
SQL INJECTION
Group #7

Elena Donini
Linda Michelotti
Michele Benolli
Davide Cunial

LAB OBJECTIVES

Introduction to SQL

Introduction to SQL injection

Exercises

The main objective of this lab is to understand how
SQL INJECTION works.

The laboratory is divided into the following
sections:

WEB and DATABASE
Everyday we access to a
website that requires a login.

Web servers use databases
to store and retrieve data

SQL
SQL stands for Structured Query
Language.

It is a standard language for accessing
and manipulating databases.

The aim of SQL includes data insertion,
query, update and delete, schema
creation and modi!cation, and data
access control.

QUERY

Password: 12345
User: Jerry

User: Jerry

Password: 12345

SELECT * FROM USERS
WHERE USER = ‘JERRY’ AND

PASSWORD = ‘12345’;

SQL Injection
SQL Injection is a technique
where malicious users can inject
SQL commands into an SQL
statement, via web page input.

Injected SQL commands can
alter SQL statements and
compromise the security of a
web application.

One of the most common type
of vulnerabilities in real world is
SQL Injection.

Lab structure
For this lab we built a web page with the basic
theory and some exercises (IP 192.168.1.210)

Before starting, you have to sign up and login.

Lab structure
This symbol indicates
theory and exercises

about SQL.

Lab structure

This is the list of exercises
about SQL injection.

Lab structure
These are the exercises
that you have to do or

that you have not
completed yet.

Lab structure

These are the completed
exercises.

Lab structure
For every exercise there is a

score. If you ask for the hint the
score decreases.

SQL THEORY

SQL
A database contains tables identi!ed by a name
(e.g. "User”). The data or information of the
database are stored in these tables.

The actions you need to interact with a relational
database are done with SQL statements.

SQL SELECT
The SELECT statement is used to select data from a
database.

The column names that follow the select keyword
determine which columns will be returned in the
results.

You can select as many column names as you like,
or you can use a * to select all columns.

SELECT column_name,column_name FROM
table_name;

SELECT * FROM table_name;

SQL SELECT
Try to select from the user table the columns of the
names and emails.

SELECT !rst_name, email FROM user;

SQL SELECT
Try to select from the user table the columns of the
names and emails.

SQL WHERE
The WHERE clause speci!es which data values or
rows will be returned, based on the criteria
described after the keyword where.

There are different conditional selections used in
where clauses, for example:

SELECT column_name FROM table_name WHERE
column_name operators value;

= Equal
> Greater than
< Less than
>= Greater than or equal
<= Less than or equal
<> Not equal to

SQL WHERE
Try to select from the user table the name of the
Computer Science student.

SELECT * FROM user WHERE
career='Computer Science';

Try to select from the user table the name of the
Computer Science student.

SQL WHERE

SQL LIKE

Another operator is LIKE: it is used in a WHERE
clause to search for a speci!c pattern in a column.

Like is a very powerful operator that allows you to
select only rows that that contain strings which are
"like" what you specify.

SELECT column_name FROM table_name WHERE
column_name LIKE pattern;

SQL LIKE
Try to select from the user table the names ending with letter 'o'.

The sign “%” is a substitute for zero or more characters, instead “_”
is a substitute for a single character.

SELECT * FROM user WHERE !rst_name
LIKE '%o';

SQL LIKE
Try to select from the user table the names ending with letter 'o'.

The sign “%” is a substitute for zero or more characters, instead “_”
is a substitute for a single character.

SQL UNION
The UNION operator is used to combine the
result-set of two or more SELECT statements.

Notice that each SELECT statement within the
UNION must have the same number of columns
and the columns must have the same type.

SELECT * FROM table_name_1 UNION SELECT *
FROM table_name_2;

Using the union operator, select records of userid 1
and userid 2.

SQL UNION

SELECT * FROM user WHERE userid=1 UNION
SELECT * FROM user WHERE userid=2;

Using the union operator, select records of userid 1
and userid 2.

SQL UNION

SQL NULL
If a column in a table is optional, we can insert a new
record or update an existing record without adding a
value to this column. This means that the !eld will be
saved with a NULL value.

