
Niccolò Bisagno, Francesco Fiorenza, Giulio Carlo Gialanella, Riccardo Isoli

NIDS: Snort
Group 8

1

Summary

✤ NIDS

✤ Snort

✤ Syn Flood Attack

✤ Exploit Kit Detection: Bleeding Life

✤ Packet Level Evasion

✤ Snort as an IPS
2

Objectives

At the end of this Lab we expect you to know:

✤ What is a NIDS (but you knew that already ;-))

✤ How to configure Snort

✤ How to write a custom rule for Snort to detect
different types of intrusion

✤ How to evade Snort (Hacking Time :-))
3

NIDS: a recap

✤ Network Intrusion Detection Systems

✤ Firewalls prevent unwanted access to
network resources that should be
isolated w.r.t. another network

✤ IDS monitors incoming connections:
depending on its position in the
network may provide different
functionalities

✤ IDS → passive monitoring

✤ IPS → active monitoring
4

Our architecture

✤ For all machines USER: mlab PASSWORD: mlab
5

Snort: an introduction

✤ Free and Open source software

✤ 3 operational modes: Packet Sniffer, Packet Logger or
NIDS

✤ Snort uses a flexible rules language to describe traffic
that it should collect or pass

✤ Signature-based IDS which takes raw packets as its
input

6

Snort: configuration

✤ Snort is installed on the router on the border of our HOME_NET

✤ We want to monitor the incoming traffic from the
EXTERNAL_NET to our HOME_NET

7

Snort: configuration file

✤ Open terminal

✤ Type sudo gedit /etc/snort/snort.conf

✤ Go to: 1)Set the network variables

✤ Modify as suggested below

Machine: Router

8

Snort: configuration file

✤ Go to: 7)Customize your rule set

✤ Uncomment include $RULE_PATH\local.rules

✤ Although there are many ready-to-use rules in Snort we want to write our own rules

✤ Let’s see how to do it!

Machine: Router

9

Snort rules: semantic

✤ Let’s write a simple rule for ping detection:

alert ICMP $EXTERNAL_NET any -> $HOME_NET any (msg: “Ping detected”;
sid: 5000001;)

 Make sure to leave a blank row at the end of the file

✤ Open sudo gedit /etc/snort/rules/local.rules

Machine: Router

10

Let’s try!

✤ Open a Terminal

✤ Start Snort: sudo snort -i eth1 -c /etc/snort/snort.conf -A
console

Machine: Router

Machine: Attacker✤ Open a Terminal

✤ Ping the victim: ping 192.168.136.102 -c 5

Machine: Router
✤ The alert message “Ping detected” should be displayed

✤ ctrl+c to stop Snort 11

SYN Flood Attack

✤ A SYN flood occurs when a host becomes so overwhelmed by TCP SYN packets
initiating incomplete connection requests that it can no longer process legitimate
connection requests.

✤ Snort has to detect multiple
packets from different sources
directed to the same victim

12

Our rule

✤ Open sudo gedit /etc/snort/rules/local.rules

alert TCP $EXTERNAL_NET any -> $HOME_NET any (msg:"TCP SYN flood attack
detected"; flags:S; threshold: type threshold, track by_dst, count 1000 ,
seconds 60; sid: 5000002;)

Where:

✤ The flags keyword is used to check if the TCP SYN flag is set.

✤ The threshold keyword means that this rule detects every 1000th event on this SID during a 60
second interval. So, if less than 1000 events occur in 60 seconds, nothing gets detected. Once an event
is detected, a new time period starts for type=threshold.

✤ The track by_dst keyword means track by destination IP.

✤ The count keyword means count number of events.

✤ The seconds keyword means time period over which count is accrued.

Machine: Router

13

✤ Open a Terminal

✤ Start listening on port 80: nc -l -p 80

✤ Open Wireshark and click on Start

Let’s try!

✤ Open a Terminal

✤ Start Snort: sudo snort -i eth1 -c /etc/snort/snort.conf -A console

Machine: Router

Machine: Victim

✤ Open a Terminal

✤ Start SYN flood attack: sudo python Desktop/syn_flood.py
Machine: Attacker

14

✤ On Wireshark we can
see the flood of packets

Let’s try!

