
Forecasting software vulnerabilities
Probability Density Functions and Time Dependency Trees

C.E. Budde R. Paramitha F. Massacci
14th March 2024

ProSVED final event symposium



Talk overview

1. Introduction

2. Background

3. Forecast model

4. Conclusions



Introduction

1. Introduction

2. Background

3. Forecast model

4. Conclusions



Those annoying security updates

4/35

https://i.ytimg.com/vi/MpThwDpiphA/maxresdefault.jpg


Those annoying security updates

© loonylabs

4/35

https://i.ytimg.com/vi/MpThwDpiphA/maxresdefault.jpg
https://loonylabs.files.wordpress.com/2021/01/time-management.jpeg?w=1024


Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa
3.17.6

ℓa
3.17.7

ℓa
3.18.0

ℓa
3.18.1

ℓa
3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd
4.1.83

ℓd
4.1.84

ℓd
4.1.85

ℓd
4.1.86

ℓd
io.netty:netty-codec4.1.79

ℓd

5/35



Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa

3.17.6

ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd
io.netty:netty-codec4.1.79

ℓd

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

5/35



Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa

3.17.6

ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd
io.netty:netty-codec4.1.79

ℓd

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

5/35



Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa

3.17.6

ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd
io.netty:netty-codec4.1.79

ℓd

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Forced
MOVE

Wrong
MOVE

Correct
STAY

Correct
MOVE

Correct
STAY

5/35



Some motivation (plz!)

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

ℓa

3.17.6

ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.19.0

org.redisson:redisson

3.17.5

ℓa

4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd
io.netty:netty-codec4.1.79

ℓd

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Forced
MOVE

Wrong
MOVE

Correct
STAY

Correct
MOVE

Correct
STAY

Hindsight!
© j4p4n

org.redisson:redisson

io.netty:netty-codec4.1.79

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/35

https://openclipart.org/detail/324072/flux-capacitator


Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/35



Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/35



Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/35



Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/35



Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa ℓa
3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/35



Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa ℓa
3.17.7

ℓa
3.18.0

ℓa
3.18.1

ℓa
3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd
4.1.83

ℓd
4.1.84

ℓd
4.1.85

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/35



Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

5/35



Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

ℓa

3.19.0

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Forced
MOVE

Wrong
MOVE

Correct
STAY

Correct
MOVE

Correct
STAY

5/35



Some motivation (plz!)

Is there a best time to update?

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

5/35



Questions

Q1 How does time a�ect the Pr(vuln.)?

Q2 Which other factors a�ect Pr(vuln.)?

6/35



Questions

Q1 How does time a�ect the Pr(vuln.)?
▷ best time to update?

Q2 Which other factors a�ect Pr(vuln.)?

6/35



Questions

Q1 How does time a�ect the Pr(vuln.)?
▷ best time to update?

Q2 Which other factors a�ect Pr(vuln.)?
▷ measurable software metrics

6/35



Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;

7/35

https://www.first.org/epss/model


Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;
• keep it high-level, no code analysis.

7/35

https://www.first.org/epss/model


Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;
• keep it high-level, no code analysis.

2. Probability of exploitation:
• we study publication of CVEs;

7/35

https://www.first.org/epss/model


Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;
• keep it high-level, no code analysis.

2. Probability of exploitation:
• we study publication of CVEs;
• . . . but check the work of the EPSS!

7/35

https://www.first.org/epss/model


Background

1. Introduction

2. Background

3. Forecast model

4. Conclusions



State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or
k

Dis
c.

Pre
d.

CV
Es

Co
de VC

S
De
p.

Co
rr.

Cla
s.

T.S
er. AH SA ML Language # Purport

[WTT+24] ✓ ✓ ✓ ✓ ✓ C/C++ 20

[BES+20] ✓ ✓ ✓ ✓ C 3

[AT17] ✓ ✓ ✓ ✓ ✓ PHP 3

[BCH+14] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[LYZ+23] ✓ ✓ ✓ ✓ ✓ ✓ C, Java 549

[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7

[SAC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5

[SMM+12] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[AL21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.

[PPP+22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security. 9/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg


State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or
k

Dis
c.

Pre
d.

CV
Es

Co
de VC

S
De
p.

Co
rr.

Cla
s.