NULL values are treated differently from other values.

NULL is used as a placeholder for unknown or
inapplicable values.

It is possible to test for NULL values with IS NULL.

SELECT * FROM table_name WHERE column_name
IS NULL;

SQL NULL
Try to select only the records with NULL values
in the career column.

SELECT * FROM user WHERE career IS NULL;

Try to select only the records with NULL values
in the career column.

SQL NULL

It seems to be secure...
but it is not!

SQL INJECTION

SQL injections based on poorly !ltered strings are caused
by user input that is not !ltered to escape characters.

STRING SQL INJECTION

$pass = $_GET['pass'];
$password = mysql_query("SELECT
password FROM users WHERE
password = '". $pass . "';");

SQL injections based on poorly !ltered strings are caused
by user input that is not !ltered to escape characters.

STRING SQL INJECTION

$pass = $_GET['pass'];
$password = mysql_query("SELECT
password FROM users WHERE
password = '". $pass . "';");

Take the password
inserted from the user

Give the password to the
database, which checks if the

password is included in it.

For this reason, an injection may look something like:
' OR ' 1 ' = ' 1 --

STRING SQL INJECTION

SELECT * FROM user WHERE
password=’’ OR ‘1’=’1’;

Because of the OR statement in the SQL query, the check
for password = $var is insigni!cant as 1 does equal 1.

The query will return TRUE, resulting in a positive login.

String SQL Injection

Let's begin from us. We are an egocentric group of
developers, so we designed a table with our names and
our emails. If you put my name, Michele (the most
egocentric of the group), in the input field, my email is
returned. You have to find a way to print all the rows at
once, or at least more than one.

Text of exercise:

- exercise -

Incorrect type handling based SQL injections occur
when an input is not checked for type constraints.

An example of this would be an ID !eld that is numeric,
but there is no !ltering in place to check that the user
input is only numeric. If it is possible the insertion of a
string in place of a number, a SQL injection attack may
be done.

NUMERIC SQL INJECTION

An example of code that will not be subject to incorrect
type handling injection is:

(is_numeric($_GET['id'])) ? $id =
$_GET['id'] : $id = 1;
$news = mysql_query("SELECT * FROM `news`
WHERE `id` = $id ORDER BY `id` DESC LIMIT
0,3");

NUMERIC SQL INJECTION

An example of code that will not be subject to incorrect
type handling injection is:

(is_numeric($_GET['id'])) ? $id =
$_GET['id'] : $id = 1;
$news = mysql_query("SELECT * FROM `news`
WHERE `id` = $id ORDER BY `id` DESC LIMIT
0,3");

NUMERIC SQL INJECTION

checks that $_GET['id'] is a number

An example of code that will not be subject to incorrect
type handling injection is:

(is_numeric($_GET['id'])) ? $id =
$_GET['id'] : $id = 1;
$news = mysql_query("SELECT * FROM `news`
WHERE `id` = $id ORDER BY `id` DESC LIMIT
0,3");

NUMERIC SQL INJECTION

if TRUE returns $id = $_GET['id'],
and if FALSE sets $id to 1.

An example of code that will not be subject to incorrect
type handling injection is:

(is_numeric($_GET['id'])) ? $id =
$_GET['id'] : $id = 1;
$news = mysql_query("SELECT * FROM `news`
WHERE `id` = $id ORDER BY `id` DESC LIMIT
0,3");

NUMERIC SQL INJECTION

This kind of !ltering will assure that the ID !eld is always
numeric.

Numeric SQL Injection

The table user contains some names and emails. Each
person in the table has a unique incremental numeric
id. The following input !eld allows you to insert the id
value in order to get the email. You have to !nd a way
to print all the rows at once, or at least more than
one.

Text of exercise:

- exercise -

SQL Injection
with UNION

Here you can enter a userid and some
information will be displayed in the table. Try
to extract other information about cc_number
and pin from the table creditcard using UNION
to concatenate another query.

Text of exercise:

- exercise -

SQL Injection with Union

For this exercise we use UNION to merge columns from
two different tables.

