NIVERSITA ProSVED
| TRENTO I\ ey e

Towards vulnerability impact quantification
in Solidity smart contracts

Preparing for security risk prediction

Carlos E. Budde & Giacomo Checchini

Security group @ Dipartimento di Ingegneria e Scienza dell'Informazione

carlosesteban.budde@unitn.it 12.06.2024

https://www.unitn.it/en
https://www.disi.unitn.it/
http://orcid.org/0000-0001-8807-1548
mailto:carlosesteban.budde@unitn.it

OWASP top-10 (again? c’'mon...)

@ D L'J H S p PROJECTS CHAPTERS EVENTS ABOUT Q
@

OWASP Smart Contract Top 10

Main { Acknowledgements \ { Join \

About the Smart Contract Top 10

The OWASP Smart Contract Top 10 is a standard awareness document that intends to provide Web3 developers
and security teams with insight into the top 10 vulnerabilities found in smart contracts.

It will serve as a reference to ensure that smart contracts are secured against the top 10 weaknesses exploited/
discovered over the last couple of years.

Top 10

« SC01:2023 - Reentrancy Attacks

e SC02:2023 - Integer Overflow and Underflow
SC03:2023 - Timestamp Dependence
SC04:2023 - Access Control Vulnerabilities
SC05:2023 - Front-running Attacks
SC06:2023 - Denial of Service (DoS) Attacks
SC07:2023 - Logic Errors

SC08:2023 - Insecure Randomness
SC09:2023 - Gas Limit Vulnerabilities
SC10:2023 - Unchecked External Calls

UNIVERSITY OF TRENTO ProSXED 2/15 Carlos E. Budde

https://owasp.org/www-project-smart-contract-top-10/

OWASP top-10 (again? c’'mon...)

Vulnerability: Reentrancy

GDownsp,

OWASP Smart Contract Top 10

Description:

A reentrancy attack exploits the vulnerability in smart contracts when a function makes an external
call to another contract before updating its own state. This allows the external contract, possibly
malicious, to reenter the original function and repeat certain actions, like withdrawals, using the
same state. Through such attacks, an attacker can possibly drain all the funds from a contract.

About the Smart Contract Top 10 Example (DAO Hack):

The OWASP Smart Contract Top 10 is a standard awareness d
and security teams with insight into the top 10 vulnerabilities

Main { Acknowledgements \ { Join \

function splitDAO(uint _proposallD, address _newCurator) noEther onlyTokenholders returns (bool _success) {

It will serve as a reference to ensure that smart contracts are uint fundsToBeMoved = (balances[msg.sender] * p.splitData[@].splitBalance) / p.splitData[@].totalSupply;
) //Since the balance is never updated the attacker can pass this modifier several times

discovered over the last couple of years. if (p.splitData[@].newDAO.createTokenProxy.value(fundsToBeMoved)(msg.sender) == false) throw;

Top 10

SC01:2023 - Reentrancy Attacks

SC02:2023 - Integer Overflow and Underflow
SC03:2023 - Timestamp Dependence
SC04:2023 - Access Control Vulnerabilities
SC05:2023 - Front-running Attacks
SC06:2023 - Denial of Service (DoS) Attacks
SC07:2023 - Logic Errors

SC08:2023 - Insecure Randomness
SC09:2023 - Gas Limit Vulnerabilities
SC10:2023 - Unchecked External Calls

UNIVERSITY OF TRENTO ProSXED 2/15 Carlos E. Budde

https://owasp.org/www-project-smart-contract-top-10/
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC01-reentrancy-attacks.html

OWASP top-10 (again? c’'mon...)

Vulnerability: Reentrancy

GDownsp,

OWASP Smart Contract Top 10

Description:

A reentrancy attack exploits the vulnerability in smart contracts when a function makes an external
call to an ing i i ct, possibly

malicious Timestamp Dependence ls, using the
same st; contract.

Main { Acknowledgements \ { Join \

Description

About the Smart Contract Top 10

The OWASP Smart Contract Top 10 is a standard awareness d
and security teams with insight into the top 10 vulnerabilitie

pl Contracts that depend on block timestamps for critical operations are susceptible to manipulation, g

miners can slightly adjust the timestamps.
_success) {

Impact

It will serve as a reference to ensure that sphart contracts/are ﬁg}_nzg This can lead to unfair advantages in games, easier puzzle solutions, and flawed randomness, all of [t0talSupply;
. hich ttack loit.
discovered over the last couple of years. which an attacker can explof

if (p.s :
Top 10

Steps to Fix

1. Avoid reliance on block.timestamp o now for crucial contract functionalities.
2. Use block.number for time-keeping if needed, as it is harder to manipulate.