T.S
er. AH SA ML Language # Purport

[WTT+24] ✓ ✓ ✓ ✓ ✓ C/C++ 20

[BES+20] ✓ ✓ ✓ ✓ C 3

[AT17] ✓ ✓ ✓ ✓ ✓ PHP 3

[BCH+14] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[LYZ+23] ✓ ✓ ✓ ✓ ✓ ✓ C, Java 549

[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7

[SAC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5

[SMM+12] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[AL21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.

[PPP+22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security.

M
os
tw

or
ks
tr
y
to
di
sc
ov
er
cu
rr
en
tv
ul
ne
ra
bi
lit
ie
s,
no
tp
re
di
ct
fu
tu
re
on
es

9/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg


State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or
k

Dis
c.

Pre
d.

CV
Es

Co
de VC

S
De
p.

Co
rr.

Cla
s.

T.S
er. AH SA ML Language # Purport

[WTT+24] ✓ ✓ ✓ ✓ ✓ C/C++ 20

[BES+20] ✓ ✓ ✓ ✓ C 3

[AT17] ✓ ✓ ✓ ✓ ✓ PHP 3

[BCH+14] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[LYZ+23] ✓ ✓ ✓ ✓ ✓ ✓ C, Java 549

[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7

[SAC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5

[SMM+12] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[AL21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.

[PPP+22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security.

M
os
tw

or
ks
tr
y
to
di
sc
ov
er
cu
rr
en
tv
ul
ne
ra
bi
lit
ie
s,
no
tp
re
di
ct
fu
tu
re
on
es

M
os
tw

or
ks
di
sr
eg
ar
d
th
e
co
de

de
pe
nd
en
cy
tr
ee

9/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg


State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or
k

Dis
c.

Pre
d.

CV
Es

Co
de VC

S
De
p.

Co
rr.

Cla
s.

T.S
er. AH SA ML Language # Purport

[WTT+24] ✓ ✓ ✓ ✓ ✓ C/C++ 20

[BES+20] ✓ ✓ ✓ ✓ C 3

[AT17] ✓ ✓ ✓ ✓ ✓ PHP 3

[BCH+14] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[LYZ+23] ✓ ✓ ✓ ✓ ✓ ✓ C, Java 549

[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7

[SAC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5

[SMM+12] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[AL21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.

[PPP+22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security.

M
os
tw

or
ks
tr
y
to
di
sc
ov
er
cu
rr
en
tv
ul
ne
ra
bi
lit
ie
s,
no
tp
re
di
ct
fu
tu
re
on
es

M
os
tw

or
ks
di
sr
eg
ar
d
th
e
co
de

de
pe
nd
en
cy
tr
ee

M
os
tw

or
ks
do

no
tc
on
si
de
rt
im
e
in
th
ei
ra
na
ly
se
s

9/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg


State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or
k

Dis
c.

Pre
d.

CV
Es

Co
de VC

S
De
p.

Co
rr.

Cla
s.

T.S
er. AH SA ML Language # Purport

[WTT+24] ✓ ✓ ✓ ✓ ✓ C/C++ 20

[BES+20] ✓ ✓ ✓ ✓ C 3

[AT17] ✓ ✓ ✓ ✓ ✓ PHP 3

[BCH+14] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[LYZ+23] ✓ ✓ ✓ ✓ ✓ ✓ C, Java 549

[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7

[SAC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5

[SMM+12] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[AL21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.

[PPP+22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security.

M
os
tw

or
ks
tr
y
to
di
sc
ov
er
cu
rr
en
tv
ul
ne
ra
bi
lit
ie
s,
no
tp
re
di
ct
fu
tu
re
on
es

M
os
tw

or
ks
di
sr
eg
ar
d
th
e
co
de

de
pe
nd
en
cy
tr
ee

M
os
tw

or
ks
do

no
tc
on
si
de
rt
im
e
in
th
ei
ra
na
ly
se
s

Disregarded
security
data 9/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg


State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or
k

Dis
c.

Pre
d.

CV
Es

Co
de VC

S
De
p.

Co
rr.

Cla
s.

T.S
er. AH SA ML Language # Purport

[WTT+24] ✓ ✓ ✓ ✓ ✓ C/C++ 20

[BES+20] ✓ ✓ ✓ ✓ C 3

[AT17] ✓ ✓ ✓ ✓ ✓ PHP 3

[BCH+14] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[LYZ+23] ✓ ✓ ✓ ✓ ✓ ✓ C, Java 549

[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7

[SAC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5

[SMM+12] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[AL21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.