First by entering a userid in the input box we have
information about: account_number, !rst_name,
last_name and email.

We can guess that the query will be something like:

 SELECT account_number,!rst_name, last_name,email FROM
user WHERE userid=$id

- explanation of exercise -

SQL Injection with Union
With a UNION statement we can also insert data from
another table into our output, by entering something like:

It doesn’t matter whether the ID we enter is valid or not since
we are only interested in the second part of the query.

SELECT account_number, !rst_name, last_name,
email FROM user WHERE userid=999 UNION
SELECT cc_number,pin,null,null FROM creditcard

- explanation of exercise -

BLIND SQL INJECTION

Here the SQL Injection is called BLIND because
we cannot see the output for our query.

Blind SQL injection is a type of SQL Injection
attack that asks the database true or false
questions and determines the answer based
on the applications response.

Blind SQL Injection

Here you can check whether an account_number
associated with a user is valid or nor (eg. 1515 is valid,
1234 is not). The objective of this exercise is to also
discover the pin associated with the cc_number
1111222233334444 (it's a String!). Pins and credit
card numbers are stored in another table called pins.

For this query we suggest that you use parenthesis!
When you are done just enter the pin in the input box
to complete.

Text of exercise:

- exercise -

Blind SQL Injection

AND/OR statement are very useful to concatenate
additional code to our query, for example:
1515 AND 1=1 will return true, while

1515 AND 1=2 will return false!

Instead of asking if 1=1 to solve this exercise we can ask
something about the pin associated with our
cc_number = ‘1111222233334444’.

- explanation of exercise -

SECOND ORDER
INJECTION

Second Order Sql injection occurs when user submitted
values contain SQL injection attacks that are stored in the
database, instead of getting executed immediately.

Data coming from the database are trusted as they are
without validation with escaping or !ltering function.
Developers should !lter the data either coming from users or
the retrieved from the database.

Second Order
Injection

The aim of this exercise is to change the password of
an user already registered. A possible solution, it’s to use second
order injection: a sql injection payload is stored in the database
and then later used by some other functionality.

The name of the user already registered is «Elena» and the goal is
to change it password to ‘newpass’. Create a new user with an
appropriate !rst name which permits you to inject a malicious.

First Name in the database, for example «Elena’; #».

Text of exercise:
- exercise -

Second Order Injection
The second part of the attack is to change the password of Elena
with «newpass».

You have to click on the button to change password and insert
your attacker data.

UPDATE datastore.datastore SET passwrd = 'newpass'
WHERE fname='Elena'; # AND passwrd= 'oldpass';

- explanation of exercise -

PREPARED STATEMENT

Character validation is not always the best choice in SQL
defense because it’s difficult to escape all the possible
malicious code.

The optimum way to avoid SQL injection is to use
Prepared Statement that permits to parametrize queries
and where all the inserted string are evaluated as
characters and so not ran.

// query
$query = "SELECT * FROM level WHERE name=:name";

// template preparation
$stmt = $db->prepare($query);

// Variable de!nition for placeholder substitution
$stmt->bindValue(':name', $_SESSION["username"]);

// instruction execution
$result = $stmt->execute();

PREPARED STATEMENT

SQL INJECTION
EXERCISES
OPTIONAL

Bypass Login

The following login form has some vulnerabilities. Try
to get access with your inexistent combination of
username and password!

Text of exercise:

- exercise -

Second Order
Injection

The aim of this exercise is to extract meaningful data from the
database using a second order injection. In particular it’s
possible to exploit the fact that the !rst name value extracted
from the query is used in another query without validation.

We will have to inject a SQL query in the !rst name !eld; make
sure that the query is correctly formed and then use «Selection
of data» to run the injected code.

For example to extract the version of the system used, try to put
«select version()».

Text of exercise: - exercise -

Second Order Injection

The goal of the !rst part of the attack is to inject some malicious
code in the database during the login part. In particular, in the
First Name !eld it has to be put the code string that permit to
extract the version of the system used.

The goal of the second part of the attack is to run the injected
code by the selecting form.

