
Massacci, Ngo - Complexity, Crypto, and FinTech ► 110/8/18

Complexity, Cryptography, and Financial
Technologies

Lecture 6 – Introduction to Finite Fields
and Number Theoretic Reference Problems

Chan Nam Ngo

Why do we need to study Finite Fields
and the Number Theoretic Reference Problems?

• To be able to
– understand the construction
– and prove the security
– or at least understand the security proof

• of the
– upcoming cryptographic primitives

• because they are based on Finite Fields and the
Number Theoretic Reference Problems

Massacci, Ngo - Complexity, Crypto, and FinTech ► 208/10/18

Informally, Finite Field is

• A finite set of numbers
• in which

– the addition, subtraction, multiplication and division
– can be carried out without any error

• Finite field is useful for crypto because
– all arithmetic operations
– must work without error for cryptography

• Stepping stones to Finite Field
– Group
– Ring

Massacci, Ngo - Complexity, Crypto, and FinTech ► 308/10/18

Group

• Denoted as {G, +}
– G is the group
– + is the binary operation (not necessarily addition)

• As an example,
– the set of all integers N
– and the addition operation +
– is a group, denoted as {N,+}

Massacci, Ngo - Complexity, Crypto, and FinTech ► 408/10/18

Group Properties

• closure
– if a, b ∈ G, and c = a + b then c ∈ G
– {N,+} satisfies this? e.g. 3 = 1 + 2; 1,2,3 ∈ N

• commutativity (Abelian Group)
– a + b = b + a
– {N,+} satisfies this? e.g. 1 + 2 = 2 + 1

• associativity
– (a + b) + c = a + (b + c)
– {N,+} satisfies this? e.g. (1 + 2) + 3 = 1 + (2 + 3)

• identity element
– there exists an identity i s.t. for all elements a: a + i = a
– What is the identity i of {N,+}?

• Hint: 7 + ? = 7
• inverse element

– there exists an inverse element b for each element a s.t. a + b = i where i is the identity
– What is the inverse element of 9 in {G,+}?

• Hint: 9 + ? = 0

Massacci, Ngo - Complexity, Crypto, and FinTech ► 508/10/18

Ring

• Denoted as {R,+,*}
– R is the ring
– + and * are two binary operations

• + is normally addition
• * is normally multiplication

– Satisfies closure, commutativity, associativity (w.r.t. *)
• {R,+,*} additionally satisfies

– distributivity (w.r.t *)
• a*(b + c) = a*b + a*c

• Is {N,+,*} a ring?

Massacci, Ngo - Complexity, Crypto, and FinTech ► 608/10/18

Field

• Denoted as {F,+,*}
– F is a field
– + and * are two binary operations

• A field is a ring with additional properties
– identity element for *

• normally denoted as 1
• if a ∈ F, a*1 = a

– with regarding to identity element for +
• normally we denote i as 0
• if a*b = 0, then a = 0 or b = 0

– multiplicative inverse
• if a ∈ F AND a ≠ 0
• then there exists b
• such that a*b = 1

• Is {N,+,*} a field?

Massacci, Ngo - Complexity, Crypto, and FinTech ► 708/10/18

Modular Arithmetic

• Modulo
– Given any integer a, e.g. 7
– and a positive integer n, e.g. 3
– we call a mod n the remainder, e.g. 1

• 0 < a mod n < n – 1 (0 < 1 < 2)
• if a mod n is 0 (e.g. a = 6 and n = 3)

– we call n a divisor of a
– and write a | n
– this implies the existence of an integer b where a = b*n (e.g. b = 2)

• Congruence
– We call a and b congruent modulo n
– If a mod n = b mod n
– We can write a = b (mod n)
– e.g. 7 = 1 (mod 3), 7 = 8 (mod 3)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 808/10/18

Finite Field

• The modulo n arithmetic
– maps the infinite set of all integers
– into the finite set {0,...,n-1}

• Additional properties of modulo n arithmetic
– (a mod n) + (b mod n) = (a + b) mod n
– (a mod n) - (b mod n) = (a - b) mod n
– (a mod n) * (b mod n) = (a * b) mod n

Massacci, Ngo - Complexity, Crypto, and FinTech ► 908/10/18

Finite Field (2)

• Let us denote {Z,+,*} where
– Z = {0,...,n-1} (the set of integers from 0 to n-1)
– + and * are modulo n addition and multiplication

• We go ahead and check the properties
– Commutativity? YES
– Associativity? YES
– Distributivity? YES
– Identity? YES
– Inverse? Only additive inverse

• We denote additive inverse of a as –a
• We denote multiplicative inverse of a as a-1

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1008/10/18

Why {Z,+,*} is still not a Finite Field?