✤ Every 5 seconds an alert
"TCP SYN flood attack detected” is displayed!

Machine: Router

Machine: Victim

✤ ctrl+c to stop terminal activity
15

Exploit kit detection: Bleeding Life

✤ Do you remember it? (from the first lab)

✤ We want to exploit
the Java 6.1 (2010)
vulnerability

✤ The vulnerability
allows us to
execute arbitrary
code on the victim
machine

16

Exploit kit detection: Bleeding Life

✤ Bleeding Life is installed on the attacker machine

✤ Open firefox

✤ Go to: localhost/bleeding_life/2/statistics

✤ User: mlab Password: mlab

After every attack
you need to clear
the statistics since
Bleeding Life does
not deliver two
attacks to the same
IP

Machine: Attacker

17

First infection

✤ Java 6.1 has already been installed

✤ We set up a website that requires Java on the attacker
machine

✤ Open Internet Explorer

✤ Go to the infected website: 192.168.135.102/
bleeding_life/2

✤ IE should crash and the russian calc should open

Machine: Victim

18

How does it
work?

✤ Bleeding Life needs to inject the
shellcode into the victim
machine

✤ We can try to detect the packets
with the shellcode inside

✤ Let’s have a look at it!

You can find the file on the desktop: bleeding_life/2/modules/helpers/
Java-2010-0842Helper.php

Machine: Attacker

19

Our rule

✤ Open sudo gedit /etc/snort/rules/
local.rules

✤ alert IP $EXTERNAL_NET any -> $HOME_NET
any (msg:”Bleeding Life Exploit-kit
detected”; content: “|FF 00 00 00 24 ED
4D 54 68 64 00 00 00 06 00 01|”; sid:
5000003)

✤ Start Snort: sudo snort -i eth1 -c /etc/
snort/snort.conf -A console

Machine: Router

20

Detection

✤ IMPORTANT: clear the statistics!!

✤ Go to the infected website: 192.168.135.102/
bleeding_life/2

✤ An alert should have been raised by Snort! “Bleeding
Life Exploit-kit detected”

✤ The Victim has been infected again. To avoid the infection
we should detect and drop all the packets from the
malicious website. (more about IPS mode later)

Machine: Attacker

Machine: Victim

Machine: Router

21

Evasion: Packet Level Evasion

✤ Packet level evasion methods alter the traffic in a way
that it is interpreted differently on the IDS and on the
victim

✤ Our goal is to deliver our malicious payload to the
victim (the string “/etc/passwd” in our example)
without Snort raising an alert

✤ NetCat has been installed on the victim machine to
print the received string

22

Our Rule

✤ We need to write a rule that search the packet’s payload looking for the malicious string

✤ Open sudo gedit /etc/snort/rules/local.rules

alert TCP $EXTERNAL_NET any -> $HOME_NET any (msg:”MALICIOUS
PAYLOAD DETECTED”; content:"/etc/passwd"; sid:5000004;)

We will try to perform the attack in 3 different manners and see how Snort reacts:

✤ 1) Malicious string is contained in the same packet

✤ 2) Malicious payload is fragmented in multiple packets

✤ 3) Malicious payload is fragmented in multiple packets with different Time to Live

Machine: Router

23

To start Snort

✤ On terminal: sudo snort
-i eth1 -c /etc/
snort/snort.conf -A
console

Evasion - Case 1: single packet

To start listening on port 23 :

✤ On terminal: nc -l -p 23

Machine: Victim

Machine: Router

24

Evasion - Case 1 (continued)

✤ To prevent TCP sessions being reset by the attacker’s operating system
the attacker modifies iptables firewall so it drops outgoing RST packets

✤ On terminal: sudo iptables -A OUTPUT -p tcp -—tcp-flags
RST RST -j DROP

✤ Start the attack_1 script: sudo python Desktop/attack_1.py

✤ Follow the instructions on video to perform the attack

✤ Once sent payload 1 : on the router machine: alert raised!

✤ Once the attack is completed: on the victim machine: “/etc/passwd”

Machine: Attacker

25

Evasion - Case 2: fragmented packets

Now we try to evade snort fragmenting
our malicious string in different packets

✤ Payload 1 = “/etc”

✤ Payload 2 = “/passwd”

✤ Payload 3 = “\n”

✤ Will Snort be able to detect the
malicious string?

