Forecasting software vulnerabilities

Probability Density Functions and Time Dependency Trees

C.E. Budde R.Paramitha F. Massacci
14th March 2024

ProSVED final event symposium

ProSYED SEC

SEC

1. Introduction
2. Background
3. Forecast model

4. Conclusions

Introduction

1. Introduction

Those annoying security updates

Windows Update

(o) =

"~ Fix Your Device Is Missing Important

Security Updates

Eomemoe

4/35

https://i.ytimg.com/vi/MpThwDpiphA/maxresdefault.jpg

Those annoying security updates

Windows Update

Complete updates to maintain security of your device
]

Fix Your Device Is Missing Imnnrtant
|

Securif

https://i.ytimg.com/vi/MpThwDpiphA/maxresdefault.jpg
https://loonylabs.files.wordpress.com/2021/01/time-management.jpeg?w=1024

Some motivation (plz!)

org.redisson:redisson

¥
4
4.1.86 io.netty:netty-codec
T N
Oct22 " Nov'22 "Dec'22 time

w22 Aug22 "sep'22

5/35

Some motivation (plz!)

org.redisson:redisson

Ll 1

¥

4

4.1.86 io.netty:netty-codec

time

T T T T T

Jul'22 Aug'22 Sep'22 Oct'22 Nov'22 Dec'22 \
CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

5/35

Some motivation (plz!)

org.redisson:redisson

)

(R

13175 3.17.6

]

v ¥
{

4.1.79 io.netty:netty-codec
a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec'22 \ time

CVE-2022-41915 disclosed!

Ls affects netty [4.1.83, 4.1.86)

5/35

Some motivation (plz!)

Correct Correct Correct Wrong Forced
STAY MOVE STAY MOVE MOVE

‘\ ‘\ \ \ \ org.redisson:redisson

(N [t
3.17.5 3.19.0
[d [d .
4.1.79 4.1.80 io.netty:netty-codec

a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 \ ™ time
CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

v
1
!
Y

- -

5/35

Some motivation (plz!)

Hindsight! g

Correct Correct Wrong
STAY \ MOVE

Correct
MOVE ‘\

Forced
MOVE
\ org.redisson:redisson

STAY ‘\

' Nov'22

" Oct22

' Dec'22 '\

~E.)

Y

io.netty:netty-codec

time
CVE-2022-41915 disclosed!

w22 Aug22 "Sep22

Ls affects netty [4.1.83, 4.1.86)

5/35

https://openclipart.org/detail/324072/flux-capacitator

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

L

13175

{

t

4.1.79 io.netty:netty-codec
a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 ™ time

5/35

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

L
13175
i
[d [d
4.1.79 4.1.80, io.netty:netty-codec
a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 ™ time

5/35

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 ™ time

5/35

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 ™ time

5/35

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 ™ time

5/35

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 ™ time

5/35

Some motivation (plz!)

Developer perspective in time:

org.redisson:redisson

io.netty:netty-codec

a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 \ ™ time
CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

5/35

Some motivation (plz!)

Developer perspective in time:

Correct Wrong Forced
MOVE MOVE

Correct Correct
STAY ‘\ MOVE ‘\ STAY \ \

\ org.redisson:redisson

~E.)

Y

io.netty:netty-codec

time

"Dec'22 \

"Nov'22
CVE-2022-41915 disclosed!

1
Oct'22
Ls affects netty [4.1.83, 4.1.86)

w22 Aug22 "sep'22

5/35

Some motivation (plz!)

Is there a best time to update?

org.redisson:redisson

io.netty:netty-codec

a2 Aug22 "Sep22 " Oct22 "Nov'22 "Dec22 ™ time

5/35

Questions

Q1 How does time affect the Pr(vuln.)?

Q2 Which other factors affect Pr(vuln.)?

6/35

Questions

Q1 How does time affect the Pr(vuln.)?

> best time to update?

Q2 Which other factors affect Pr(vuln.)?

6/35

Questions

Q1 How does time affect the Pr(vuln.)?

> best time to update?

Q2 Which other factors affect Pr(vuln.)?