[PPP+22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security.

M
os
tw

or
ks
tr
y
to
di
sc
ov
er
cu
rr
en
tv
ul
ne
ra
bi
lit
ie
s,
no
tp
re
di
ct
fu
tu
re
on
es

M
os
tw

or
ks
di
sr
eg
ar
d
th
e
co
de

de
pe
nd
en
cy
tr
ee

M
os
tw

or
ks
do

no
tc
on
si
de
rt
im
e
in
th
ei
ra
na
ly
se
s

Disregarded
security
data 9/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg


State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

Q1 Pr(vuln.) as function of time

9/35



State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

Q1 Pr(vuln.) as function of time

9/35



State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . . )

Q1 Pr(vuln.) as function of time

9/35



State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . . )
▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

9/35



State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . . )
▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

▶ time-regression models on CVE publications (≈ FinTech)

9/35



Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

10/35



Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

• The dependency tree is seldom analysed (own code only).

10/35



Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

• The dependency tree is seldom analysed (own code only).

• The rare-event nature of vulnerabilities is disregarded.

10/35



Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

• The dependency tree is seldom analysed (own code only).

• The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps

10/35



Forecast model

1. Introduction

2. Background

3. Forecast model

4. Conclusions



Forecast model

1. Introduction

2. Background

3. Forecast model

4. Conclusions

CVE root-lib PDFs

Time Dependency Trees



Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

13/35



Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

13/35



Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

13/35



Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

13/35



Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

13/35



Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M        2M        3M        4M      ... 13/35



Publication of CVE since time of code release

org.redisson:redisson

3.17.5

ℓa ℓa

3.17.63.17.5

ℓa
ℓa

3.17.7

ℓa

3.18.0

ℓa

3.18.1

ℓa

3.17.7

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd

4.1.81

ℓd
4.1.82

ℓd

4.1.83

ℓd
4.1.84

ℓd

4.1.85

ℓd
4.1.86

ℓd

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

CVE-2022-41915 disclosed!

affects netty [4.1.83, 4.1.86)

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M        2M        3M        4M      ... 13/35



Rules of the game

▶ Count each CVE as one data point
• must choose one a�ected version!

14/35



Rules of the game

▶ Count each CVE as one data point

3.17.5

ℓ
a

ℓ
a

3.17.6

3.17.5

ℓ
a

ℓ
a

3.17.7 ℓ
a

3.18.0 ℓ
a

3.18.1

ℓ
a

3.17.7

ℓ
a

3.19.0

4.1.79

ℓ
d

4.1.80

ℓ
d

4.1.81

ℓ
d

4.1.82

ℓ
d

4.1.83

ℓ
d

4.1.84

ℓ
d

4.1.85

ℓ
d

4.1.86

ℓ
d

Sep'22

Aug'22

Jul'22

Dec'22

Oct'22

Nov'22

time
• must choose one a�ected version!

14/35



Rules of the game

▶ Count each CVE as one data point

3.17.5

ℓ
a

ℓ
a

3.17.6

3.17.5

ℓ
a

ℓ
a

3.17.7 ℓ
a

3.18.0 ℓ
a

3.18.1

ℓ
a

3.17.7

ℓ
a

3.19.0

4.1.79

ℓ
d

4.1.80

ℓ
d

4.1.81

ℓ
d

4.1.82

ℓ
d

4.1.83

ℓ
d

4.1.84

ℓ
d

4.1.85

ℓ
d

4.1.86

ℓ
d

Sep'22

Aug'22

Jul'22

Dec'22

Oct'22

Nov'22

time
• must choose one a�ected version!

14/35



Rules of the game

▶ Count each CVE as one data point
• must choose one a�ected version!

▶ Discriminate per development environment
• e.g. Java and C/C++ have di�erent vuln. (and times!)

14/35



Rules of the game

▶ Count each CVE as one data point
• must choose one a�ected version!

▶ Discriminate per development environment
• e.g. Java and C/C++ have di�erent vuln. (and times!)

14/35



Rules of the game

▶ Count each CVE as one data point
• must choose one a�ected version!

▶ Discriminate per development environment
• e.g. Java and C/C++ have di�erent vuln. (and times!)

▶ Discriminate per library type
• consider security-relevant code metrics

14/35



Rules of the game

▶ Count each CVE as one data point
• must choose one a�ected version!