SC01:2023 - Reentrancy Attacks
SC02:2023 - Integer Overflow and Undgfflow
SC03:2023 - Timestamp Dependence
SC04:2023 - Access Control Vulnerabilities
SC05:2023 - Front-running Attacks
SC06:2023 - Denial of Service (DoS) Attacks
SC07:2023 - Logic Errors

SC08:2023 - Insecure Randomness
SC09:2023 - Gas Limit Vulnerabilities
SC10:2023 - Unchecked External Calls

Example

In a betting smart contract, if the outcome depends on a timestamp (like an even or odd timestamp
deciding the winner), a miner could potentially manipulate the timestamp to affect the result.

UNIVERSITY OF TRENTO ProSXED 2/15 Carlos E. Budde

https://owasp.org/www-project-smart-contract-top-10/
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC01-reentrancy-attacks.html
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC03-timestamp-dependence.html

OWASP top-10 (again? c’'mon...)

Vulnerability: Reentrancy

GDownsp,

OWASP Smart Contract Top 10

Description:

A reentrancy attack exploits the vulnerability in smart contracts when a function makes an external
call to an ing i i ct, possibly

malicious Timestamp Dependence ls, using the
same st; contract.

[Main { Acknowledgements \ { Join \

Description

About the Smart Contract Top 10

The OWASP Smart Contract Top 10 is a standard awareness d
and security teams with insight into the top 10 vulnerabilitie

Contracts that depend on block timestamps for critical operations are susceptible to manipulation, g

miners can slightly adjust the timestamps.
_success) {

Impact

It will serve as a reference to ensure that sphart contracty/are| ~ vint fu This can lead to u Unchecked External Calls
discovered over the last couple of years. if (p.s| " chanatiac

Top 10

Steps to Fix Description

Gid relianc(In Ethereum, when a contract calls another contract, the called contract can fail silently without

Se block. numb| tRTOWINg an exception. If the calling contract doesn’t check the outcome of the call, it might assume
that the call was successful, even if it wasn't.

SC01:2023 - Reentrancy Attacks
SC02:2023 - Integer Overflow and Undgfflow
SC03:2023 - Timestamp Dependence
SC04:2023 - Access Control Vulnerabilities
SC05:2023 - Front-running Attacks
SC06:2023 - Denial of Service (DoS) Attacks

Example

Impact

In a betting smart
deciding the winn¢ Unchecked external calls can lead to failed transactions, lost funds, or incorrect contract state.

Steps to Fix

1. Always check the return value of call, detegatecall, and callcode.

d 2. Use Solidity’s transfer or send functions instead of catl.valve() (), as they automatically reverts on
» SC07:2023 - Logic Errors failure.
e SC08:2023 - Insecure Randomness Example

SC09:2023 - Gas Limit Vulnerabilities A contract uses the cat1 function to send Ether to an address. If the call fails (for example, if the
. _ recipient is a contract without a payable fallback function), the sending contract might incorrectly
SC10:2023 - Unchecked External Calls assime the fransfor was successful

UNIVERSITY OF TRENTO ProSXED 2/15 Carlos E. Budde

https://owasp.org/www-project-smart-contract-top-10/
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC01-reentrancy-attacks.html
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC03-timestamp-dependence.html
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC10-unchecked-external-calls.html

Navigating the web, coding...

SOLIDITY COMPILER

REMIX IDE

= Compile HelloWorld1.sol
from solidity:

Compile and Run script Warning: Failure condition of 'send’' ignored. Consider

UNIVERSITY OF TRENTO ProSXED 3/15 Carlos E. Budde

https://remix.ethereum.org/#lang=en&optimize=false&runs=200&evmVersion=null&version=soljson-v0.4.24+commit.e67f0147.js&language=Solidity

Well, just fix’em!

Unchecked External Calls

Description
In Ethereum, when a contract calls another contract, the called contract can fail silently without

throwing an exception. If the calling contract doesn’t check the outcome of the call, it might assume
that the call was successful, even if it wasn't.

