
	 1	

	

U n i v e r s i t y 	 o f 	 T r e n t o , 	 I t a l y 	 	 	 	 	 F e b 	 2 0 , 	 2 0 1 6 	

	
	
	
	

Report submitted in Partial Fulfillment of the Course
	

Offensive Technologies

	
	

Università degli Studi di Trento
Master of Science in Computer Science

EIT Digital Master of Science in Security and Privacy
https://securitylab.disi.unitn.it/doku.php?id=course_on_offensive_technolog

ies

Amit	Gupta	
	

Code	analysis	of	Hacking	Team’s	exploits	

Ali	Davanian	
	

	 2	

Table	of	Contents	
	

	
Sl.No.	 Content	 Page	Number	
1	 rcs-db-ext/Python	and	Ruby	 3	
2	 core-win32	 14	
3	 poc-x	 20	
4	 References	 25	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	

	 3	

1.	rcs-db-ext/Python	and	Ruby	
Purpose	of	the	code:	
	
The	 rcs-db-ext	 repository	 is	 the	 soul	 of	 the	 HackingTeam’s	 Remote	
Control	System.	This	repository	contains	the	binaries,	huge	libraries	and	
third	 party	 libraries	 that	 form	 the	 foundation	 of	 the	 execution	 of	
application.	The	repository	has	 four	prime	packages	–	 Java,	nsis,	python	
and	 ruby.	 Like	 the	 names	 suggest,	 each	 of	 these	 packages	 have	 the	
contents	based	on	the	language	of	code.	In	this	analysis	report,	the	prime	
focus	is	laid	on	the	python	and	the	ruby	packages	only.	
	
The	prime	purpose	of	the	code	base	is	to	support	the	functionalities	of	the	
RCS	with	the	required	library	functions,	3rd	Party	libraries	and	compiled	
binaries.	Additionally	there	are	some	libraries,	which	help	the	developer	
to	set	up	the	development	environment	and	the	play-environment	to	run	
the	RCS.		
	
We	 analyzed	 the	 code	 repository	 and	 dig-in	 for	 portions	 of	 the	 code,	
which	 seem	 interesting	 to	 us.	 Initially	we	went	 through	 the	RCS	 admin	
and	 service	 manuals	 [1]	 to	 understand	 the	 features	 of	 the	 RCS	 and	
develop	a	high	level	picture	of	the	application.	Having	that	in	mind,	in	this	
section	the	motive	was	to	understand	how	the	RCS	is	making	use	of	 the	
library	files	in	the	rcs-db	library.	
	
Interesting	portions	of	the	code:	
This	section	demonstrates	the	sections	of	the	source	code,	the	
directory	structures	and	the	snippets/library	functions,	which	
seem	to	have	significant	value	to	the	application.	There	are	two	
parts	 in	 which	 we	 have	 divided	 the	
interesting	 codes/snippets	 observed	 in	
the	repository:	
a. Python	
b. Ruby	
	
	
	
Fig01:	The	directory	structure	of	rcs-
db-ext

	 4	

	
A. Python:		

In	this	section	we	take	into	consideration,	the	source	code	that	is	
present	in	the	python	folder	only.At	a	high	level,	the	python	
repository	mostly	contains	the	compiled	DLL	equivalent	files	in	
the	pyd	file	format	(binaries)	and	off-the-shelf	libraries.	However,	
looking	deeper	into	the	repository	we	found	some	interesting	
methods	and	libraries.	
	

	
Fig02:	The	folder	structure	of	rcs-db-ext/Python	

	
One	of	the	interesting	sub-packages	in	the	Python	folder	is	the	scripts	
folder	under	Tools.	This	directory	contains	a	collection	of	executable	
Python	scripts	 that	are	useful	while	building,	extending	or	managing	
Python.	

	 5	

	
Fig03:	DLL	Files	in	python	package.	

