Complexity, Cryptography, and Financial Technologies

Lecture 15 - FuturesMEX Chan Nam Ngo

Futures market as illustrative of FinTech

- A double auction market
- Bidders on both buy/sell side
- Futures contract
- standardized promise to buy/sell barrels of oil, bushels of corn, ...
- made today and to be fulfilled in a future date
- with cash reserve to meet promises
- Exchange platform for trading activities
- Chicago Mercantile Exchange \rightarrow centralized

How futures trading works?

Trader	Promises	Cash	100 promises	Trader	Promises	Cash at the exchange
Alice	0	1200				
Bob	0	1500	Bob buys		Buy 100	$2200=1200+100 * 10$
			80 promises	Bob	Sell 100	$700=1500-80 * 10$

Market price $=10 \$$

At end of (trading) da Market price $=8 \$$

Promises must be fulfilled at end of day price: Bob must sell and Alice must buy from the market

Bob made a profit but Alice lost 200\$

Market price is volatile

Trader	Promises	Cash	100 promis
Alice	Buy 100	2200	price wa
...	good ide
Alice's cash reserve is now at 0\$			

\rightarrow Exchange must do something

$$
2200>17^{* 1000}
$$

17

How does The Exchange Keep Track?

- The Limit Order Book

- Auction mechanism that facilitates trade of assets and provides benchmark prices accessible to ALL members of the market.
- Traders post buy and sell orders and the clearing of these orders forms part of the purpose of the limit order book.
- Two types of orders:
- Limit orders (quotes), that specify a price and volume at which the trader is willing to buy or sell an asset.
- Market orders, a request to buy or sell an asset
- The limit order book displays current set of limit orders and records the execution of market orders as traded prices.
- A critical feature of the limit order book is that part of the order book is public (information visible to all traders) and part is private.

Example of the public part of the order book

Exchange as reactive functionality

Ideal Functionality - Storage

- Trader Inventory \mathbf{P}_{i}

- Cash available m_{i}
- Volume holding v_{i}
- Estimated cash emi
- Estimated volume ev ${ }_{\mathrm{i}}$
- Counter Ci
- Flag f_{i}
- Order Book $0=\left\{0_{1} \ldots 0_{t}\right\}$
$-O_{j}=(p, v, t, j)-P_{j}$ is the owner of this order o_{j}
- Buy order $v>0$
- Sell order v < 0
- Net Position
$-n_{i}=m_{i}+\operatorname{cash}\left(v_{i}\right)$
$-e n_{i}=e m_{i}+\operatorname{cash}\left(v_{i}\right)$

Ideal Functionality - Initialize

- Trader Inventory P_{i}

- m_{i}
$-v_{i}=0$
$-\mathrm{em}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}}$
$-\mathrm{ev}_{\mathrm{i}}=0$
$-\mathrm{C}_{\mathrm{i}}=0$
$-\mathrm{f}_{\mathrm{i}}=0$
- $\mathrm{O}=\{ \}$

Ideal Functionality - Post Order

- $0=\left\{\ldots, 0_{t}\right\}$

$$
-o_{t}=(p, v, t)
$$

- Trader Inventory \mathbf{P}_{i}
$-\mathrm{m}_{\mathrm{i}}$
$-V_{i}$
$-e m_{i}=e m_{i}-v p$
$-e v_{i}=e v_{i}+v$
$-C_{i}=C_{i}+1$
$-f_{i}$
- Valid order?
$-e n_{i}>=0$

Ideal Functionality - (Estimated) Net Position

1. If $v_{i}>0$, look at buy side, otherwise if $v_{i}<0$ look at sell side
2. Take v_{1} from low to high on sell side and from high to low on buy side e.g. $\operatorname{cash}(500)=\operatorname{cash}(320+170+10)=2 * 320+1.5 * 170+0.5 * 10=900$

	Price $=6.2$, Volume $=100$	
Sell	Price $=5.5$, Volume $=120$	
Limit Orders	Price $=5$, Volume $=260$	Sell level 2

| Buy |
| :--- | :--- |
| Limit |
| Orders | | Price $=2$, Volume $=320$ |
| :---: |
| $=1.5$, Volume $=170$ |
| Price $=0.5$, Volume $=90$ |

Buy level 1
Buy level 2
Buy level 3
e.g. $\operatorname{cash}(-450)=\operatorname{cash}(-260-120-70)=5^{*} 260+5.5 * 120+6.2^{*} 70=2394$

Ideal Functionality - Cancel Order

- $\mathbf{O}=\left\{\ldots \mathrm{o}_{\mathrm{t}}\right\}-\mathrm{o}_{\mathrm{t}}$

$$
-o_{t}=(p, v, t)
$$

- Trader Inventory \mathbf{P}_{i}
$-\mathrm{m}_{\mathrm{i}}$
$-V_{i}$
$-e m_{i}=e m_{i}+\mathrm{vp}$
$-e v_{i}=e v_{i}-V$
$-C_{i}=C_{i}-1$
$-f_{i}$
- Valid order?
$-e n_{i}>=0$