Query ran in the db in the select form is:

SELECT*FROM datastore WHERE !rst_name = ‘!rst_name_extracted’;

- explanation of exercise -

In this way were able to exploit the vulnerability to run
an arbitrary query on the database.

The way that the application was vulnerable to second
order SQLi is very unlikely in real world and this was only
used to demonstrate the exploitation of this
vulnerability.

Second Order Injection
- explanation of exercise -

The defense

As we have noticed, one big security issue comes from the
single quote character.

In PHP the function str_replace can be used to replace
all the occurrences of ' in input with ", sanitizing in this
way the string. But there are other problematic characters.

The PHP function
string addslashes (string $str)
returns a string with backslashes before characters that
need to be escaped. These characters are single quote ('),
double quote ("), backslash (\) and NUL (the NULL byte).

- theory -

Addslashes

Let's take a look about security: we have to sanitize our input
!elds. In PHP we can use a string replacement method or - for
example - the function string addslashes (string
$str). It returns a string with backslashes before characters
that need to be escaped: single and double quote, backslash and
the NULL byte. In this level you have to use this wonderful
function, in order to prevent the SQL injection attack.

Text of exercise:

- exercise -

Case without addlashes(), all the mail in the table are
selected.

<?php
$input = "' OR TRUE;
echo $input . "This is not safe in a database query.
";
echo addslashes($input) . " This is safe in a database query.";
$query = "SELECT email FROM user WHERE !rst_name = '".$input."'";
?>

SELECT email FROM user WHERE !rst_name= ' " " ' OR TRUE;

Case with addlashes(), the mail corresponding to /
user is selected. This means that no mail is selected.

SELECT email FROM user WHERE !rst_name= ' " / " / ' OR TRUE;

Addslashes
- explanation of exercise -

As can be seen from the example, addslashes()
function permits to escape the power of the
apostrophe by putting a backslash before it.

Also the double quotes is escaped by putting the a
backslash before it.

This permits to validate the string in input avoiding
malicious code.

Addslashes
- explanation of exercise -

Other defenses

sprintf() can be used with conversion speci!cations to ensure
that the dynamic argument is treated the way it's suppose to
be treated. For example, if a call for the users ID number were
in the string, %d would be used to ensure the argument is
treated as an integer, and presented as a (signed) decimal
number.

htmlentities() in conjunction with the optional second
quote_style parameter, allows the use of ENT_QUOTES, which
will convert both double and single quotes. This will work in
t h e s a m e s e n s e a s a d d s l a s h e s () a n d
mysql_real_escape_string() in regards to quotation
marks, however, instead of prepending a backslash, it will use
the HTML entity of the quotation mark.

Less used:
- theory -

Smart Login

This login form simply requires a password to enter in the
magic world of the administrators. But is a smart login form:
the input is sanitized with the function addslashes(), which
returns a string with backslashes before characters that need
to be escaped. These characters are single quote ', double
quote ", backslash \ and the NULL byte. Try to insert a query
with prohibited characters!

You can exploit poorly coded websites that make use of
addslashes() if their database uses the GBK charset, common in
China. Wonderful, this is the case! The way in which we can
circumvent addslashes()'s protection is using multibyte
characters.

Text of exercise:
- exercise -

Smart Login

In this case, the vulnerability exploited permits to avoid the
validation done by the function addslashes() and so to
inject malicious code in the query.

The vulnerability found regard the GBK mapping code of the
characters. Usually a letter is encoded in 8 bit, this means
that we can represent 256 unique value.

In some alphabet (as GBK) are employed multibyte character
encoding to express more than 256 letters. But if it’s not
applied a multibyte-aware function (as in our case), it’s not
possible to determine correctly the beginning and the
ending of a string.

- explanation of exercise -

Smart Login

The exercise Smar t Login makes visible that
addslashes() is not enough. With a smart use of
multi-byte characters we can construct a single quote
exploiting the way in which addslashes works.

How is possible to make our code secure against SQL
Injection? There are many ways, one is using Prepared
Statements.

- explanation of exercise -

Thank you!