▶ Discriminate per development environment
• e.g. Java and C/C++ have di�erent vuln. (and times!)

▶ Discriminate per library type
• consider security-relevant code metrics

14/35



Security-relevant code metrics

15/35



Security-relevant code metrics

Used in remote networks

15/35



Security-relevant code metrics

15/35



Security-relevant code metrics

(Own) Code size

15/35



Security-relevant code metrics

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed

W
or
k

Dis
c.

Pre
d.

CV
Es

Co
de VC

S
De
p.

Co
rr.

Cla
s.

T.S
er. AH SA ML Language # Purport

[WTT+24] ✓ ✓ ✓ ✓ ✓ C/C++ 20

[BES+20] ✓ ✓ ✓ ✓ C 3

[AT17] ✓ ✓ ✓ ✓ ✓ PHP 3

[BCH+14] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[LYZ+23] ✓ ✓ ✓ ✓ ✓ ✓ C, Java 549

[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7

[SAC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5

[SMM+12] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[AL21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.

[PPP+22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security.

15/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg


Security-relevant code metrics

Own-code size

Us
ed

in
re
m
ot
e
ne
tw
or
ks

15/35



Security-relevant code metrics

Own-code size

Us
ed

in
re
m
ot
e
ne
tw
or
ks

15/35



Security-relevant code metrics

Own-code size

Us
ed

in
re
m
ot
e
ne
tw
or
ks

15/35



Security-relevant code metrics

Own-code size

Us
ed

in
re
m
ot
e
ne
tw
or
ks

15/35



Security-relevant code metrics

Own-code size

Us
ed

in
re
m
ot
e
ne
tw
or
ks

15/35



Security-relevant code metrics

Own-code size

Us
ed

in
re
m
ot
e
ne
tw
or
ks

15/35



Security-relevant code metrics

Own-code size

Us
ed

in
re
m
ot
e
ne
tw
or
ks

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M        2M        3M        4M      ... 

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M        2M        3M        4M      ... 

Time since lib. release
Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.
1M        2M        3M        4M      ... 

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M        2M        3M        4M      ... 

15/35



Security-relevant code metrics

Own-code size

Us
ed

in
re
m
ot
e
ne
tw
or
ks

15/35



On overfitting and rare events

Time since lib. release

Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M        2M        3M        4M      ... 

Time since lib. release
Pr
ob
ab
ili
ty

 o
f C

VE
 p

ub
lic

.

1M        2M        3M        4M      ... 

16/35



On overfitting and rare events

16/35



On overfitting and rare events

16/35



On overfitting and rare events

▶ Count each CVE as one data point

▶ Discriminate per development environment

▶ Discriminate per library type

16/35



On overfitting and rare events

▶ Count each CVE as one data point

▶ Discriminate per development environment

▶ Discriminate per library type

▶ Clusterisation mustn’t be too thin
• few divisions per metric-dimension
• few metric-dimensions

16/35



Enough!

Gimme results



Here ya go

17/35



Here ya go

Q1 Pr(vuln.) as function of time

Q2 Pr(vuln.) as function of software metrics
17/35



Survival analysis on library update

org.redisson:redisson

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

io.netty:netty-codec4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Dec'22Oct'22 Nov'22 time

17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

A: PrA,B(t) = 1− SFA

(

t+∆tA
)

CDFB

(

t+∆tB
)

where ∆tx
.
= |tx − t0|

17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

A: PrA,B(t) = 1− SFA

(

t+∆tA
)

CDFB

(

t+∆tB
)

where ∆tx
.
= |tx − t0|

vuln. in ℓA before change vuln. in ℓB after change

17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

A: PrA,B(t) = 1− SFA

(

t+∆tA
)

CDFB

(

t+∆tB
)

where ∆tx
.
= |tx − t0|

vuln. in ℓA before change vuln. in ℓB after change

17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

A: PrA,B(t) = 1− SFA

(

t+∆tA
)

CDFB

(

t+∆tB
)

where ∆tx
.
= |tx − t0|

tA = 184 days
tB = 21 days 17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

A: PrA,B(t) = 1− SFA

(

t+∆tA
)

CDFB

(

t+∆tB
)

where ∆tx
.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days 17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

A: PrA,B(t) = 1− SFA

(

t+∆tA
)