• Let us denote {Z,+,*} where
– Z = {0,...,n-1} (the set of integers from 0 to n-1)
– + and * are modulo n addition and multiplication

• {Z,+,*} is not a field ..., let’s look at Z6

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1108/10/18

a 0 1 2 3 4 5

-a 0 5 4 3 2 1

a-1 x 1 x x x 5

Prime Finite Field

• To make Zn a finite field, we must
– guarantee there is a multiplicative inverse
– for every elements in Zn

• Multiplicative inverse only exists for elements that are
relatively prime to n
– which means gcd(a,n) = 1
– where gcd is short for Greatest Common Divisor
– we can also say a and n are coprimes
– Euclid’s (extended) GCD algorithm for finding gcd(a,n) (Homework!!!)

• We make n a prime, normally we denote such prime finite
field as Fp
– {Fp,+,*} where p is prime is a finite field
– because all elements in Fp are relatively prime to p
– To find multiplicative inverse, see Bezout’s Identity (Homework!!!)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1208/10/18

Primality Testing

• To generate a large prime,
– randomly pick a large number
– then run the Miller-Rabin primality test

• Miller-Rabin Primality Test
– Most commonly used due to practical performance
– Only a probabilistic assessment of primality

• if output “not a prime” (“composite”) à 100%
• if output “prime” à may be a prime (probability > ½)

– Based on Fermat’s Little Theorem
• Let p be a prime
• If an integer a coprimes p
• then ap-1 = 1 (mod p)

– Algorithm
• Randomly pick a large number n
• {“composite”, “probably prime”} ß Miller-Rabin(n)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1308/10/18

{“composite”, “probably prime”} ß Miller-Rabin(n)

• Randomly pick an integer a in [1,n-1]
• If a does not coprime n, i.e. gcd(a,n) ≠ 1

– (e.g. test with Euclid’s GCD algorithm)
– Return “composite”

• Otherwise, write n – 1 in the form of 2rd with d odd
• If ad = 1 (mod n)

– Return “probably prime”
• For all i = 0 to r-1 do

– If (!"#$) = -1 (mod n)
• Return “probably prime”

• Return “composite”

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1408/10/18

{“composite”, “probably prime”} ß Miller-
Rabin(252601)

• Pick a = 85132
• gcd(85132,252601) = 1
• 252601 – 1 = 252600 = 2331575
• 8513231575 = 191102 ≠ 1
• 851322*31575 = 184829 ≠ -1
• 851324*31575 = 1
• Return “composite”

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1508/10/18

{“composite”, “probably prime”} ß Miller-
Rabin(280001)

• Pick a = 105532
• gcd(105532,280001) = 1
• 280001 – 1 = 280000 = 264375
• 1055324375 = 236926 ≠ 1
• 1055322*4375 = 168999 ≠ -1
• 1055324*4375 = 280000 = -1
• Return “probably prime”

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1608/10/18

Discrete Logarithms (DLOG)

• Fix a prime p and a group Zp
• Let g be a generator of Zp

– all elements of Zp can be obtained from a power of g
– Z11 has a generator g = 2 because

• {20 = 1, 21 = 2, 28 = 3, 22 = 4, 24 = 5, 29 = 6, 27 = 7, 23 = 8, 26 = 9, 25 = 10}
• Given y, find x s.t. gx = y
• DLOG solving algorithms

– p is small, very easy, by exhaustive search
– p is very large (~2512)

• multiplicative group, hard (sub-exponential)
• elliptic curve group, very hard (exponential)

– this is why elliptic curve is important in crypto
– we will introduce elliptic curve in an upcoming lecture

• Related cryptographic primitives
– Diffie-Hellman Key Exchange
– El-Gamal Cryptosystem

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1708/10/18

DLOG Algorithms - Baby-step Giant-step

• Given y = gx

• Set m = ! where n is the order of Zp
– n is the number of elements in Zp

• We can write x = i*m+j (0 ≤ i < m, 0 ≤ j < m)
• Hence gx = gi*m+j

• Construct a table (j, gj) for 0 ≤ j < m, sorted by gj

• Set z = y
• For i from 0 to m – 1 do

– If z = gj for a j in the table (j,gj)
• Return x = i*m+j

– Set z = z*g-m and continue

Massacci, Ngo - Complexity, Crypto, and FinTech ► 1808/10/18

DLOG Algorithms - Baby-step Giant-step (2)

