Bortoli Tomas 181654
Mariotto Alex 183818
Dallatorre Giulio 183816

NETWORK SECURITY LAB
RELATION - GROUP 3 TOPIC 12

Au Lecteur

This relation cover the work done to prepare and to do the laboratory of network security in
the malware lab location. An important note is that to have a full-view of our work, it would
make sense to take a look also at the attack and detection scripts residing on our VMs.

Bro NIDS Introduction

Our laboratory topic was on Bro Nids, a powerful Network Intrusion Detection System; that
based on our experience should probably be the most advanced FLOSS (Free and Open
Source Software) of this kind currently on the global scene.

Bro’s power is over the common packet sniffers like Wireshark or Tcpdump, because with
Bro it's possible to process the content of the packet in a Turing-Complete way.

It is much more dynamic and flexible than wireshark’s filter, and it is also possible to process
the packets offline, providing raw .pcap files.

A simple schematic representation of the software
structure and behaviour (on the left).

It shows that the packets coming from the Bro’s
observed network are labeled and considered as
Events (Event-Driven Programming).

This interesting feature provides to the user an

Real-time Notification ‘

Policy Script Interpreter

Event Stream ‘

Event Engine (Core) interesting platform to work with defined in the Policy
Script Interpreter part that is Bro Scripting Language.
Packet Stream ‘ It consists in a complete programming language that is

C/python-like, so if the user posses good programming
skills it will have no problems to fit its needs by
implementing its own customised network policies.

Network

This imply that actions taken from the packet analysis may vary from simply logging strange
activities, network attacks, or network congestions, to sending emails or sms to network
administrator and provide useful informations. It can be also possible to cut-off a host from
the network if Bro is running on a master router or switch (it should run there, to sniff all the
network traffic).

This happens because from a bro script it is possible to also launch bash commands.
Anyway, by default Bro runs without customized scripts and it provides a lot of useful logs
(generated by default) collecting the network activity, some these are:

e conn.log
o TCP connections info
o UDP connections info
o ICMP connections info

e dhcp.log
o DHCP leases
e ssl.log

o SSL handshake info

o TLS handshake info
e dns.log

o DNS Requests

o DNS Replies
e fip.log

o FTP activity
e irc.log

o IRC Commands

o IRC Replies
e files.log

o file transmissions under different protocols
e reporter.log

o Internal Errors

o Internal Warnings

o Info messages
e packet_filter.log

o Lists packet filters that are applied
e http.log

o HTTP requests

o HTTP replies

For easy-manage the large amount of log files and informations inside them, Bro provide an
interesting command: bro-cut, that helps human to read Bro logs; indeed by simply writing:

cat dns.log | bro-cut id.orig_h id.resp_h query

All the rows of the file dns.log are displayed but keeping only the columns specified, that in
this case are id.orig_id, id.resp_h and query. That represents the origin address, the
response address and the dns query. (Each row represent a record, each column an
attribute)

Many other options provided to filter the logs content are:

e head/tail -n outputs the first/last n lines,
e uniq filter repeated lines,
e sort very useful for sorting/grouping and filtering

The combination of these useful commands, as we can see in the example, will help the
user to restrict its observation, making it more specific.

Instead, if the user prefers to customize the behavior; to target some attacks, some kind of
network activity or just to add useful logs, the user can implement its own Bro Script using
the Bro scripting language.

A simple overview:

local variableName = 0;

VARIABLES!

global variable2 = “string”;

FUNCTIONS! = function lookup(hash: string)

Automatically
called functions ———L.E\VENTS! =event bro_init() &priority=10

event http_request(c: connection, ...)

A PRACTICAL
EXAMPLE

introduction.bro

Lab Overview

We organized the Lab bringing at first an introduction to Bro itself, very similar to the
introduction of this report, and then providing a useful view of the current tool used to
manipulate the logs generated by Bro. We also provided a view of a Sublime Text’s plugin
that enable syntax highlighting for the Bro scripting language (useful to present and to
program the bro language - essentially to avoid notepad programming).
The most important part of the lab was the bro language (because bro is fully customizable
through bro scripts) that we introduced too with a simple “infroduction.bro” script.
The introduction script contains various events and variables of simple and complex types;
basically we were showing that it is easy to do some monitoring on the net, examples:
- counting how many people ask for “wikipedia.org” domain name and log their IPs
- handling bro_init and bro_end events and purposes
- monitoring for DOS attacks that aims at filling the queue of a service on a certain
host with a great number of established TCP connections
- count how many HTTP connections happen and log them
- show the IP and URI of any host that is downloading a file or viewing a pdf through
HTTP
The introduction covered also the declaration of variables, functions, events, properties and
time-flushing table entries (EG: &create_expire=5).

After the introduction we showed how to setup two different network attacks and the relative
detections, these are:

e SQL Injection

e DNS Injection

Equipment

We decided to present these 2 demonstrations by using 3 VMs of a Debian Distribution,
equipped with all the programs needed and configured for the Lab session.
These VMs were:

e Attacker (used in SQL Injection, DNS Injection)

e Server (used in SQL Injection, DNS Injection)

e Victim (used in DNS Injection)

As you can see, the Victim VM was used only for the second attack demonstration.

The software used in this lab is mainly common software, part of GNU/Linux.

Except some packages, like: the dsniff package that was installed on the attacker machine
to attack in the second scenario. Others are: sublime text 2 and bro.