	
The	Tools	directory	[2]	contains	a	collection	of	executable	Python	
scripts	 that	 are	 useful	 while	 building,	 extending	 or	 managing	
Python.	The	table	mentioned	below	is	a	list	of	the	files	in	the	tools	
folder	and	their	high	level	description:	
	
	
	

	 6	

analyze_dxp.py										Analyzes	the	result	of	sys.getdxp()	
byext.py																Print	lines/words/chars	stats	of	files	by	extension	
byteyears.py												Print	product	of	a	file's	size	and	age	
checkappend.py										Search	for	multi-argument	.append()	calls	
checkpyc.py													Check	presence	and	validity	of	".pyc"	files	
classfix.py													Convert	old	class	syntax	to	new	
cleanfuture.py										Fix	reduntant	Python	__future__	statements	
combinerefs.py	 	 	 	 	 	 	 	 	 	 A	 helper	 for	 analyzing	 PYTHONDUMPREFS	
output.	
copytime.py													Copy	one	file's	atime	and	mtime	to	another	
crlf.py																	Change	CRLF	line	endings	to	LF	(Windows	to	Unix)	
cvsfiles.py													Print	a	list	of	files	that	are	under	CVS	
db2pickle.py												Dump	a	database	file	to	a	pickle	
diff.py																	Print	file	diffs	in	context,	unified,	or	ndiff	formats	
dutree.py															Format	du(1)	output	as	a	tree	sorted	by	size	
eptags.py															Create	Emacs	TAGS	file	for	Python	modules	
find_recursionlimit.py	 	 Find	 the	 maximum	 recursion	 limit	 on	 this	
machine		
finddiv.py														A	grep-like	tool	that	looks	for	division	operators	
findlinksto.py	 	 	 	 	 	 	 	 	 	 Recursively	 find	 symbolic	 links	 to	 a	 given	 path	
prefix	
findnocoding.py	 	 	 	 	 	 	 	 	 Find	 source	 files	 which	 need	 an	 encoding	
declaration	
fixcid.py															Massive	identifier	substitution	on	C	source	files	
fixdiv.py															Tool	to	fix	division	operators.	
fixheader.py												Add	some	cpp	magic	to	a	C	include	file	
fixnotice.py												Fix	the	copyright	notice	in	source	files	
fixps.py																Fix	Python	scripts'	first	line	(if	#!)	
ftpmirror.py												FTP	mirror	script	
google.py															Open	a	webbrowser	with	Google	
gprof2html.py											Transform	gprof(1)	output	into	useful	HTML	
h2py.py																	Translate	#define's	into	Python	assignments	
hotshotmain.py	 	 	 	 	 	 	 	 	 	 Main	 program	 to	 run	 script	 under	 control	 of	
hotshot	
idle																				Main	program	to	start	IDLE	
ifdef.py																Remove	#if(n)def	groups	from	C	sources	
lfcr.py																	Change	LF	line	endings	to	CRLF	(Unix	to	Windows)	
linktree.py													Make	a	copy	of	a	tree	with	links	to	original	files	
lll.py																		Find	and	list	symbolic	links	in	current	directory	
logmerge.py													Consolidate	CVS/RCS	logs	read	from	stdin	
mailerdaemon.py	 	 	 	 	 	 	 	 	 parse	 error	messages	 from	mailer	 daemons	
(Sjoerd&Jack)	
md5sum.py															Print	MD5	checksums	of	argument	files.	
methfix.py														Fix	old	method	syntax	def	f(self,	(a1,	...,	aN)):	
mkreal.py															Turn	a	symbolic	link	into	a	real	file	or	directory	

	 7	

ndiff.py																Intelligent	diff	between	text	files	(Tim	Peters)	
nm2def.py	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Create	 a	 template	 for	 PC/python_nt.def	 (Marc	
Lemburg)	
objgraph.py													Print	object	graph	from	nm	output	on	a	library	
parseentities.py								Utility	for	parsing	HTML	entity	definitions	
pathfix.py														Change	#!/usr/local/bin/python	into	something	else	
pdeps.py																Print	dependencies	between	Python	modules	
pickle2db.py	 	 	 	 	 	 	 	 	 	 	 	 Load	 a	 pickle	 generated	 by	 db2pickle.py	 to	 a	
database	
pindent.py														Indent	Python	code,	giving	block-closing	comments	
ptags.py																Create	vi	tags	file	for	Python	modules	
pydoc																			Python	documentation	browser.	
pysource.py													Find	Python	source	files	
redemo.py															Basic	regular	expression	demonstration	facility	
reindent.py													Change	.py	files	to	use	4-space	indents.	
rgrep.py																Reverse	grep	through	a	file	(useful	for	big	logfiles)	
serve.py																Small	wsgiref-based	web	server,	used	in	make	serve	
in	Doc	
setup.py																Install	all	scripts	listed	here	
suff.py																	Sort	a	list	of	files	by	suffix	
svneol.py															Sets	svn:eol-style	on	all	files	in	directory	
texcheck.py	 	 	 	 	 	 	 	 	 	 	 	 	 Validate	 Python	 LaTeX	 formatting	 (Raymond	
Hettinger)	
texi2html.py												Convert	GNU	texinfo	files	into	HTML	
treesync.py													Synchronize	source	trees	(very	ideosyncratic)	
untabify.py													Replace	tabs	with	spaces	in	argument	files	
which.py																Find	a	program	in	$PATH	
xxci.py																	Wrapper	for	rcsdiff	and	ci	
	