Impact
Unchecked external calls can lead to failed transactions, lost funds, or incorrect contract state.
Steps to Fix

1. Always check the return value of cat1, delegatecall, and callcode.

2. Use Solidity’s transfer or send functions instead of call.vatue() (), as they automatically reverts on
failure.

Example

A contract uses the cal1 function to send Ether to an address. If the call fails (for example, if the
recipient is a contract without a payable fallback function), the sending contract might incorrectly
assume the transfer was successful.

UNIVERSITY OF TRENTO ProSXED 4/15 Carlos E. Budde

https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC10-unchecked-external-calls.html
https://dl.acm.org/doi/10.1145/3391195

Well, just fix’em!

Unchecked External Calls

Description
In Ethereum, when a contract calls another contract, the called contract can fail silently without

throwing an exception. If the calling contract doesn’t check the outcome of the call, it might assume
that the call was successful, even if it wasn't.

Impact WaS that SO hal’d'7

Unchecked external calls can lead to failed transactions, lost funds, contract state.

Steps to Fix

1. Always check the return value of cat1, delegatecall, and callcode.
2. Use Solidity’s transfer or send functions instead of call.vatue() (), as they automatically reverts on
failure.

Example

A contract uses the cal1 function to send Ether to an address. If the call fails (for example, if the
recipient is a contract without a payable fallback function), the sending contract might incorrectly
assume the transfer was successful.

UNIVERSITY OF TRENTO ProSXED 4/15 Carlos E. Budde

https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC10-unchecked-external-calls.html
https://dl.acm.org/doi/10.1145/3391195

Well, just fix’em!

Locations Vulnerabilities Causes
[MReentrancy V;
I] Delegatecall injection Vz
Unchecked External Calls [WFrozen Etner v; Extemal dopendence
[Juegradeable contract Vi
. . EIDDS with unexpected revert VS
Description [Minteger overflow and underflow Ve 8> Improper validation
In Ethereum, when a contract calls another contract, the called contract can fail silen’ Hrﬁ:\z::;zi:i‘:;fw oriain \\;7
throwing an exception. If the calling contract doesn’t check the outcome of the call, it e il gh tx-orig 8 Smart contract
that the call was successful, even if it wasn't. rroneous visibility Vo programming
[]Unprotected suicide Vio

Inadequate authentication
or authorization

WaS th at [Meaking Ether to arbitrary address Vi,
/ M confidentiality failure Vi,
Ethereum ‘ [l nsufficient signature information Vs

application layer |]|303 with unbounded operations V/, , Uncontrolled gas consumption

[Munchecked call return value Vis Q— Inconsistent exception handling
M uninitialized storage pointers Vie O—Undefmed behavior Solidity language

Impact

Unchecked external calls can lead to failed transactions, lost funds,

Steps to Fix
.Erronecus constructor name V}? O— Improper syntax and toolchain

1. Always check the return value of cat1, delegatecall, and callcode.

2. Use Solidity’s transfer or send functions instead of cati.value() (), as they automatici Orype casts Vis O— Weak type system
failure. [Moutdated compiler version Vi[O Buggy compiler
[short address V,,[O—————————— Missing input check
Example [MEther lost to orphan address V,, [O———————— Missing orphan proof
.Call«s(ack depth limit Vs O— Improper execution model
A contract uses the cal1 function to send Ether to an address. If the call fails (for exam [Junder-priced opcodes Vi, ()————————— Improper gas costs
recipient is a contract without a payable fallback function), the sending contract migh Transaction-ordering dependence V.,
assume the transfer was successful. [Wrimestamp dependence Vs Flexible block creation
DGeneraling randomness Vg
Ethereum .Indistinguishahle chains Vir O Insufficient transaction information Ethereum design
data layer .Empty account in the state trie Vig O Uncontrolled state trie and implementation

DOuIsuurceable puzzle Vg O—— Partially sequential PoW

/ [probabilistic finality V3D Availability first

Ethereum / [Joos with block stuffing V3, (O——————————— Greedy incentive
consensus layer DHonesl mining assumption Vi 8>_ L)

D Rewards for uncle blocks Vﬁ Incompatible incentive

[verifier's dilemma V., [O—————————— Hiigh verification cost

DUnIimited nodes creation Vis
.Uncapped incoming connections Vss i .
Ethereum [public peer selection Vir Improper node discovery logic
.. . network layer Fi i
Chen, Pendleton, Njilla, Xu: A Survey on Ethereum Systems Security: E;‘fd Ipee'se'em"_) Vss | £ Wire Protocol
Vulnerabilities, Attacks, and Defenses (2020) ACM Comput. Surv. cle block synchronization Vi[O mproper Ethereum Wire Protoco