> measurable software metrics

6/35

Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;

7135

https://www.first.org/epss/model

Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;
- keep it high-level, no code analysis.

7135

https://www.first.org/epss/model

Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;
- keep it high-level, no code analysis.

2. Probability of exploitation:
- we study publication of CVEs;

7135

https://www.first.org/epss/model

Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;
- keep it high-level, no code analysis.

2. Probability of exploitation:
- we study publication of CVEs;
- ... but check the work of the EPSS!

7135

https://www.first.org/epss/model

2. Background

State of the ART

x Goal Data Method Approach Projects/Libs.
5
o e -
= & @ ¥ & s ML Language # Purport
WIT+2] v v v v v clo 20 Find vulnerabilities regardless of
" existent logs such as CVEs
[BEsT20l v v v v € 3 (although CWEs may be used).
[AT17] v v v v v PHP 3 This includes formal methods and
[BCH 4] v v v v v /G, PHP, Java, J5, SQL 10 Static/dynamic code analysis.
[zt23] v v v v v v Clava 549 Detect known vulnerabilities (and
their correlation to developer
LKKL. c
! 4] 4 4 4 4 4 9 activity metrics) from VCS
[MsM*13] v v v v v c 1 only—eg. commit churn, peer
[MwAo] v v v v v v C,ASM 3 comments, etc.
[CKDR21] v v v v v oo 3
[GoP21] v v v v v Java 7 Detect known vulnerabilities (and
[sAC21] v v v v v v v Java \ their correlation to code metrics)
from code only—e.g. number of
[spbwaz] v v v v v Java 3 classes, code cloning, cyclomatic
[swi7] v v v v v Java 5 complexity, etc
[sMmta2] v v v v v c 7
[AL21] v v v v v v s clee >150k Detect known vulnerabilities (and
Kwiow] v v v v v v e g their corr. to code and developer
activity metrics) from both code
[AFAt6] - v v v v v v clew 5 and VCS, but without considering
[czn) v v v v v v v v /o ava 1 the effect of dependencies in
[sMwo] v v v v v v v o 2 | theirpropagation.
[PPP22] v v v v v v v Java 500 Detect known vulnerabilities
de or VS, via depend-
LCFF 22 S 62, USINS €O
! 1 v o v v v ! “ ency-aware models that can find
st v oV v v v Jaa >300k the offending code, to aid in its
[psstx] v v v v v v v v Java, Ruby, Python 450 solution (own vs. 3 party lib)
[LRW22] v v v v v Agnostic 4 Time regression to predict
vulnerabilities from NVD logs,
YP . ,
NIRTE) v v v A L 9 but the models do not use
[Las16] v v v v’ v Agnostic 25 domain-specific data relevant for
[RNR15] v v v v Agnostic 5 security.

Models to predict vulnerabilities

9/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART

Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
5
o e -
= & & ¢ F ¢ A s ML Language # Purport
Wit v I/ < \| v v v v o 20 Find vulnerabilities regardless of
logs such as CVES
BEsta0] v v existent
[] : : \ v le 3 (although CWES may be used)
[AT17] v v v v v PHP 3 This includes formal methods and
NN
BCH W v gl v v v v C/C, PHR, Java, J5, SQL 10 static/dynamic code analysis.
Wztasl v §: : v v v v 7 I 549 Detect known vulnerabilities (and
kol | v SO 7 7 7 . 5 their correlation to developer
N é, | activity metrics) from VCS
[MSMta3] v BN v v v v € 1 only—e.g. commit churn, peer
[MwAo] v IR v v v v v C,ASM 3 comments, etc.
s
lcKoR2] v gy v v v 3
[GoP21] v i: : v v v v Java 7 Detect known vulnerabilities (and
g
[sAC21] v 1 v v v v v v Java \ their correlation to code metrics)
! from code only—e.g. number of
[spbwaz] v ; v v v v Java 3 classes, code cloning, cyclomatic
[sw17] v v v v Java 5 complexity, etc
[sMmM*12] v v v v ¢ 7
[AL21] v I v v v v v s clee >150k Detect known vulnerabilities (and
kwiorl v : v v v v v Clow g their corr to code and developer
activity metrics) from both code
[aFat6] v 8 : v v v v v clew 5 and VCS, but without considering
[czn] v Y YV v v v v o ava 1 the effect of dependencies in
[sMWO11] v : v v v v v v o 2 | theirpropagation.
[pPPta2]l v 1 v v v v v v Java 500 Detect known vulnerabilities
W2l v 1 v . v " g2 Using code or VCS, via depend-