Ideal Functionality - Update Status

- Compute n_{i} for all P_{i}, update f_{i}

Ideal Functionality - Match Order

- $0=\left\{\ldots . . o_{t}\right\}-o_{t}$
- $o_{i}=\left(p, v^{\prime}, t^{\prime}\right)$
- $\mathrm{o}_{\mathrm{j}}=(\mathrm{p}, \mathrm{v}, \mathrm{t})$
- Simple case: - v' = v
- A bit more complicated, a single order will be matched with multiple orders
- Trader Inventory P_{i}
- $m_{i}=m_{i}-v p$
$-v_{i}=v_{i}+v$
- $\mathrm{em} \mathrm{m}_{\mathrm{i}}$
$-\mathrm{ev}_{\mathrm{i}}$
$-\mathrm{c}_{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}-1$
- f_{i}
- Do the reverse for P_{j}
$-m_{j}=m_{j}+v p$
$-v_{j}=v_{j}-v$
$-c_{j}=c_{j}-1$

Ideal Funcitonality - Examples

- Alice inits $(10000,0)$
- $m_{A}=10000, v_{A}=0$
- Bob inits $(9000,0)$
- $m_{B}=9000, v_{B}=0$
- Alice posts $(10,100)$ - buy $100 @ 10$
- $\mathrm{em}_{\mathrm{A}}=10000-100 * 10=9000$
- $\mathrm{ev}_{\mathrm{A}}=100$
- Alice posts $(11,50)$ - buy $50 @ 11$
$-\quad \mathrm{em}_{\mathrm{A}}=9000-50 * 11=8450$
- $\quad \mathrm{ev}_{\mathrm{A}}=150$
- Bob posts ($13,-90$) - sell $90 @ 13$
- $\mathrm{em}_{\mathrm{B}}=9000-(-90)^{*} 13=10170$
- $\quad \mathrm{ev}_{\mathrm{B}}=-90$
- Bob posts (11, -50) - sell 50@11
- $\mathrm{em}_{\mathrm{B}}=10170-(-50)^{*} 11=10720$
- $\quad \mathrm{ev}_{\mathrm{B}}=-140$
- A match found
- Alice can now buy 50 and Bob can sell 50 at 11
- $m_{A}=10000-50 * 11=9450$
- $\quad \mathrm{V}_{\mathrm{A}}=50$
- $\mathrm{m}_{\mathrm{B}}=9000+50 * 11=9550$
- $\quad \mathrm{V}_{\mathrm{B}}=-50$
- Alice inits $(10000,0)$

$$
\text { - } \quad n_{A}=10000+\operatorname{cash}(0)=10000
$$

- Bob inits $(9000,0)$

$$
\text { - } \quad n_{B}=9000+\operatorname{cash}(0)=9000
$$

- Alice posts $(10,100)$ - buy 100@10
- Assume max price is 20
- $\mathrm{en}_{\mathrm{A}}=9000+100 * 20=11000$
- Alice posts $(11,50)$ - buy $50 @ 11$
- Assume max price is 20
- $\quad \mathrm{en}_{\mathrm{A}}=8450+150 * 20=11450$
- Bob posts (13, -90) - sell 90@13

$$
\text { - } \quad e n_{B}=10170-50^{*} 11-40^{*} 10=9220
$$

$$
\text { - } \quad n_{A}=10000+\operatorname{cash}(0)=10000
$$

- Bob posts (11, -50) - sell 50@11
- $\quad \mathrm{en}_{\mathrm{B}}=10720-50 * 11-90 * 10=9270$
- $\quad n_{A}=10000+\operatorname{cash}(0)=10000$
- A match found
- Sell side: ($13,-90$)
- Buy side: $(10,100)$
- $\quad \mathrm{n}_{\mathrm{A}}=9450+\operatorname{cash}(50)=9450+50 * 10=9950$
- $n_{B}=9550+\operatorname{cash}(-50)=9550-50 * 13=8900$

Ideal Functionality - Mark To Market

- Trader Inventory P_{i}

$-m_{i}=m_{i}+v_{i}^{*}$ mid_price
$-v_{i}=0$

	Price $=6.2$, Volume $=100$	Sell
Sell	Price $=5.5$, Volume $=120$	
Limit Orders	Price $=5$, Volume $=260$	Sell level 2
Buy		Buy level 1
Limit	Price $=2$, Volume $=320$	Buy level 2
Orders	Price $=1.5$, Volume $=170$	Buy level 3
	Price $=0.5$, Volume $=90$	