[WRPC API exposure Vo [O————— Improper configuration (D———— Human factors
UNIVERSITY OF TRENTO ProSXED 4/15 Carlos E. Budde

https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC10-unchecked-external-calls.html
https://dl.acm.org/doi/10.1145/3391195
https://dl.acm.org/doi/10.1145/3391195
https://dl.acm.org/doi/10.1145/3391195

Baby steps

Timestamp Dependence

Description

SOLIDITY COMPILE Contracts that depend on block timestamps for critical operations are susceptible to manipulation,
_ miners can slightly adjust the timestamps.

Impact

This can lead to unfair advantages in games, easier puzzle solutions, and flawed randomness, all of
which an attacker can exploit.

Steps to Fix

1. Avoid reliance on block. tinestanp Or now for crucial contract functionalities.
2. Use block.numver for time-keeping if needed, as it is harder to manipulate.

Example

In a betting smart contract, if the outcome depends on a timestamp (like an even or odd timestamp
deciding the winner), a miner could i the t to affect the result.

= Compile HelloWorld1.sol

Compile and Run script

from solidity:
contrac elloWorldl. f nd' ignored. Consider using

o : ashout . send Unchecked External Calls

Ask RemixAl __ Description

In Ethereum, when a contract calls another contract, the called contract can fail silently without
throwing an exception. If the calling contract doesn’t check the outcome of the call, it might assume
that the call was successful, even if it wasn’t.
Impact
Unchecked external calls can lead to failed transactions, lost funds, or incorrect contract state.
Steps to Fix

1. Always check the return value of cal, delegatecall, and callcode.

2. Use Solidity’s transfer or send functions instead of cail.value() (), as they automatically reverts on
failure.

Example

A contract uses the calt function to send Ether to an address. If the call fails (for example, if the
recipient is a contract without a payable fallback function), the sending contract might incorrectly

UNIVERSITY OF TRENTO ProSXED B q B e e Carlos E. Budde

https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC03-timestamp-dependence.html
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC10-unchecked-external-calls.html

Baby steps

Timestamp Dependence

Description

Contracts that depend on block timestamps for critical operations are susceptible to manipulation,
miners can slightly adjust the timestamps.

SOLIDITY COMPILER

Impact

This can lead to unfair advantages in game
which an attacker can exploit.

Steps to Fix

1. Avoid reliance on block. tinestanp O now
2. Use block.nunber for time-keeping if ned

Example

In a betting smart contract, if the outcome
deciding the winner), a miner could poten

= Compile HelloWorld1.sol

Compile and Run script

Because it’s not both as in “two”,
but as in “two hundred thousand”

Description
In Ethereum, when a contract calls another contract, the called contract can fail silently without
throwing an exception. If the calling contract doesn’t check the outcome of the call, it might assume
that the call was successful, even if it wasn’t.
Impact
Unchecked external calls can lead to failed transactions, lost funds, or incorrect contract state.
Steps to Fix

1. Always check the return value of call, detegatecall, and callcode.

2. Use Solidity’s transfer or send functions instead of cail.value() (), as they automatically reverts on
failure.

Example

A contract uses the calt function to send Ether to an address. If the call fails (for example, if the
recipient is a contract without a payable fallback function), the sending contract might incorrectly

UNIVERSITY OF TRENTO ProSXED B q B e e Carlos E. Budde

https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC03-timestamp-dependence.html
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC10-unchecked-external-calls.html
https://i.imgflip.com/4gg0nq.jpg
https://i.imgflip.com/6wykqg.jpg
https://media.istockphoto.com/photos/tired-computer-programmer-taking-a-nap-in-the-office-picture-id1139423637?k=6&m=1139423637&s=170667a&w=0&h=zDVI1ysArnM00q7sQXX0MGmKqIB11eKDoBiYJS09ER8=

Risk quantification

Risk = Probability x Impact

UNIVERSITY OF TRENTO ProSXED 6/15 Carlos E. Budde

http://low-carbon-energy-blog.co.uk/wp-content/uploads/2020/08/holy-grail.jpg

Risk assessment

Medium High

©
o
o
£

= Low Medium
G
>
(D}
(¥p]

Low Low Medium
>
Probability
UNIVERSITY OF TRENTO ProSXED 7/15

Carlos E. Budde

Risk assessment: cybersecurity

for the blockchain?