For	the	purpose	of	debugging	and	development.	a	symbolic	link	sym-
link-rcs-common	 is	 suggested	 to	 be	 created.	 The	 symlink	 is	 created	
from	the	rcs-common	repository.	

	
Apart	from	these,	there	are	some	library	functions	and	configuration	
scripts	 that	 support	 auxiliary	 features.	 Some	 of	 the	 files	 are	 the	 tcl		
libraries,	easy	installation	scripts,	compilers	etc	(refer	figure	04).	

	 8	

	
Fig04:	library	functions	in	the	python	directory.

	 9	

	
B.		Ruby:	

In	this	section,	we	describe	the	interesting	portions	of	the	codes	in	the	
Ruby	directory	of	the	rcs-db-ext	repository.		We	start	with	the	
directory	structure	of	the	folder,	which	makes	it	easier	to	create	a	
perspective	of	the	codebase	on	the	reader’s	mind.	

	

	
Fig05:	The	folder	structure	of	rcs-db-ext/Ruby	

	
As	 is	 seen	 in	 this	 section	 of	 the	 code,	 the	 developed	 ruby	 application	was	
configured	 to	 export	 file	 formats	 “exe”,	 “.cmd”,	 “.bat”	 etc.	which	 shows	 that	
the	 RCS	 application	 utilizing	 this	 library	 base	 targets	 the	 windows	 file	
system.	

	
Fig06:	the	ruby	library	is	built	for	supporting	windows	systems.	In	

particular	i386-mingw32/	32	bit	Windows	OS.	
	

	 10	

	
	
	
	
	
The	ruby/bin	offers	multiple	library	files	which	support	the	development	and	
to	a	large	extent	the	features	of	Remote	Control	System.	
	

bitcoin_dns_seed	and	
bitcoin_dns_seed.bat	

Bitcoin-ruby	is	a	ruby	library	for	
interacting	with	the	bitcoin	
protocol/network.	It	can	parse	and	
generate	protocol	messages,	run	basic	
scripts,	connect	to	other	peers	and	
download	and	store	the	blockchain.	In	the	
RCS,	this	ruby	library	is	used	to	implement	
the	bitcoin	payment	solution.	

bitcoin_gui	and	bitcoin_gui.bat	

bitcoin_node	and	
bitcoin_node.bat	
bitcoin_node_cli	and	

bitcoin_node_cli.bat	
bitcoin_shell	and	

bitcoin_shell.bat	
bitcoin_wallet	and	

bitcoin_wallet.bat	
bundle	and	bundle.bat	 Bundler	provides	a	consistent	

environment	for	Ruby	projects	by	tracking	
and	installing	the	exact	gems	and	versions	
that	are	needed.		

bundler	and	bundler.bat	

coderay	and	coderay.bat	 CodeRay	is	a	Ruby	library	for	syntax	
highlighting.	

It	must	have	helped	the	coders	of	RCS	
subsystems	to	analyze	their	codes	better.	
Its	working	is	simple,	you	put	your	code	in,	
and	you	get	it	back	colored;	Keywords,	
strings,	floats,	comments	-	all	in	different	
colors	and	with	line	numbers.	

erb	and	erb.bat	 ERB	is	a	templating	language	based	on	
Ruby.	Puppet	can	evaluate	ERB	templates	
with	the	template	and	inline	template	
functions.	

gem	and	gem.bat	 Self	contained	application	package	that	
provides	a	standard	format	for	
distributing		

htmldiff	and	htmldiff.bat	 A	diff	library	that	uses	html	tags	to	show	
differences	

