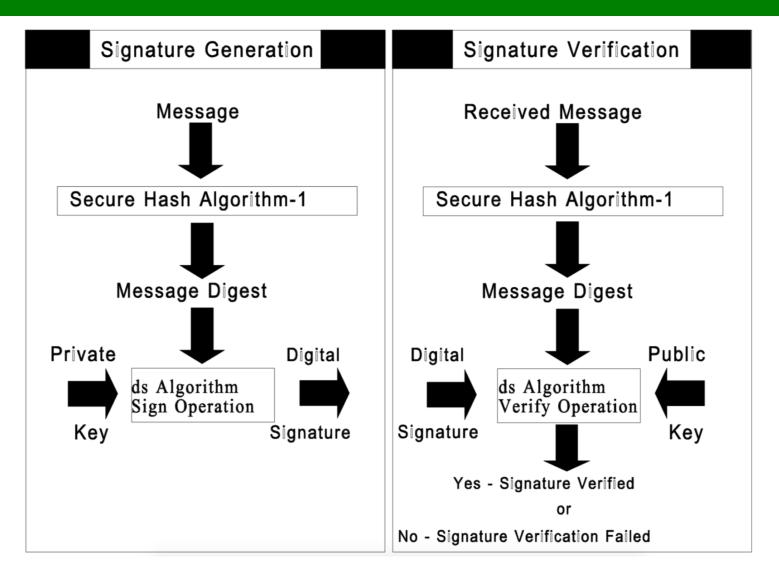
– Return s = y/r = rm^d/r = m^d

- {0,1} ← Verify(vk,s,m)
 - Return 1 if m = s^e
 - s^e = m^{de} = m¹ = m

Hashing and Signing

- DS schemes only support short messages, e.g.
 - − DSA, ECDSA \rightarrow m in Z_p (256 bits)
 - RSA \rightarrow m in Z_n (2048 bits)
- But messages are usually very long
 - contracts, transactions, etc. can be some KBs to MBs
 - could be a PDF file
- Hash then sign strategy
 - Fix a hash function H, obtain the message digest m = H(M)
 - We sign only the message "digest"
 - s = Sign(sk,m)
 - M can be a big document, e.g a PDF
 - m is a short message digest obtained via hashing
 - Verification for a signature s of a document M is done in two steps
 - m =? H(M)
 - {0,1} ← Verify(vk,s,m)

Digital Signature Standard – FIPS 186-2



08/10/18

- Handbook of Applied Cryptography, book by Menezes, C. van Oorschot and Vanstone
 - See Chapter 11 for Digital Signatures
 - Also available on the author's website
- Introduction to Cryptography with Coding Theory, book by Trappe and Washington.
 - Chapter 9 is on Digital Signatures
- NIST standard FIPS 186-2
 - <u>https://csrc.nist.gov/csrc/media/publications/fips/186/2/archiv</u>
 <u>e/2000-01-27/documents/fips186-2.pdf</u>
 - see main content (Sections 4, 5 and 6) for DSA