QOSS |z

Impact /
e LOw
User Interaction T
\S /

Scope
_ ;: J Probability

il

CVSS Vector
Score String A J, I
Base Metric Group Temporal H Environmental
xploitability mpact metrics i i
Exploitabilit | t metri Metric Grou Metric Grou
metrics 0
©
o Exploit Code Confidentiality
f Attack Vector j (Cor:frir?pe:éitality)\ § Modified Base
: e Integrity
; Remediation Level ;
(ttack Complexm) (WY) =
Impact O
>
O . (Availabilit)
(Privileges) (Availability) (%) Requireme)rllt
Required
\S -/)
>

UNIVERSITY OF TRENTO ProSXED 7/15 Carlos E. Budde

Risk assessment: cybersecurity

... for the blockchain?

Everything’s already in a
public distributed ledger

Impact metrics (Byte) code deployed to t@

blockchain is unmodifiable

Confidentiality
Impact

Integrit
onlid ETH/tokens in ledger are modifiable
Availability @modiﬂed, that’s the whole point of crypto)
Impact
O

... fine, this works: DoS kill smart contracts o

Moneyz
also in
ledger

E.g. infinite loops, blocking conditions like depleted accounts

UNIVERSITY OF TRENTO ProSXED 8/15 Carlos E. Budde

The whole point of this presentation

Causes

Locations Vulnerabilities
[WReentrancy vV,
uDeIealecaII injection Vz
[WFrozen Ether V;
[Jupgradeable contract V,
EIDOS with unexpected revert Vs
Ellntagar overflow and underflow Ve
[MManipulated balance V;
EIAulhenlicaliun through tx.origin Vs
EIErmneous visibility
uUnprolected suicide

/ EILeaking Ether to arbitrary address
; [confidentiality failure Y
Ethereum 4 [insufficient signature information Vis
application layer _4 [MDos with unbounded operations Vi
X EI Unchecked call return value Vis

.Umnilialized storage pointers
.Ermneous constructor name
DType casts
EIOuIdsted compiler version

External dependence

8> Improper validation

Inadequate authentication
or authorization

Uncontrolled gas consumption

O— Inconsistent exception handling
((——————————Undefined behavior
(————————— Improper syntax
(————————————— \Weak type system
()———— Buggy compiler

Chen, Pendleton, Njilla, Xu: A Survey on Ethereum Systems Security:
Vulnerabilities, Attacks, and Defenses (2020) ACM Comput. Surv.

Smart contract
programming

Solidity language
and toolchain

v -
Y% 77//’
./{ ' N,

UNIVERSITY OF TRENTO ProSXED

Carlos E. Budde

https://dl.acm.org/doi/10.1145/3391195
https://dl.acm.org/doi/10.1145/3391195
https://dl.acm.org/doi/10.1145/3391195

The whole point of this presentation

Locations Vulnerabilities
[WReentrancy vV,
uDeIegalecall injection Vz
[WFrozen Ether V;
[Jupgradeable contract V,
EIDOS with unexpected revert Vs
Mlintanar nuarflow and nndarfiaas \VR

Locations

Ethereum
application layer

Ethereum
application layer

/

Causes

External dependencex

Vulnerabilities

Chen, Pendleton, Njilla, Xu: A Survey on Ethereum Systems Security:
Vulnerabilities, Attacks, and Defenses (2020) ACM Comput. Surv.

How much ETH can we lose with each vuln?

Cduses

INCD SN

EI Reentrancy

|] Delegatecall injection
|] Frozen Ether

D Upgradeable contract

[Moos with unexpected revert Vs
Ellnteger overflow and underflow Ve
[MManipulated balance v,
ElAuihentication through tx.origin Vg
EIErronecus visibility Vg
I:l Unprotected suicide Vio

EILeaking Ether to arbitrary address VI 1

I]Conﬂdentia]ity failure Viz
I:I Insufficient signature information V/, ;
[MDos with unbounded operations ~ V/, ,

EI Unchecked call return value
. Uninitialized storage pointers
.Erroneous constructor name
DType casts

| Boutdated compiler version

VI 5

Vis [©

Which factors affect this?

o

Improper validation ()

Smart contract
" programming

Inadequate authentication()
or authorization

Uncontrolled gas consumption
O— Inconsistent exception handling)
Undefined behavior O
Improper syntax ()
Weak type system Q)
Buggy compiler()