. 1 ency-aware models that can find
st v v v v v v ava 300k the offending code, to aid in its
[Psstl v : v v v v v Java, Ruby, Python 450 solution (own vs. 3 party lib),
[LRW22] I v v v' v Agnostic 4 Time regression to predict
[YPwsz0] i P 7 & | o o Vulnerabilities from NVD logs,

I but the models do not use
[Las16] : v v v’ v Agnostic 25 domain-specific data relevant for
[RNR15] v v v Agnostic 5 security

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
5
o e -
s & & ¢ F ¢ A s ML Language # Purport
WiTt24] v I/) v AR v v v o oclow 20 Find vulnerabilities regardless of
1 existent logs such as CVES
+
[BEST20] v : ! v v . 3 (although CWES may be used)
[AT17] v : v v v v oPHP 3 This includes formal methods and
BCH wl v gl 1 v v v v C/C+, PHR. Java, J5, SQL 10 Static/dynamic code analysis.
Wztasl v §: : v v v v 7 I 549 Detect known vulnerabilities (and
kel v S0 v 7 7 7 . 5 their correlation to developer
N 20 g activity metrics) from VCS
L v 5 v v c 1 only—eg commit churn, peer
Mwiol v v v g v % C, ASM 3 comments, etc.
]
[ckoR21] v) v v v v 3
g
[GoP] v f;: Loy v v Java 7 Detect known vulnerabilities (and
g
[SAC21] v 1 v v g v v v v Java N ;he\r co;rela(\on to code :em;s)
3 rom code only—e.g. number of
[sow7] v ! v v @ v v Java 3 classes, code cloning, cyclomatic
I £
[sw7] v v = v v Java 5 complexity, etc
[sMM*12] v Y g v v c 7

1 &

[AL1] v v v v v v v oo >150k Detect known vulnerabilities (and
kWLl v L v v Clow g their corr. to code and developer
[ARAT6] : : y P 5 activity metrics) from both code

! y 7 4 v v e 5 and Vs, but without considering
[czn] v Y Y é 7 & v v o ava 1 the effect of dependencies in
[sMWon] v 1l v v v v v v dor 7 | Gl CREEEEEn

1
[pPPta2]l v 1 v v v v v v Java 500 Detect known vulnerabilities
[lcFt22] v [V v 7 v v IS 62, Using code or VCS, via depend-

1 ency-aware models that can find
listha] v vV v v v Jaa >300k the offending code, to aid in its
[psst2] v : v v v v v v v Java, Ruby, Python 450 solution (own vs. 3 party lib).
[LRW22] I v v v' v Agnostic 4 Time regression to predict
[vPWS20] N P 7 & | o o vulnerabilities from NVD logs,

! but the models do not use
[Las16] : v v v v Agnostic 25 domain-specific data relevant for 9/35
[RNR15] v 0%, v v Agnostic 5 security