• Set m = ! where n is the order of Zp
à runtime is O(") but also requires O(") storage
à n = 2512 – 1 ß runtime is exponential
• Example

– p = 113, g = 3, n = 112, y = gx = 57
– m = 112 = 11

– z = yg-mi

à x = 9*11+1 = 100
Massacci, Ngo - Complexity, Crypto, and FinTech ► 1908/10/18

j 0 1 8 2 5 9 3 7 6 10 4
3j 1 3 7 9 17 21 27 40 51 63 81

i 0 1 2 3 4 5 6 7 8 9
z 57 29 100 37 112 55 26 39 2 3

DLOG Algorithms - Others

• Pollard’s rho algorithm ß Preferable
– Randomized algorithm based on cycle finding
– Same runtime as Baby-Step Giant-Step but less storage

• Pohlig-Hellman algorithm
– Take advantage of factorization of n
– Only efficient if n can be factored to relatively small primes

• Index-calculus ß Most powerful
– Only for certain groups
– Algorithm is sophisticated
– Runtime is sub-exponential

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2008/10/18

Diffie-Hellman (DH) Key Exchange

• Alice and Bob wants to obtain a shared secret key for secure communication
• but Eve can see every information exchanged between Alice and Bob
• Can we construct a protocol such that Eve cannot derive the secret key from

the public transcript?
• Based on problems related to DLOG

– Computational DH
• Given a = gx, b = gy, find c = gxy

– Decisional DH
• Given a = gx, b = gy and c = gz, determine if z = xy

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2108/10/18

• Alice
– Pick random x
– Send gx to Bob
– Receive gy

– Compute (gy)x

• Bob
– Pick random y
– Send gy to Alice
– Receive gx

– Compute (gx)y

Diffie-Hellman (DH) Key Exchange (2)

• Eve sees gx and gy

• But Eve cannot compute gxy or gyx

– Computational DH Assumption
• Given a = gx, b = gy, find c = gxy is hard

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2208/10/18

• Alice
– Pick random x
– Send gx to Bob
– Receive gy

– Compute (gy)x

• Bob
– Pick random y
– Send gy to Alice
– Receive gx

– Compute (gx)y

Diffie-Hellman (DH) Key Exchange - Example

• p = 23, g = 5

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2308/10/18

• Alice
– x = 4
– gx = 4 à To Bob
– (gy)x = 104 = 18

• Bob
– y = 3
– To Alice ß gy = 10
– (gx)y = 43 = 18

Man In The Middle Attack

• MITM Attack
– Eve intercepts gx and gy

– Eve picks random z and sends gz to both Alice and Bob
– Eve can compute both gyz and gxz

– Eve can use gyz and gxz to “bridge” the communication between Alice and Bob so they don’t find out
about the attack

• Alice and Bob can use digital signature to guarantee message authenticity
– Alice and Bob can tell if the message is indeed from the other party

• but require a Public Key Infrastructure

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2408/10/18

• Alice
– Pick random x
– Send gx to Eve
– Receive gz from Eve
– Compute (gz)x

• Bob
– Pick random y
– Send gy to Eve
– Receive gz from Eve
– Compute (gz)y

El-Gamal Cryptosystem – Public Key Encryption

• (pk,sk) ß KeyGen()
– Fix a large prime p, a group Zp and a generator g
– Randomly pick x in Zp

– Compute y = gx

– Return pk = (p,g,y) and sk = (x)
• c ß Enc(pk,m)

– Randomly pick r in Zp

– Compute R = gr and M = myr = mgxr

– Return c = (R,M)
• m = Dec(sk,c)

– Return m = M/Rx = mgxr/grx

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2508/10/18

El-Gamal Cryptosystem – Public Key Encryption (2)

• (pk,sk) ß KeyGen()
– Fix a large prime p, a group Zp and a generator g
– Randomly pick x in Zp

– Compute y = gx

– Return pk = (p,g,y) and sk = (x) ß Eve sees only y = gx

• c ß Enc(pk,m)
– Randomly pick r in Zp

– Compute R = gr and M = myr = mgxr

– Return c = (R,M) ß Eve sees only gr and mgxr

• m = Dec(sk,c)
– Return m = M/Rx = mgxr/grx ß cannot decrypt without x

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2608/10/18

El-Gamal Cryptosystem – Public Key Encryption -
Example

• (pk,sk) ß KeyGen()
– p = 809, g = 16
– x = 68
– y = gx = 46
– Return pk = (809,16,46) and sk = (68)