Solidity language
~and toolchain

UNIVERSITY OF TRENTO ProSXED

Carlos E. Budde

https://dl.acm.org/doi/10.1145/3391195
https://dl.acm.org/doi/10.1145/3391195
https://dl.acm.org/doi/10.1145/3391195

Vulnerability impact quantification

ETH stole = f_vuln(...)

f_vuln_A(num_i, param2, ...) = num_i + param2 X param3 - param4
f_vuln_B(num_i, param2, ...) = num_i? + param2
f_vuln_C(num_1i, param2,) = num_i * Unif(0,param2)
A ‘
f_vuln(...) vuln_ A
Vjij;f;///
vuln_B Number of iterations of the call,

or transactions containing the
exploit, or ...

\J

num_i

UNIVERSITY OF TRENTO ProSXED 10/15 Carlos E. Budde

Vulnerability impact quantification: REEntrancy

Number of calls of
reentrant function

f_REE_a(num_i, ETH_i, 1inital_deposit, token_cost)
num_1i x ETH_i - initial_deposit - CONTR_COST

f_REE_b(...)

f_REE_c(..)

ETH lost per call

|_® R::-E::nlrafu:y Call—l
EARNINGS:

Number of iterations

ETH drained per iteration

COSTS:
Contract deployment (fixed cost)
Gas fees for every transaction

How much deposited at the beginning

num_1 x initial_deposit - initial_deposit - CONTR_COST

> {i=1}*{num_i} ETH_i7rate - initial_deposit - CONTR_COST

UNIVERSITY OF TRENTO ProSXED

L

Rate of exchange of tokes for ETH

11/15 Carlos E. Budde

EARNINGS:

A
f_vuln(...)

R

gazillion -
. integer
. overflow

profit
0 | num_t

f_IOF(..) = A * #tokens - FIXED_COSTS
+ if (num_t < min_num_t) then -cost_t * num_t

else gazillion

UNIVERSITY OF TRENTO ProSXED 12/15

COSTS:

Number of transactions in chain
(not iterations of call)

Nothing until everything:
discontinuity in earnings function

Cap by integer bit size

Contract deployment (fixed cost)

Pay (gas) transaction fees only
vs.
also deposit of ETH into account

Gas fees for every transaction

How much deposited at the beginning

Carlos E. Budde

EARNINGS:

A
f_vuln(...)
L&
gazillion 4 M
integer
overflow
profit
(C] num_t'
f_I0F(..) = A xf#tokens/ - FIXED_COSTS

Number of transactions

Number of transactions in chain
(not iterations of call)

Nothing until everything:
discontinuity in earnings function

Cap by integer bit size

Contract deployment (fixed cost)

Pay (gas) transaction fees only
vs.
also deposit of ETH into account

Gas fees for every transaction

How much deposited at the beginning

These are visible in the chain (“non-atomic”):
chance of detection increases

+ if Gaum=t < min_num_t) then -cost_t * num_t

Token — ETH conversion rate

UNIVERSITY OF TRENTO ProSXED

else gazillion——

Max integer representation
(depends on int bit size)

12/15

Carlos E. Budde

Risk quantification

UNIVERSITY OF TRENTO ProSXED 14 /15 Carlos E. Budde

http://low-carbon-energy-blog.co.uk/wp-content/uploads/2020/08/holy-grail.jpg

NIVERSITA ProSVED
| TRENTO I\ ey e

Towards vulnerability impact quantification
in Solidity smart contracts

Preparing for security risk prediction

Carlos E. Budde & Giacomo Checchini

Security group @ Dipartimento di Ingegneria e Scienza dell'Informazione

carlosesteban.budde@unitn.it 12.06.2024

https://www.unitn.it/en
https://www.disi.unitn.it/
http://orcid.org/0000-0001-8807-1548
mailto:carlosesteban.budde@unitn.it

	Cover
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 3 (5)
	Slide: 3 (6)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 5 (1)
	Slide: 5 (2)
	Slide: 5 (3)
	Slide: 5 (4)
	Slide: 5 (5)
	Slide: 5 (6)
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 8 (4)
	Slide: 8 (5)
	Slide: 8 (6)
	Slide: 8 (7)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 9 (3)
	Slide: 9 (4)
	Slide: 9 (5)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 11 (5)
	Slide: 11 (6)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 12 (5)
	Slide: 12 (6)
	Slide: 12 (7)
	Slide: 13
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 15