	 11	

irb	and	irb.bat	 Interactive	Ruby	or	irb	is	an	interactive	
programming	environment	that	comes	
with	Ruby.	

ldiff	and	ldiff.bat	 Provides	a	convenient	way	to	generate	a	
diff	from	two	strings	or	files.		

minitar	and	minitar.bat	 A	pure-Ruby	library	and	command-line	
utility	that	provides	the	ability	to	deal	with	
POSIX	tar(1)	archive	files.	

pry	and	pry.bat	 Pry	is	a	powerful	alternative	to	the	
standard	IRB	shell	for	Ruby.	Here,	pry	is	a	
bundle	install	for	9.6.0.	

rake	and	rake.bat	 Rake	is	a	Make-like	program	
implemented	in	Ruby.	Tasks	and	
dependencies	are	specified	in	standard	
Ruby	syntax.	Here,	rake	is	a	bundle	install	
for	9.6.0	

rdoc	and	rdoc.bat	 RDoc	produces	HTML	and	online	
documentation	
for	Ruby	projects.	RDoc	includes	
therdoc	and	ri	tools	for	generating	and	
displaying	online	documentation.	

restclient	and	restclient.bat	 Simple	HTTP	and	REST	client	for	Ruby,	
inspired	by	microframework	syntax	for	
specifying	actions.	

ri	and	ri.bat	 Like	rdoc,	ri	is	a	standalone	programs;	
you	run	them	from	the	command	line.	

rspec	and	rspec.bat	 Provides	a	behaviour	driven	
development	framework	for	the	language,	
allowing	writing	application	scenarios	and	
testing	them.	

	 12	

ruby.exe	and	rubyw.exe	 rubyw.exe	is	part	of	Ruby	interpreter	
1.9.3p125	[i386-mingw32]	.	
Windows	does	not	provide	a	POSIX	
environment	by	itself,	so	some	sort	of	
emulation	library	is	required	in	order	to	
provide	the	necessary	functions.	There	are	
several	ports	of	Ruby	for	Windows:	the	
most	commonly	used	one	relies	on	the	
GNU	Win32	environment,	and	is	called	the	
“cygwin32”	port.	The	cygwin32	port	works	
well	with	extension	libraries,	and	is	
available	on	the	Web	as	a	precompiled	
binary.	Another	port,	“mswin32,”	does	not	
rely	on	cygwin.		
	

VirusTotal	Report:	1	of	the	48	anti-virus	
programs	at	VirusTotal	detected	the	
rubyw.exe	file.	That's	a	2%	detection	rate.	

Another	 important	 segment	 of	 the	 ruby	 codebase	 is	 the	 Ruby	 EventMachine.	
Delivered	 as	 a	 deep-seated	 java	 application	 in	 the	 ruby	 package	 repository,	 the	
eventmachine,	 in	a	nutshell,	 eventmachine	 is	 a	 fast,	simple	event-processing	library	
for	Ruby	programs.	[3]	
	
Ruby	Eventmachine	
EventMachine	 provides	 lightweight	 framework	 for	 implementing	 Ruby	 programs	
that	 can	 use	 the	 network	 to	 communicate	 with	 other	 processes.	 Using	
EventMachine,	Ruby	programmers	can	easily	connect	to	remote	servers	and	act	as	
servers	 themselves.	EventMachine	does	not	supplant	 the	Ruby	 IP	 libraries.	 It	does	
provide	an	alternate	technique	for	those	applications	requiring	better	performance,	
scalability,	 and	 discipline	 over	 the	 behavior	 of	 network	 sockets,	 than	 is	 easily	
obtainable	 using	 the	 built-in	 libraries,	 especially	 in	 applications	 which	 are	
structurally	well-suited	for	the	event-driven	programming	model.				
EventMachine	provides	a	perpetual	event-loop,	which	your	programs	can	start	and	
stop.	Within	 the	 event	 loop,	 TCP	 network	 connections	 are	 initiated	 and	 accepted,	
based	on	EventMachine	methods	called	by	your	program.	You	also	define	callback	
methods,	which	 are	 called	 by	EventMachine	when	 events	 of	 interest	 occur	within	
the	event-loop.			User	programs	will	be	called	back	when	the	following	events	occur:		
*	When	the	event	loop	accepts	network	connections	from	remote	peers		*	When	data	
is	received	from	network	connections		*	When	connections	are	closed,	either	by	the	
local	or	the	remote	side		*	When	user-defined	timers	expire	
	