CDFB

(

t+∆tB
)

where ∆tx
.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days

vuln. likely
to hit

vuln.
likely
to hit

global min:
best moment to change,
avoiding peaks of vuln.
from both libraries

1Q          2Q          3Q          1Y

17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

A: PrA,B(t) = 1− SFA

(

t+∆tA
)

CDFB

(

t+∆tB
)

where ∆tx
.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days

0 1Q 2Q 3Q 1Y 5Q
0

1Q

2Q

3Q

1Y

5Q

0.0

0.2

0.4

0.6

0.8

1.0

SFA

CDFB
17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

A: PrA,B(t) = 1− SFA

(

t+∆tA
)

CDFB

(

t+∆tB
)

where ∆tx
.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days

0 1Q 2Q 3Q 1Y 5Q
0

1Q

2Q

3Q

1Y

5Q

0.0

0.2

0.4

0.6

0.8

1.0

SFA

CDFB
17/35



Survival analysis on library update

3.17.5

ℓa ℓa
3.17.63.17.5

ℓa

4.1.79

ℓd
4.1.80

ℓd
4.1.81

ℓd
4.1.82

ℓd

ℓa
3.17.7

? ? ? ?

Sep'22Aug'22Jul'22 Oct'22

A
t
−→ B means that we change from dependency

ℓA to ℓB in t time units counting from t0 (“today”).

▷ ℓA was released on tA < t0, ℓB on tB < t0, tA ▷◁ tB

Q: PrA,B(t) = probability of vuln. of A t
−→ B as a function of t

A: PrA,B(t) = 1− SFA

(

t+∆tA
)

CDFB

(

t+∆tB
)

where ∆tx
.
= |tx − t0|

tA = 184 days
tB = 21 days

tA = 17 days
tB = 85 days

0 1Q 2Q 3Q 1Y 5Q
0

1Q

2Q

3Q

1Y

5Q

0.0

0.2

0.4

0.6

0.8

1.0

SFA

CDFB
17/35



Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

18/35



Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

18/35



Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

18/35



Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

18/35



Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

18/35



Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

tA = 28 days
tB = 60 days

18/35



Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

tA = 28 days
tB = 60 days

18/35



Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

tA = 28 days
tB = 60 days

Nice for 2
dependencies!

. . . btw I have 2000

18/35



Vulnerabilities from any dependency

Q: PrA,B(t) = probability of vuln. in ℓA or ℓB before t

A: PrA,B(t) = Pr(min(ℓA, ℓB) ⩽ t) = 1− (1− PrA(t))(1− PrB(t))

ℓA ℓB

tA = 123 days
tB = 14 days

tA = 28 days
tB = 60 days

Nice for 2
dependencies!

. . . btw I have 2000

TDTs !

18/35



Forecast model

1. Introduction

2. Background

3. Forecast model

4. Conclusions

CVE root-lib PDFs

Time Dependency Trees



Time Dependency Trees

Dependency Trees in time

D(ℓa1):

20/35



Time Dependency Trees

Dependency Trees in time

D(ℓa1):
D(ℓa2):

20/35



Time Dependency Trees

Dependency Trees in time

D(ℓa1):
D(ℓa2):

D(ℓa3):

20/35



Time Dependency Trees

Dependency Trees in time

{D(ℓai)}
3
i=1
:

20/35



Time Dependency Trees

Dependency Trees in time

{D(ℓai)}
3
i=1
:

dependency

c-chain

Time Dependency Tree

DT (ℓa)DT (ℓa):

20/35



Time Dependency Trees

Dependency Trees in time

{D(ℓai)}
3
i=1
:

dependency

c-chain

Time Dependency Tree

DT (ℓa)DT (ℓa):

Main library (ℓa)

20/35



Time Dependency Trees

Dependency Trees in time

{D(ℓai)}
3
i=1
:

dependency

c-chain

Time Dependency Tree

DT (ℓa)DT (ℓa):

Main library (ℓa)

Time span (T )

20/35



Time Dependency Trees

Dependency Trees in time

{D(ℓai)}
3
i=1
:

dependency

c-chain

Time Dependency Tree

DT (ℓa)DT (ℓa):

Main library (ℓa)

Time span (T )Dt(ℓa) = D(ℓa1
)

for any time point t ∈ T

after the release of ℓa1
and

before the release of ℓa2

20/35



Properties of TDT DT (ℓ)DT (ℓ)

• Minimal graph representation (no lib-version repetition)