Restart NetCat:

✤ On terminal: nc -l -p 23

Machine: Victim

26

Evasion - Case 2 (continued)

✤ Start the attack_2 script: sudo python Desktop/attack_2.py

✤ Follow the instructions on video to perform the attack

✤ Once the attack is completed: on the victim machine: “/etc/passwd”

✤ Once the connection is closed : on the router machine: alert raised!

✤ This time the alert on the router is raised when the connection is closed

✤ Snort detects the attack thanks to the Stream5 preprocessor

✤ Stream5 enables the target-based TCP stream reassembly. Without the stream
reassembly, attacks which are divided among multiple packets cannot be detected.
Stream5 extracts the payload of each packet and reconstructs the data flow.

Machine: Attacker

27

How to perform the evasion?

✤ We need the router and the victim to receive different packets

✤ How to do it?

✤ The attacker can set the Time To Live (TTL) of the packets

✤ If the TTL of a packet expires between the router and the victim,
the router will drop the packet and the victim will not receive it

✤ The router will not raise the alert because it sees a different
payload w.r.t. the victim

28

Evasion - Case 3:
fragmented packets with TTL

✤ The packet with PAYLOAD2 has the
TTL = 1

✤ It will be dropped by the router because
the TTL expires

✤ The router preprocessor will reconstruct
the string “/etc/xxxxxxxxx”

Restart NetCat:

✤ On terminal: nc -l -p 23

Machine: Victim

29

Evasion - Case 3 (continued)

✤ Start the attack_3 script: sudo python Desktop/attack_3.py

✤ Follow the instructions on video to perform the attack

✤ Once the attack is completed: on the victim machine: “/etc/passwd”

✤ On the router machine: no alert raised!

✤ This time the alert on the router is not raised when the connection is closed

✤ The Stream5 preprocessor reconstructed the string “/etc/xxxxxxxxxx”

✤ Snort is not able to detect the malicious string which has been delivered to the victim

✤ Congratulation! You have successfully evaded Snort!

Machine: Attacker

30

Snort as an IPS

✤ Snort can work both as an IDS and IPS . In IDS mode it can just raise an alert or log
packets.

✤ In IPS mode there are other available actions:

1. pass - ignore the packet

2. activate - alert and then turn on another dynamic rule

3. dynamic - remain idle until activated by an activate rule

4. drop - block the packet and log it

5. reject - block the packet and then send a TCP reset if the protocol is TCP or an ICMP port
unreachable message if the protocol is UDP.

6. sdrop - block the packet but do not log it.
31

Drop rule

✤ First, we have to forward all the packets to the Snort soft interface

✤ On terminal: sudo iptables -A FORWARD -j NFQUEUE

✤ Open: sudo gedit /etc/snort/rules/local.rules

✤ Copy and paste two drop rules from the “ROUTER-COMMAND GUIDE” file on desktop
to local.rules

✤ This rules are taken from the official Snort website to detect the Bleeding Life Exploit
Kit. We modified them to drop packets instead of just raising an alert

✤ Now, we have to start snort in inline_mode

✤ On terminal: sudo snort --daq nfq --daq-var queue=0 -Q -c /etc/
snort/snort.conf -A console

Machine: Router

32

Bleeding life can’t infect the victim

✤ Open firefox

✤ Go to: localhost/bleeding_life/2/statistics

✤ User: mlab Password: mlab

✤ IMPORTANT: clear the statistics!!

✤ Open Internet Explorer

✤ Go to the infected website: 192.168.135.102/bleeding_life/2

✤ “The page cannot be displayed”

Machine: Attacker

Machine: Victim

33

Bleeding life can’t infect the victim
Machine: Attacker

Snort blocked Bleeding Life

✤ “EXPLOIT_KIT Bleeding Life exploit kit
module call”

✤ Snort dropped all the packets of the Bleeding Life
Exploit kit

✤ The victim has been protected by the router

✤ We are safe :-) russian calc won’t bother us anymore

Machine: Router

“SNAUGHLING: Laughing so hard you snort, then laugh
because you snorted, then snort because you laughed.”

P.S. Thanks for the attention!

36