• c ß Enc(pk,100)
– r = 89
– R = 1689 = 342 and M = 100*4689 = 745
– Return c = (342,745)

• m = Dec(sk,c)
– Return m = 745/34268 = 100

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2708/10/18

El-Gamal Cryptosystem – Digital Signature

• (vk,sk) ß KeyGen()
– Fix a large prime p, a group Zp and a generator g
– Randomly pick x in Zp
– Compute y = gx

– Return vk = (p,g,y) and sk = (x)
• s ß Sign(sk,m)

– Pick k in Zp s.t. gcd(k,p-1) = 1
– Compute R = gk (mod p)
– Compute S = (m-xR)/k (mod p-1)= (m – xgk)/k à m = Sk + xR
– Return s = (R,S)

• {0,1} ß Verify(vk,s,m)
– Return 1 if gm = yRRS (mod p-1)

• gm = gSk + xR = gxR gkS = yR RS

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2808/10/18

El-Gamal Cryptosystem – Digital Signature (2)

• (vk,sk) ß KeyGen()
– Fix a large prime p, a group Zp and a generator g
– Randomly pick x in Zp
– Compute y = gx

– Return vk = (p,g,y) and sk = (x) ß Eve sees only y = gx

• s ß Sign(sk,m)
– Pick k in Zp s.t. gcd(k,p-1) = 1
– Compute R = gk (mod p)
– Compute S = (m-xR)/k (mod p-1)= (m – xgk)/k
à Eve cannot sign without x
– Return s = (R,S)

• {0,1} ß Verify(vk,s,m)
– Return 1 if gm = yRRS (mod p-1)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 2908/10/18

El-Gamal Cryptosystem – Digital Signature - Example

• (vk,sk) ß KeyGen()
– p = 467, g = 2
– x = 127
– y = 2127 = 132
– Return vk = (467,2,132) and sk = 127

• s ß Sign(sk,100)
– k = 213 and gcd(213,466) = 1
– R = 2213 = 29 (mod 467)
– S = (m-xR)/k = (100-127*29)/ 213 = 51 (mod 466)
– Return s = (29,51)

• {0,1} ß Verify(vk,s,m)
– 2100 = 13229 * 2951 (mod 466)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3008/10/18

Quadratic Residuosity Problem

• Let p be a prime and a be an integer
• Determine if x2 = a (mod p) has a solution x

– a is called a quadratic residue (QR) modulo p if x exists
– otherwise a is called quadratic non-residue (QNR)

• The Legendre symbol is defined as

– "
= %

1 '() '*) +,
−1 '() '*) +.,
0 '() = 0 012 3

• Deciding on QR/QNR
– p is small, very easy, by exhaustive search
– p is large, infeasible
– p is an odd prime,

• x2 = a (mod p) has a solution x only if a(p-1)/2 = 1 (mod p)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3108/10/18

Quadratic Residuosity Problem (2)

• Let N = pq, where p and q are large and unknown
primes

• An integer a is QR modulo N if and only if a is QR
modulo p and QR modulo q

• The Jacobi symbol is defined as

– "
= "

%
"
&

• If "
= 1, a is

– either a QR modulo p and q ("
% = "

& = 1)

– or QNR modulo p and q ("
% = "

& = −1)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3208/10/18

Quadratic Residuosity Problem (2)

• Let N = pq where p and q are large and unknown
primes

• Given an integer a where !
" = 1, determine

whether a is a QR modulo N or not
– p and q are known, very easy
– p and q are unknown, very hard

• The Integer Factorization Problem

• Related cryptographic primitives
– Goldwasser-Micali Cryptosystem
– Blum Blum Shub Pseudo Random Generator

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3308/10/18

Integer Factorization Problem

• also called Factoring
– Knowing that N = pq with large prime numbers p and q. Find

p and q
• Algorithm

– Trial Division
• Try small primes up to !

– Pollard’s rho Factorization algorithm
• Make use of Floyd’s cycle finding algorithm

– Pollard’s p-1 Factorization algorithm
• Find M s.t. d = gcd(N,M) ≠ 1, N. Then d will be p.

– Difference of Squares
• Find a and b s.t. N = a2 – b2

– etc.