Furthermore, in every VM we installed Sublime Text with the bro scripting plugin (for syntax
highlighting), then we configured a static IP for every VM and installed Bro on Server and
Victim VMs (for detecting the attacks).

Then we set up the DNS server on the server VM (for the 2nd attack) and we configured the
victim to use the the newly created DNS server (modifying the /etc/resolv.conf configuration
file).

And this is all we used to make the lab.

SQL Injection

We deployed a server VM with enabled apache web server and an ‘“injection.php” file in the
root directory of the web server. The php script is vulnerable to SQL Injection through GET
requests because of missing sanitization of the input. That will go directly into the SQL
query, forming the statement imparted to the SQL server.

The server VM has a static address: 192.168.53.3

The attacker VM is the machine supposed to attack the server’s PHP page, on that we
showed how to do injections through the web browser which already suggest some values
on the web page forms (to do the sql injection).

NETWORK SETUP OVERVIEW

Http GET request containing SQL injection
Attacker - Server

@ Http response ?
E— L]

Attacker IP 192.168.53.3

We did reasoned on the fact that the injection strings usually have common patterns (like the
presence of ‘, and, or, =), so we started from those similarities to write a simple Bro script for
detect this kind of attack.

We then assigned the writing of the detection script as an exercise for the students, for
helping them we provided a template with the empty bodies of the functions that had to be
filled to complete the exercise.

AN EXAMPLE OF QUR SOLUTION

#array of patterns the sqli
global patterns = set("+or+","+and+","'");

#event
event http_request (c: connection, method: string, original_URI: string,
unescaped_URI: string, version: string){

for(p in patterns){
if(p in to_lower (unescaped_URI)){
print fmt("SQLInjection detected from %s",c$idSorig_h);

break;
}
}
print fmt("%s -> %s",c$idSorig_h,unescaped_URI);
print Mz

After a while we provided also the solutions and we showed them that effectively the script
does work and detect SQL Injections. We also noted that the solution isn’t perfect because it
can generate many false positives. So we challenged the students to improve our solution.

The simple basic solution provided checked that the unescaped URI was not containing the

symbols: *, ‘and’ or ‘or’.

DNS Injection

The second attack (and detection) of the day was the DNS Injection. The network setup for
this attack was a bit more complex than the previous one: in this situation we have a client
(Victim VM) that issue a DNS request to a server (Server VM), this request is spoofed
through MITM from the attacker (Attacker VM).

NETWORK SETUP OVERVIEW - HALF DUPLEX

Server response
Victim - DNS
Server

_ ““_ARP poisoning /,
\ 192.168.53.3
\\,\\‘\ \‘\\\\\\ { ,/’/
DNS Request to\
the server s Attackerl -~ |Pforwarding to
follow the packet
L]
A

Man In the middle

In order to make this attack work on a single physical machine, a little tweaking was
necessary and a 1 second network delay has been added to the packet output by the server
VM, to prevent it from answering before the attacker could.

We also explained to the students the behavior of the attacker script (provided by our team).

the attacker poisons the ARP table of the victim (using arpspoof) so that the victim thinks
that the server has the attacker’s mac address. In this way the attacker can sniff the traffic of
the victim. Then, to generate fake DNS replies, dnsspoof from the dsniff package was used.

In the example scenario we asked the students to generate the DNS requests from the
victim machine with the nslookup command (that is a raw DNS client). It was useful to show
how the reported IP address changed when the spoofing script was running on the attacker
machine.

Then we showed how to detect the spoofing exploiting the key fact that in a spoofing attack
as this, it is possible to detect a double answer from the server. The detection was
implemented in an example bro script that we developed.

AN EXAMPLE OF OUR SOLUTION

#the table of address
global dns_cache: table[string] of addr &create_expire=5 sec;
#the event
event dns_A_reply(c: connection, msg: dns_msg, ans: dns_answer, a: addr) {
local s:string;
s=(fmt("%d" ,msgsid));
if(!(s in dns_cache)) {
dns_cache[s]=a;

¥
else{

if(dns_cache[s]!=a){
print "DNS Injection detected";
#print fmt("%s,%s",dns_cache[fmt("%s",c$id)],a);
}
}
print fmt("A record:%s %s",a,msg);
pr-int ||||;

}

We also showed how to improve the attack to fool the detection. Basically the improvement
consists in arping the server to make him think that the victim has the mac address of the
attacker, in this way the attacker intercepts both messages (full-duplex hijacking), the ones
from the victim and the ones from the server. Then, disabling the ipv4 forwarding feature in
the Linux Kernel, the attacker creates a “black hole” and the messages coming from the
victim never reach the server.

It is important to note that the second (enhanced) script does fool the “iceweasel” browser (it
is a minimal and more secure version of firefox), while the basic exploit is not able to fool
iceweasel (because of his embedded detection mechanisms), the second empowered script
does work. Also note that with the second script, the detection written in bro does not work
anymore because there is only one reply from the server.

Conclusions

The laboratory covered the very last lesson (Monday PM) and the topics covered were very
advanced for part of the audience that was not properly able to execute a successful SQL
Injection. The scripts and exercises that we brought required a certain level of intuition and a
very basic level of bro programming understanding, excluding the “Hello World” test codes.
Preparing the laboratory session was also very useful for our knowledge, as Bro is very
powerful and having a little experience on the Bro scripting language can be very useful for
many purposes.