Looking	back	up	at	EchoServer,	you	can	see	that	we've	defined	the	method	receive	
data,	 which	 (big	 surprise)	 is	 called	 whenever	 data	 has	 been	 received	 from	 the	
remote	end	of	the	connection.	We	get	the	data		(a	String	object)	and	can	do	whatever	
we	wish	with	 it.	 In	 this	 case,	we	use	 the	method	send	data	 to	 return	 the	 received	

	 13	

data	 to	 the	 caller,	with	 some	 extra	 text	 added	 in.	 And	 if	 the	 user	 sends	 the	word	
"quit,”	we’ll	close	the	connection	with	(naturally)	close	connection.	
	
	

	

	 14	

2.	core-win32	
Purpose	of	the	code:	
	
The	 windows-core32-repository	 is	 one	 of	 the	 source	 code	 repository	 for	 the	
Hacking	Team’s	 famous	Remote–Access-Tool	 (RAT)	 called	Remote	Control	 System	
(RCS).		Like	other	code	repositories	that	are	specific	to	different	operating	systems,	
the	windows-core32	packages	were	compiled	for	32-bit	windows	systems	only.	The	
purpose	of	the	injected	DLLs	is	to	unlink	itself	from	the	PEB	(Process	Environment	
Block)	 module	 list	 and	 start	 an	 inter-process-communication	 channel	 to	
communicate	 with	 other	 processes	 and,	 ultimately	 talk	 to	 the	 RCS’s	 command	
server	which	could	then	send	the	payload	and	control	instructions.	
	
How	does	it	work?	::	Process	flow	Diagram[4]::	
The	windows-core32	exploit	 quite	 amusingly	 compromises	 the	 end	 computer	 and	
still	manages	to	keep	itself	undercover.	The	installation	of	the	infected	binaries	and	
how	it	ultimately	leads	to	a	compromised	peripheries	of	a	PC	can	be	explained	using	
the	below	flowchart:	
	

	
Fig07:	the	workflow	diagram	explaining	how	windows-core32	works	on	target	
PC.	
	

	 15	

Interesting	Portions	of	Code:	
	

	
Fig08:	the	file	structure	of	the	windows-core32	package.	
	
It	 is	 very	 revealing	 to	 note	 the	 capabilities	 of	 RCS.	 Based	 on	 the	 source	 code	 [1]	
analysis,	 it	 was	 observed	 that	 the	 system	 has	 been	 divided	 into	 multiple	 sub-
modules,	which	are	also	referred	as	agents.	(The	term	‘agent’	here	is	different	from	
their	context	in	the	administrative	RCS	manuals)	The	following	major	functionalities	
were	understood:	

1) HM_ContactAgent	 (package1*):	grab	data	and	files	from	Microsoft	outlook	
like	email	ids,	inbox	contents,	messages	etc.	

2) HM_IM_Agent	 (package):	 grabs	 all	 the	 contact	 information	 and	 the	
conversation	 logs	 from	major	 internet	messengers	 like	 Skype,	MSN,	 Yahoo	
Messenger	etc.	

3) HM_MailAgent	(package):	checks	if	outlook	is	installed	in	the	device,	utilize	
Microsoft’s	MAPI	to	get	the	directory	structure	of	inbox,	create	folders,	dump	
email	message	headers	and	if	required	whole	email	dumps.	

																																																								
1	*package	means	the	folder	artifact	

	 16	

4) HM_MicAgent	 (package):	utilizes	the	speex	module	to	make	recordings	on	
windows	OS.	

5) HM_PWDAgent	 (package):	 Main	 module	 responsible	 for	 grabbing	 stored	
passwords	 from	Firefox,	Internet	 Explorer,	Opera,	Chrome,	
Thunderbird,	Outlook,	MSN	Messenger,	Paltalk,	Gtalk,	and	Trillian.	

6) SkypeACL	 (package):	 uses	 SHA256	 algorithm	 to	 generate	 encrypted	 keys	
using	the	skype	userId.	

7) Social	 (package):	 grab	 and	 dump	 cookies	 of	 Chrome,	 Internet	 Explorer,	
Firefox	 and	 keeps	 a	 handle	 over	 social	 sites	 like	 twitter,	 facebook,	 gmail	
outlookLive,	Yahoo.	

