

ICT Innovation – Spring 2016

MSc in Computer Science and MEng Telecom. Engineering EIT Masters ITA, S&P,SDE

Lecture 05 – Product Architecture and Design for Manufacturing
Prof. Fabio Massacci

Product Development Process

- Product architecture is determined early in the development process
- · Detailed design is important for manufacturing

Choosing the Product Architecture

- Architecture decisions relate to product planning and concept development decisions:
 - Product Change (copier toner, camera lenses)
 - Product Variety (computers, automobiles)
 - Standardization (motors, bearings, fasteners)
 - Performance (racing bikes, fighter planes)
 - Manufacturing Cost (disk drives, razors)
 - Project Management (team capacity, skills)
 - System Engineering (decomposition, integration)

Establishing the Architecture

- · To establish a modular architecture,
 - create a schematic of the product,
 - cluster the elements of the schematic to achieve the types of product variety desired

Planning a Modular Product Line: Commonality Table

Chunks	Number of Types	Family	Student	SOHO (small office, home office)
Print cartridge	2	"Manet" Cartridge	"Picasso" Cartridge	"Picasso" Cartridge
Print Mechanism	2	"Aurora" Series	Narrow "Aurora" series	"Aurora" series
Paper tray	2	Front-in Front-out	Front-in Front-out	Tall Front-in Front- out
Logic board	2	"Next gen" board with parallel port	"Next gen" board	"Next gen" board
Enclosure	3	Home style	Youth style	"Soft office" style
Driver software	5	Version A-PC Version A-Mac	Version B-PC Version B-Mac	Version C

- Differentiation versus Commonality
- Trade off product variety and production complexity

Is optimizing manufacturing worth?

- 2 billion worldwide annual volume
- 7 major producers of 1/2" cassette shells
- JVC licenses the VHS standard
 - dimensions, interfaces, light path, etc
- VHS cassette shells cost ~\$0.25 each
- What is a \$0.01 cost reduction worth?

Design for manufacturing

- Product development practice emphasizing manufacturing issues.
- Successful DFM results in lower production cost without sacrificing product quality.
- Obtained through
 - Cross-Functional Teams
 - Specialized Design Rules
 - CAD Tools
 - E.g.Boothroyd-Dewhurst DFMA
 - http://www.dfma.com

Example DFA guidelines from a computer manufacturer.

- · Minimize parts count.
- Encourage modular assembly.
- · Stack assemblies.
- Eliminate adjustments.
- · Eliminate cables.
- Use self-fastening parts.
- · Use self-locating parts.
- · Eliminate reorientation.
- Facilitate parts handling.
- Specify standard parts.

Example of times for fastening parts

- · Different tools for fastening parts differs in
 - Time to fasten
 - Time to unfasten (if at all)
 - Precision
 - Robustness to tear and wear
 - Ability to adjust

6	Time (Seconds)			
Component	Min	Max	Avg	
Screw	7.5	13.1	10.3	
Snap-fit	3.5	8.0	5.9	

C	Time (Seconds)		
Component	Min	Max	Avg
Pin	3.1	10.1	6.6
Spring	2.6	14.0	8.3

From Product Design and Development by Karl Ulrich and Steven Eppinger (McGraw-Hill/Irwin)

17/03/2016 Fabio Massacci - ICT Innovation

▶ 30

Design for Assembly

- Key ideas of DFA:
 - Minimize parts count
 - Maximize the ease of handling parts
 - Maximize the ease of inserting parts
- Benefits of DFA
 - Lower labor costs
 - Other indirect benefits

DFA index = $\frac{\text{(Theoretical minimum number of parts) ' (3 seconds)}}{\text{Estimated total assembly time}}$

From Product Design and Development by Karl Ulrich and Steven Eppinger (McGraw-Hill/Irwin)

Method for Part Integration

- Ask of each part in a candidate design:
 - Does the part need to move relative to the rest of the device?
 - Does it need to be of a different material because of fundamental physical properties?
 - Does it need to be separated from the rest of the device to allow for assembly, access, or repair?
- If not, combine the part with another part in the device.

$$Total unit cost = \frac{Setup costs + Tooling costs}{Volume} + Variable costs$$

From Product Design and Development by Karl Ulrich and Steven Eppinger (McGraw-Hill/Irwin)

Practical Concerns

- Planning is essential to achieve the desired variety and product change capability.
- Coordination is difficult, particularly across teams, companies, or great distances.
- Special attention must be paid to handle complex interactions between chunks (system engineering methods).

Product Architecture: Conclusions

- Architecture choices define the sub-systems and modules of the product platform or family.
- Architecture determines:
 - ease of production variety
 - feasibility of customer modification
 - system-level production costs
- Key Concepts:
 - modular vs. integral architecture
 - clustering into chunks
 - planning product families