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
5
o e -
= & @ ¥ & s ML Language # Purport
WiTt24] v I/) v BRA v v v o clow 20 Find vulnerabilities regardless of
| 3
BEst20] v o v v v c 5 existent logs such as CVEs
| I 3 (although CWES may be used).
DB v v v vooprp 3 This includes formal methods and
[BcH] v gl 1 v v v v /G, PHP, Java, JS, SQL 10 Static/dynamic code analysis.
(vztzs] v 8L v v v B v Clava 549 Detect known vulnerabilities (and
e | @ 5 : P e s &, . 5 their correlation to developer
£ ol ! activity metrics) from VCS
A =] $ i
[MSMta3] v T v v 5 v ?] v € 1 only—e.g. commit churn, peer
Mwiol v v v g v - C, ASM 3 comments, etc.
g !
corRa]l v Sy vV v Y v e 3
[GoP21] v i: : v v v 3: 1 v Java 7 Detect known vulnerabilities (and
g
[sAC21] v 1 v v @ v g | v v Java \ their correlation to code metrics)
! g s from code only—e.g. number of
[spbwaz] v ; v v b v 5/ v Java 3 classes, code cloning, cyclomatic
" k=i ‘@] R complexity, etc.
[sw7] v v = v & v Java 5
[sMmM*12] v v g v Ei v ¢ 7
& o
[AL21] v 1 v v v 2 v = v clow >150k Detect known vulnerabilities (and
kwiorl v : v v v v 50 v Clow g their corr to code and developer
e 78 \ 7 7 7 5 7 2 1 7 activity metrics) from both code
1 , 2 se7 clew 5 and VCS, but without considering
[czn] v v v v é vV i v v o ava 1 the effect of dependencies in
[SMWO11] v Wz ¢ « v = v v dor 7 | Gl CREEEEEn
" 1]
[PPP22] v | v v v v v o I v Java 500 Detect known vulnerabilities
s A 2 5 e et
[Lstf] v I v v ' v é! \ v Java >300k the offending code, to aid in its
[Psst21] v : v v v v v vl v Java, Ruby, Python 450 solution (own vs. 3 party lib)
[LRW22] | v | 7 v v Agnostic 4 Time regression to predict
s : P [/ 7 & | o o Vulnerabilities from NVD logs,
| but the models do not use
[Las16] : s | v’ v Agnostic 25 domain-specific data relevant for 9/35
[RNR15] v) = v Agnostic 5 security

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
H
o e -
= & @ ¥ & s ML Language # Purport
WiTt2s] v I/) v AR v . v clo 20 Find vulnerabilities regardless of
! B existent logs such as CVEs
"
[BEST20] v : | v v v le 3 (although CWES may be used)
DB v oo VPP 3 This includes formal methods and
[BCH wl v ol v v v v /G, PHP, Java, J5, SQL 10 Static/dynamic code analysis.
(vztzs] v 8L v v v B v Clava 549 Detect known vulnerabilities (and
[LKKL14] v g : v v P c 5 their correlation to developer
SN gl | activity metrics) from VCS
MsM¥isl v S v v £ v = v c 1 only—eg. commit churn, peer
Mwiol w31 v v g v L TV € ASM 3 comments, etc.
N |
[CKOR2Al v Sy v v v Y v e 3
[GOP21] v s v PR v Java 7 Detect known vulnerabilities (and
[sAC21] v g 1 v v o v v a v v . their correlation to code metrics)
: g R from code only—e.g, number of
[sow7] v | v v @ v o v Java 3 classes, code cloning, cyclomatic
W = | v complexity, etc
[swi7] v 1 v v = v & v Java 5
B £
[sMmM*12] v v v 5 v E v ¢ 7
1 & ol
ALl v v v v g v v E vooce >150k Detect known vulnerabilities (and
kWLl v : v v v v 50 v e g their corr. to code and developer
el 2d b7 5 2 activity metrics) from both code
! y 7 4 v A v e 5 and Vs, but without considering
[czn) v v v v 3 v v e v v e 1 the effect of dependencies in

1 £ s P

[smwon] v : v v v ol 1 v v o , their propagation

<
[pPPta2]l v 1 v v v v oo, v Java 500 Detect known vulnerabilities
WCFr22l v T 7 - " G2 USin code or VCS, via depend-

1 2 ency-aware models that can find
st v v v v é' 1 v Jaa >300k the offending code, to aid in its
[Psst21] v 1 v v v v v v A v Java, Ruby, Python 450 solution (own vs. 3 party lib).

I e 2 !