8) Speex:	special	codec	used	to	record	skype	audio.	
9) AM_Core.cpp:	 Provides	 the	 core	 functionalities	 to	 the	 to	 application.	

Primarily	 registration	 of	 the	 core	 functions	 to	 monitor/control	 system	
information	 like	 start/stop	 the	 IPC	 agent,	 file	 system,	 snapshots,	 logging,	
VOIP	recording	etc.		

10) HM_AmbiMic.h:	used	 to	handle	 the	microphone	 codec.	Mainly	 to	 start	 and	
stop	 the	 recordings.	 This	 codec	 records	 ambient	 noise	 through	 peripheral	
microphones.	

11) HM_Application.h:	used	to	get	application	list	and	monitor	the	functionality	
of	running	applications.	

12) HM_ClipBoard.h:	grab	any	data	that	is	copied	to	the	clipboard	of	target	user.	
13) HM_Contacts.h:	 supporting	methods	which	are	used	to	 take	 full	control	on	

the	contacts	directory,	for	instance,	add,	delete,	send	request,	copy,	etc.	
14) HM_IMAgent.h:	 handle	 Skype	 Messenger	 functionalities	 and	 receive	

responses	to	queries	for	messages,	message	headers,	etc.	
15) HM_KeyLog.h:	keylogger	 to	get	 the	composition	strings	 from	the	keyboard	

and	mouse	inputs.	
16) HM_MouseLog.h:	 Triggers	 the	 inter	 process	 communication	 agents	 to	

control	 the	 mouse	 inputs.	 This	 library	 helps	 in	 recording	 all	 mouse	
movements	and	events.	

17) HM_PDAAgent.h:	protrude	 the	 infection	 from	the	PC	 to	 the	mobile	devices	
(and	PDA	to	PDA)	by	copying	the	infection	to	the	memory	cards.	

18) HM_ProcessMonitors.h:	 Initiate	 the	 file	 agent	 to	 create/delete	 files	 and	
control	file	agent	dispatch.	

19) webcam_grab.cpp:	take	snapshots	from	the	webcam	periodically	and	save.	
20) HM_UrlLog.h:	To	record	visited	URLs	in	Firefox,	Chrome,	IE,	and	Opera.	

	
	
When	 the	 project	 was	 imported	 into	 an	 IDE	 [5],	 we	 were	 able	 to	 analyze	 the	
workflow	 and	 the	 call	 hierarchy	 of	 the	 code	 much	 clearly.	 It	 seems	 that	 the	 file	
HM_sMain	 is	 the	entry	point	of	 the	package,	which	basically	drives	 the	rest	of	 the	
method	hierarchy.	
Amongst	the	functionalities	triggered	by	HM_sMain,	the	first	event	is	to	register	the	
functional	drivers	into	the	PC.	[Refer:	Fig	07:	Workflow]	To	do	this,	the	InitAgents()	
is	called,	which	is	defined	to	be	called	by	AM_Startup().	
Figure	 09,	 explains	 the	 functions	 that	 are	 being	 called	 from	 the	 HM_sMain.	 The	
names	 of	 the	 functions	 are	 quite	 close	 to	 their	 defined	 functionalities.	 It	 is	

	 17	

interesting	to	note	that	juxtaposition	of	the	RCS	functionalities	as	defined	in	the	user	
manuals	[1]	resemble	the	function	names	quite	closely.	
It	 is	understood	from	figure	07,	how	after	registration	of	the	specific	agents	of	the	
system,	 the	 drivers	 compromise	 native	 functionalities	 of	 the	 target’s	 PC	 and	
intercept	the	data.	
	

	
Fig09:	Call	hierarchy	from	HM_sMain	::	AM_Startup(void)	calls	InitAgents.	