21/35



Properties of TDT DT (ℓ)DT (ℓ)

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

21/35



Properties of TDT DT (ℓ)DT (ℓ)

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

21/35



Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

21/35



Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

21/35



Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣

∣

d
yields all instances of

dependency d during time T

21/35



Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣

∣

d
yields all instances of

dependency d during time T

• Reachability analysis can spot single-points-of-failure

21/35



SPoF in time and dependencies

My personal project uses ℓ1.0

22/35



SPoF in time and dependencies

My personal project uses ℓ1.0

22/35



SPoF in time and dependencies

My personal project uses ℓ1.0

Should I downgrade to ℓ0.9 or upgrade to ℓ1.1?

22/35



Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣

∣

d
yields all instances of

dependency d during time T

• Reachability analysis can spot single-points-of-failure

23/35



Properties of TDT DT (ℓ)DT (ℓ)

Theoretical

• Minimal graph representation (no lib-version repetition)

• Canonical for library ℓ and time span T

• Natural lifting of dependency trees to time

Practical

• Time-indexing D t(ℓ) yields the dep. tree at time t ∈ T

• Library-slicing DT (ℓ)
∣

∣

d
yields all instances of

dependency d during time T

• Reachability analysis can spot single-points-of-failure

• Can measure health/risk of development environment

23/35



Forecast model

1. Introduction

2. Background

3. Forecast model

4. Conclusions

CVE root-lib PDFs

Time Dependency Trees



Conclusions

1. Introduction

2. Background

3. Forecast model

4. Conclusions



Some things done

▶ Time Dependency Trees

26/35



Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data

26/35



Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties

26/35



Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

26/35



Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time

26/35



Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time
• Express time from library release to CVE publication

26/35



Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time
• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)

26/35



Some things done

▶ Time Dependency Trees
• Aggregate dependency and code-evolution data
• Minimal representation with nice properties
• Framework for large-scale project analysis

▶ Probability of vulnerabilities as a function of time
• Express time from library release to CVE publication
• Discriminate per type of library (security-relevant props.)
• Base information for probability forecasting

26/35



Some things done

27/35



Some things done‹

to beto be

27/35



Some things done‹

to beto be

▶ Other metrics to clusterise libraries for PDF-fitting

27/35



Some things done‹

to beto be

▶ Other metrics to clusterise libraries for PDF-fitting

▶ Validate in other languages (all Java so far)

27/35



Some things done‹

to beto be

▶ Other metrics to clusterise libraries for PDF-fitting

▶ Validate in other languages (all Java so far)

▶ SPoF detection—across versions—in Java/Maven

27/35



Some things done‹

to beto be

▶ Other metrics to clusterise libraries for PDF-fitting

▶ Validate in other languages (all Java so far)

▶ SPoF detection—across versions—in Java/Maven

▶ c-chains polution by CVE

27/35



Questions?



References i

Henrique Alves, Baldoino Fonseca, and Nuno Antunes.
Software metrics and security vulnerabilities: Dataset and exploratory study.
In EDCC, pages 37–44. IEEE, 2016.

Junaid Akram and Ping Luo.
SQVDT: A scalable quantitative vulnerability detection technique for source
code security assessment.
Software: Practice and Experience, 51(2):294–318, 2021.

Manar Alohaly and Hassan Takabi.
When do changes induce software vulnerabilities?
In CIC, pages 59–66. IEEE, 2017.

Amiangshu Bosu, Je�rey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni.
Identifying the characteristics of vulnerable code changes: An empirical study.
In FSE, pages 257–268. ACM, 2014.

28/35



References ii

Zeki Bilgin, Mehmet Akif Ersoy, Elif Ustundag Soykan, Emrah Tomur, Pinar Çomak,
and Leyli Karaçay.
Vulnerability prediction from source code using machine learning.
IEEE Access, 8:150672–150684, 2020.

Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray.
Deep learning based vulnerability detection: Are we there yet.
IEEE Transactions on Software Engineering, 48(9):3280–3296, 2021.

Istehad Chowdhury and Mohammad Zulkernine.
Using complexity, coupling, and cohesion metrics as early indicators of
vulnerabilities.
Journal of Systems Architecture, 57(3):294–313, 2011.

Sundarakrishnan Ganesh, Tobias Ohlsson, and Francis Palma.
Predicting security vulnerabilities using source code metrics.
In SweDS, pages 1–7. IEEE, 2021.