Distributed Protocol

- Commitments + ZK-Proofs

- Merkle Tree
- TOR + Blockchain

Distributed Ledger for public data, only commitments and zk-proofs

Secret Data:
I1

Secret Data:
I2

Distributed Protocol - Storage

- Trader Inventory P_{i}
- Cash available [m]
- Volume holding $\left[\mathrm{V}_{\mathrm{i}}\right]$
- Estimated cash [em; ${ }^{\text {] }}$
- Estimated volume $\left[\mathrm{ev}_{\mathrm{i}}\right]$
- Counter [c c_{i}]
- Flag [${ }_{i}$]
- Token $t_{i}=\left[m_{i}\left|v_{i}\right| e m_{i}\left|e v_{i}\right| c_{i} \mid f_{i}\right]$
- Order Book $0=\left\{0_{1} \ldots o_{t}\right\}$
- $\mathrm{O}_{\mathrm{j}}=(\mathrm{p}, \mathrm{v}, \mathrm{t},[\mathrm{j}])$
- Prove that you know the randomness of [j] to claim that is your order
- Net Position
$-\left[n_{i}\right]=\left[m_{i}+\operatorname{cash}\left(v_{i}\right)\right]$
$-\left[\mathrm{en}_{\mathrm{i}}\right]=\left[\mathrm{em}_{\mathrm{i}}+\operatorname{cash}\left(\mathrm{v}_{\mathrm{i}}\right)\right]$

Distributed Protocol - Initialize

- Trader Inventory P_{i}

- [$\left.m_{i}\right]$, prove that $m_{i}>0$
- [$\left.\mathrm{v}_{\mathrm{i}}\right]=[0]$, show randomness to prove $\mathrm{v}_{\mathrm{i}}=0$
$-\left[e m_{\mathrm{i}}\right]=\left[\mathrm{m}_{\mathrm{i}}\right]$, prove that $\mathrm{em}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}}$
- [evi] = [0], show randomness
- [ci] = [0], show randomness
- $[\ddagger]=0$, show randomness
- Token $t_{i}=\left[m_{i}\left|v_{i}\right| e m_{i}\left|e v_{i}\right| c_{i} \mid f\right]$, prove with $z k$
- [ti], to be added into Merkle Tree
- $0=\{ \}$

Ideal Functionality - Post Order

- $\mathbf{O}=\left\{\ldots, . .0_{t}\right\}$
$-o_{t}=(p, v, t,[i])$
- Trader Inventory P_{i}
- Get [mid, [$\left.\mathrm{v}_{\mathrm{j}}\right]$, [emi], [evi], [ci], [fi] from MT using an unspent t_{i}
- Update emievi and c_{i}
- $e_{i}=e m_{i}-v p$
- $\mathrm{ev}_{\mathrm{i}}=\mathrm{ev} \mathrm{v}_{\mathrm{i}}+\mathrm{v}$
- $c_{i}=c_{i}+1$
- Commit to the new values and prove in zk
- Valid order?
$-\mathrm{en}_{\mathrm{i}}>=0$, compute the value, commit and prove in zk

Ideal Functionality - (Estimated) Net Position

1. If $v_{i}>0$, look at buy side, otherwise if $v_{i}<0$ look at sell side
2. Take v_{1} from low to high on sell side and from high to low on buy side e.g. $\operatorname{cash}(500)=\operatorname{cash}(320+170+10)=2 * 320+1.5 * 170+0.5 * 10=900$

	Price $=6.2$, Volume $=100$	
Sell	Price $=5.5$, Volume $=120$	
Limit Orders	Price $=5$, Volume $=260$	Sell level 2

| Buy |
| :--- | :--- |
| Limit |
| Orders | | Price $=2$, Volume $=320$ |
| :---: |
| $=1.5$, Volume $=170$ |
| Price $=0.5$, Volume $=90$ |

Buy level 1
Buy level 2
Buy level 3
e.g. $\operatorname{cash}(-450)=\operatorname{cash}(-260-120-70)=5^{*} 260+5.5 * 120+6.2^{*} 70=2394$

Ideal Functionality - Cancel Order

- $0=\left\{\ldots 0_{t}\right\}-o_{t}$
$-o_{t}=(p, v, t,[i])$
- Trader Inventory P_{i}
- Get [mid, [$\left.\mathrm{v}_{\mathrm{i}}\right]$, [emi], [evi], [ci], [fi] from MT using an unspent t_{i}
- Update emieviand c_{i}
- $\mathrm{em}_{\mathrm{i}}=\mathrm{em}+\mathrm{i}+\mathrm{p}$
- $e v i_{i}=e v_{i}-v$
- $c_{i}=c_{i}-1$
- Commit to the new values and prove in zk
- Valid order?
- en $\mathrm{n}_{\mathrm{i}}>=0$
- Knows the randomness of [i] to prove this is your order

Distributed Protocol - Update Status

- Get $\left[m_{i}\right],\left[v_{i}\right],\left[e m_{i}\right],\left[e v_{i}\right],\left[c_{i}\right],\left[f_{i}\right]$ from MT using an unspent t_{i}
- Compute $\left[n_{i}\right]$ for all P_{i}, update $\left[f_{i}\right.$]

$$
n_{i}<0, c_{i}=0
$$

Distributed Protocol - Match Order \& Mark To Market

- Similar to the previous sub protocols

- Take inventory from MT
- Update values
- Commit, prove in zk, and put back into MT