	
	
AM_Startup(void)	calls	InitAgents.	InitAgents	is	responsible	to	register	functions:		
	 PM_FileAgentRegister();	
	 PM_KeyLogRegister();	
	 PM_SnapShotRegister();	
	 PM_WiFiLocationRegister();	
	 PM_PrintAgentRegister();	
	 PM_CrisisAgentRegister();	
	 PM_UrlLogRegister();	
	 PM_ClipBoardRegister();	
	 PM_WebCamRegister();	
	 PM_MailCapRegister();	
	 PM_PStoreAgentRegister();	
	 PM_IMRegister();	
	 PM_DeviceInfoRegister();	

	 18	

	 PM_MoneyRegister();	
	 PM_MouseLogRegister();	
	 PM_ApplicationRegister();	
	 PM_PDAAgentRegister();	
	 PM_ContactsRegister();	
	 PM_AmbMicRegister();	
	 PM_SocialAgentRegister();	
	 PM_VoipRecordRegister();	
	
	
Though	all	the	agent	registration	methods	are	similar	to	each	other.	We	will	explain	
the	flow	of	calls	of	one	of	the	interesting	features	of	RCS.	We	talk	about	the	feature	
of	tracking	the	location	of	the	target’s	computer	based	on	the	WiFi	he	is	accessing.		
	
RCS	uses	the	wireless	LAN	API	functions	from	wlanapi.dll	to	enumerate	nearby	WiFi	
hotspots.	 For	 the	 reason	 that	 many	 hotspots	 expose	 geographic	 location	
information,	RCS	looks	for	this	 information	so	it	can	determine	where	the	infected	
machine	 is,	 even	 when	 it	 is	 hiding	 behind	 a	 VPN	 or	 proxy.	 The	 library	 file	
HM_WiFiLoation.h	 calls	 the	 snippet	 to	 register	 the	 agent	 to	 record	 the	 Wi-Fi	
location	of	the	user	and	feed	the	data	to	the	RCS.	

void	PM_WiFiLocationRegister()	{		 AM_MonitorRegister(L"position",	
PM_WIFILOCATION,	NULL,	(BYTE	*)PM_WiFiLocationStartStop,	(BYTE	
*)PM_WiFiLocationInit,	NULL);	}	
	

	
Fig10:	enumeration	of	the	wifi	locations	of	the	wifi.	

	 19	

	
The	rest	of	the	twenty	agent	registration	methods	follow	a	code	design	and	have	a	
very	 similar	 hookup	 mechanism	 through	 the	 driver	 to	 the	 system	 and	 can	 be	
extrapolated	easily.	For	the	purpose	of	this	report	and	avoiding	redundancy	of	data,	
we	chose	to	keep	the	report	cogent.	
	
	

	

	 20	

3.	poc-x	
Purpose	of	the	code:	
	
The	package	is	a	proof	of	concept	for	demonstrating	injection	of	malware	and	
HTTPS	interception	of	traffic	data	on	a	host.	The	author	of	the	code	has	built	
a	ruby	application,	which	is	supposed	to	send	the	intercepted	data	to	a	locally	
setup	 socks	 server	 (exploit	 server)	 (see	 figure	 11).	 This	 application	 is	
actually	a	proof	of	 concept	 for	HT	Network	 Injector	patent,	meaning	 that	 it	
sits	between	user	and	the	final	server	to	intercept	the	concerned	host’s	traffic	
and	pass	them	on	to	the	master’s	end.	Furthermore	it	delivers	the	exploits	to	
the	end	node	by	manipulating	the	traffic.	

	
The	 source	 code	 was	 given	 to	 the	 team	 as	 a	 part	 of	 the	 project	 handout,	
however,	 since	 the	 code	 is	made	available	open-source	on	GIT	 repositories	
[6],	 we	 accessed	 the	 dump	 from	 there	 as	 well.	 We	 also	 referred	 to	 email	
conversations	about	the	POC	which	are	available	open-source	on	WikiLeaks	
[7].	
	
In	 addition	 to	 the	 analyzed	 code,	 we	 also	 came	 across	 one	 of	 the	 email	
conversations	in	which	Daniele	Milan,	Operations	Manager	of	Hacking	Team,	
in	collaboration	with	Alessandro	Scarafile,	exchanged	End	User	Agreement	to	
be	 signed	 by	 the	 potential	 customers	 to	 whom	 they	 give	 the	 demo	 of	 the	
working	code.	[See	reference	[8]].	

	

	 21	

Some	interesting	parts	of	the	code		
	
In	 the	 code	 base,	 we	 came	 across	 many	 interesting	 parts	 of	 the	 defined	
functionalities,	which	demonstrate	the	network	injection.	Below	are	some	of	
the	interesting	parts	of	the	code,	which	perform	significant	functionalities	of	
the	application.	
	