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3408/10/18

Difference of Squares

• N = 25217
• b = 1, N + b2 = 25217 + 12 = 25218, not a perfect

square
• 25217 + 22 = 25221, not a perfect square
• 25217 + 32 = 25226, not a perfect square
• 25217 + 42 = 25233, not a perfect square
• ...
• 25217 + 82 = 25281 = 1592

• 25217 = (159+8)(159-8) = 167*151

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3508/10/18

Goldwasser-Micali Cryptosystem
– Public Key Bit Encryption

• (pk,sk) ß KeyGen()
– Fix two large primes p and q
– Compute N = pq
– Find a QNR x s.t. !

" = !
= -1 (hence !

$ = 1)
– Return pk = (N, x) and sk = (p,q)

• c ß Enc(pk,b)
– Pick a random r s.t. gcd(r,N) = 1
– Return c = r2xb

• b = Dec(sk,c)
– Return b = 0 if c is QR modulo N (c = r2x0 = r2)
– Otherwise return b = 1 (c = r2x1 = r2x)

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3608/10/18

Goldwasser-Micali Cryptosystem
– Public Key Bit Encryption (2)

• (pk,sk) ß KeyGen()
– Fix two large primes p and q
– Compute N = pq
– Find a QNR x s.t. !

" = !
= -1 (hence !

$ = 1)
– Return pk = (N, x) and sk = (p,q) ß Eve cannot see p, q

• c ß Enc(pk,b)
– Pick a random r s.t. gcd(r,N) = 1
– Return c = r2xb

• b = Dec(sk,c)
– Return b = 0 if c is QR modulo N (c = r2x0 = r2)
– Otherwise return b = 1 (c = r2x1 = r2x) ß Cannot decide QR

modulo p and q without sk
Massacci, Ngo - Complexity, Crypto, and FinTech ► 3708/10/18

Goldwasser-Micali Cryptosystem
– Example

• (pk,sk) ß KeyGen()
– p = 7, q = 11, N = 7*11 = 77
– x = 6 and !

" = !
= -1 (hence !

"" = 1)
– pk = (77,6) and sk = (7,11)

• c ß Enc(pk,1)
– r = 2 and gcd(2,77) = 1
– c = 2261 = 24

• b = Dec(sk,c)
– 24(7-1)/2 = -1
– Return 1

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3808/10/18

Blum Blum Shub Pseudo Random Generator

• To generate a pseudo random bit sequence b1, b2, ... bn
• Fix two large and secret primes p and q

– s.t. p = q = 3 (mod 4)
– guarantee a QR has a square root that is also a QR

• Compute N = pq
• Select a random seed s s.t. gcd(s,N) = 1
• Compute x0 = s2

• For i from 1 to n do
– xi = (xi-1)2

– Set bi = the least significant bit of xi

• To predict bit bi+1?
– Difficult, see the proof in the original paper

Massacci, Ngo - Complexity, Crypto, and FinTech ► 3908/10/18

Blum Blum Shub Pseudo Random Generator - Example

• n = 5
• p = 11, q = 9
• N = 11*9 = 99
• s = 3 and gcd(3,99) = 1
• x0 = 32 = 9
• x1 = 81, x2 = 82, x3 = 36, x4 = 42, x5 = 92
• Output 110000

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4008/10/18

Suggested Readings

• Handbook of Applied Cryptography – Book by
Menezes, C. van Oorschot and Vanstone
– See

• Chapter 2 for Finite Fields
• Chapter 3 for Number Theoretic Reference Problems
• Chapter 5 for Pseudo Random Generators
• Chapter 8 for Public Key Cryptosystems
• Chapter 11 for Digital Signature Schemes

– Also available on the author’s website

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4108/10/18

http://cacr.uwaterloo.ca/hac/

Lab on Finite Fields and others

• libsnark will be our main crypto library
– https://github.com/scipr-lab/libsnark
– At the beginning we will only make use of libsnark’s dependency

• GMP for arithmetics
• Boost for multi-threading, etc.
• Built in Finite Field and Elliptic Curve lib

– At the end we will use libsnark for implementing zk-SNARK
• Students TODO:

– Register on Google Classroom
– Obtain invitation to a private github repo created by instructors
– Watch for announcement on Google Classrom
– Pull project templates or some codes (prepared by instructors) from the private

github repo
• e.g. Repo/Lab1/Template

– Implement something during lab session
– Submit into a submission folder for each lab session

• e.g. Repo/Lab1/Student/FirstName_LastName/

Massacci, Ngo - Complexity, Crypto, and FinTech ► 4208/10/18

https://github.com/scipr-lab/libsnark