29/35



References iii

Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh.
VUDDY: A scalable approach for vulnerable code clone discovery.
In SP, pages 595–614. IEEE, 2017.

David Last.
Forecasting zero-day vulnerabilities.
In CISRC, pages 1–4. ACM, 2016.

Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
Demystifying the vulnerability propagation and its evolution via dependency
trees in the NPM ecosystem.
In ICSE, pages 672–684. ACM, 2022.

Hongzhe Li, Hyuckmin Kwon, Jonghoon Kwon, and Heejo Lee.
A scalable approach for vulnerability discovery based on security patches.
In ATIS, volume 490 of CCIS, pages 109–122. Springer, 2014.

Éireann Leverett, Matilda Rhode, and Adam Wedgbury.
Vulnerability forecasting: Theory and practice.
Digital Threats, 3(4):42:1–42:27, 2022.

30/35



References iv

Qiang Li, Jinke Song, Dawei Tan, Haining Wang, and Jiqiang Liu.
PDGraph: A large-scale empirical study on project dependency of security
vulnerabilities.
In DSN, pages 161–173. IEEE, 2021.

Yi Li, Aashish Yadavally, Jiaxing Zhang, Shaohua Wang, and Tien N. Nguyen.
Commit-level, neural vulnerability detection and assessment.
In FSE, pages 1024–1036. ACM, 2023.

Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodríguez
Tejeda, Matthew Mokary, and Brian Spates.
When a patch goes bad: Exploring the properties of vulnerability-contributing
commits.
In ESEM, pages 65–74. IEEE, 2013.

Andrew Meneely and Laurie Williams.
Strengthening the empirical analysis of the relationship between Linus’ law and
software security.
In ESEM. ACM, 2010.

31/35



References v

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci.
Vuln4Real: A methodology for counting actually vulnerable dependencies.
IEEE Transactions on Software Engineering, 48(5):1592–1609, 2022.

Gede Artha Azriadi Prana, Abhishek Sharma, Lwin Khin Shar, Darius Foo,
Andrew E. Santosa, Asankhaya Sharma, and David Lo.
Out of sight, out of mind? how vulnerable dependencies a�ect open-source
projects.
Empirical Software Engineering, 26(4), 2021.

Yaman Roumani, Joseph K. Nwankpa, and Yazan F. Roumani.
Time series modeling of vulnerabilities.
Computers & Security, 51:32–40, 2015.

Kazi Zakia Sultana, Vaibhav Anu, and Tai-Yin Chong.
Using software metrics for predicting vulnerable classes and methods in Java
projects: A machine learning approach.
Journal of Software: Evolution and Process, 33(3), 2021.

32/35



References vi

Kazi Zakia Sultana, Ajay Deo, and Byron J. Williams.
Correlation analysis among Java nano-patterns and software vulnerabilities.
In HASE, pages 69–76. IEEE, 2017.

Nahid Shahmehri, Amel Mammar, Edgardo Montes de Oca, David Byers, Ana
Cavalli, Shanai Ardi, and Willy Jimenez.
An advanced approach for modeling and detecting software vulnerabilities.
Information and Software Technology, 54(9):997–1013, 2012.

Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne.
Evaluating complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities.
IEEE Transactions on Software Engineering, 37(6):772–787, 2011.

Kazi Zakia Sultana and Byron J. Williams.
Evaluating micro patterns and software metrics in vulnerability prediction.
In SoftwareMining, pages 40–47. IEEE, 2017.

33/35



References vii

Huanting Wang, Zhanyong Tang, Shin Hwei Tan, Jie Wang, Yuzhe Liu, Hejun Fang,
Chunwei Xia, and Zheng Wang.
Combining structured static code information and dynamic symbolic traces for
software vulnerability prediction.
In ICSE, pages 169:1–169:13. ACM, 2024.

Emrah Yasasin, Julian Prester, Gerit Wagner, and Guido Schryen.
Forecasting IT security vulnerabilities – an empirical analysis.
Computers & Security, 88, 2020.

34/35



Forecasting software vulnerabilities
Probability Density Functions and Time Dependency Trees

C.E. Budde R. Paramitha F. Massacci
14th March 2024

ProSVED final event symposium


	Introduction
	Background
	Forecast model
	PDFs
	TDTs

	Conclusions