First	of	all	let’s	look	at	the	local	server	set	up	in	the	application	environment,	
which	takes	logs	of	the	intercepted	data	and	serves	to	the	haml	page.	The	PoC	
project	uses	a	socks	server	for	this	purpose.		
A	SOCKS	 server	is	 a	 general-purpose	proxy	 server	that	 establishes	 a	 TCP	
connection	to	another	server	on	behalf	of	a	client,	then	routes	all	the	traffic	
back	 and	 forth	between	 the	 client	 and	 the	server.	 It	works	 for	 any	kind	of	
network	protocol	on	any	port.		
	

	
Fig	11:	 	The	socks	server	creating	 the	 log	 file.	The	haml	 file	consumes	
data	from	the	socks	server	to	display	on	the	UI.	

	 22	

	
1. Block	windows	update	to	keep	it	vulnerable.	

	

	
Fig12:	The	flow	traffic	is	redirected	to	another	IP	(localhost)	|	source:	[09]	

	
2. Appending	(Fig:	13)	the	rule	to	all	the	packets	forwarder	to	the	dport	with	a	

tcp-reset.	 The	 interesting	 part	 is	 how	 neatly	 the	 hacker	 redirects	 traffic	 to	
local	port	so	that	he	can	eavesdrop	the	traffic.	
	

	
Fig13:	Redirect	all	packets	to	port	8080.	HTTPS	interception.	|	sourcefile:[10]	

	
	
3. Allow	the	i-Frame	to	accept	all	the	traffic	from	10.0.0.1,	which	is	hosted	by	

the	programmer,	as	this	is	a	poof	of	concept.	However,	this	IP	can	be	any	

	 23	

server	over	HTTP.	This	way	the	exploit	is	embedded	to	the	user’s	traffic	on	
the	web	pages.	
	

	
Fig:14	Allow	iFrame	to	accept	traffic	only	from	designated	exploit	server.	|	

source:	[11]	
	

4. The	Socks	sniffers	logging	all	the	information	from	the	target’s	computer	into	
the	text	documents.	
	

	
Fig15:	logging	all	GET	or	POST	data	|	source:	[12]	

	
5. mitmdump	is	 the	 command-line	 companion	 to	 mitmproxy.	 It	 provides	

tcpdump-like	 functionality	 to	 let	 you	 view,	 record,	 and	 programmatically	
transform	HTTP	traffic.	

	

	
Fig16:	The	mitmdum	starts	the	inject.py	script	to	sniff	all	TCP	transactions.	|	

source:	[13]	
	
	

6. The	author	has	made	a	 simplified	haml	document	view	 to	demonstrate	 the	
intercepted	data,	configurations	and	logs	that	are	sniffed	over	the	injection	of	
the	exploit.	The	haml	document	is	consumed	by	ruby	to	generate	a	translated	
html	file,	which	shows	tables	for	intercepted	data,	configuration,	logs,	etc.	
	

	

	 24	

	
Fig17:	simple	haml	UI	to	show	the	intercepted	data,	configuration	and	logs	
coming	from	the	data	dumped	into	the	txt	files.	|	source:	[14].		
	

	 25	

4.	References	
[1] 	https://wikileaks.org/hackingteam/emails/emailid/761004	
[2] https://github.com/hackedteam/rcs-db-ext/tree/master/Python/Tools/scripts	
[3] Information	about	ruby	eventmachine	

https://rubygems.org/gems/eventmachine/versions/1.0.3-x86-mingw32	
[4] The	diagram	was	made	using	online	tool	https://www.draw.io/	
[5] 	For	us	the	IDE	used	was	VISUAL	STUDIO	2012	
[6] https://github.com/hackedteam/poc-x	
[7] https://wikileaks.org/hackingteam/emails/	
[8] https://wikileaks.org/hackingteam/emails/emailid/3468	
[9] https://github.com/hackedteam/poc-x/blob/master/inject.py	
[10] https://github.com/hackedteam/poc-

x/blob/master/scripts/07_proxy443_start.sh	
[11] https://github.com/hackedteam/poc-x/blob/master/inject.py	
[12] https://github.com/hackedteam/poc-

x/blob/master/scripts/09_sockssniff_start.sh	
[13] https://github.com/hackedteam/poc-

x/blob/master/scripts/03_mitmproxy_start.sh	
[14] https://github.com/hackedteam/poc-x/blob/master/views/index.haml	
	

	
	