[LRW22] | vy v v Agnostic 4 Time regression to predict
[vPWS20] : v [/ ¢ & | g o vulnerabilities from NVD logs,
» but the models do not use
[Las16] : v v v v Agnostic 25 domain-specific data relevant for 9/35
[RNR15] v ; L] v Agnostic 5 security

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

x Goal Data Method Approach Projects/Libs.
5
o e -
= & @ ¥ & s ML Language # Purport
WiTt24] v I/) v BRA v v v o clow 20 Find vulnerabilities regardless of
] - existent logs such as CVEs
[BEST20] v | v Vo v oc 3
3 (although CWES may be used).
Wl v v oo vooeHp 3 This includes formal methods and
[BcH] v gl 1 v v v v /G, PHP, Java, JS, SQL 10 Static/dynamic code analysis.
Wwztasl v 5: : v v v B 7 | eEn 540 Detect known vulnerabilities (and
[LKKLa] v SR v v v 4 v c 5 their correlation to developer
5 @ activity metrics) from VCS
A =] $ i
MsM¥13] v gy v < 5 v o> v € 1 only—eg commit churn, peer
Mwiol v v v g v - C, ASM 3 comments, etc.
g !
corRa]l v Sy vV v Y v e 3
[GoP21] v i: [v g! 1 v Java 7 Detect known vulnerabilities (and
k4 1 {
[sAC21] v 1 v v @ v v % | v v Java \ ;he\r co;rela(\on to code rgem;s)
° s rom code only—e.g. number of
[sow7l v A o v 5 ! v Java 3 classes, code cloning, cyclomatic
E R
[sw7] v v = v g 1 v Java 5 complexity, etc
+ I = =
[sMmMt12] v 14 v & v 5 v c 7
[AL21] v 1 v v v 2 v = v clow >150k Detect known vulnerabilities (and
kwiorl v Y " v 557 Clow g their corr to code and developer
e 78 : 7 7 5 ?.I 1 activity metrics) from both code
! y 7 4 v A v e 5 and Vs, but without considering
[czn] v v v v é vV i v v o ava 1 the effect of dependencies in
[sMwon] v : 7 I & v ‘;i] v v o 2| |\theirpropacation
[PPPt22] v | v v v v v oo v Java 500 Detect known vt
+ S) using code or }
[LCFt22] v : v v v vE Js 2 e n
st v " v v v E'] v Jjava >300K the offending|
[psstzl v : v v v | R v Java, Ruby, Python 450 solution (own
[LRW22] il v | 7 v v Agnostic 4, Time regressloM 4
1 r vulnerabilities from NVD'
YPWS20 v | 7 g
i] 1 i 1 v hgnostic 9 but the models do not use
[Las16] : s | v’ v Agnostic 25 domain-specific data relevant for /
[RNRi5] MR ©. ‘v v bgesie 9 | e 9/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

Q1 Pr(vuln.) as function of time

9/35

State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

Q1 Pr(vuln.) as function of time

9/35

State of the ART

Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

» human-in-the-loop metrics, including VCS (#commits, seniority...)

Q1 Pr(vuln.) as function of time

9/35

State of the ART

Q2 Pr(vuln.) as function of software metrics

» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

» human-in-the-loop metrics, including VCS (#commits, seniority...)
» (a few) considerations of own and 3™ party dependencies

Q1 Pr(vuln.) as function of time

Models to predict vulnerabilities

9/35

State of the ART

Models to predict vulnerabilities

Q2

Q1

Pr(vuln.) as function of software metrics

» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

» human-in-the-loop metrics, including VCS (#commits, seniority...)
» (a few) considerations of own and 3™ party dependencies
Pr(vuln.) as function of time

» time-regression models on CVE publications (= FinTech)

9/35

Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.

10/35

Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.

- The dependency tree is seldom analysed (own code only).

10/35

Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.
- The dependency tree is seldom analysed (own code only).

- The rare-event nature of vulnerabilities is disregarded.

10/35

Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.
- The dependency tree is seldom analysed (own code only).

- The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps

10/35

Forecast model

3. Forecast model

Forecast model

CVE root-lib PDFs

3. Forecast model

o.g v Lo.g -m-v by g oemen 011

i g

3.0+ T3.3 Y5.0.0 -+ Y5.0.1-—> Y5.8.3

l_ lra l_

Time Dependency Trees

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

T T T T T T N
Jul'22 Aug'22 Sep'22 Oct'22 Nov'22 Dec'22 \ time
CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

13/35

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

w22 Aug22 "sep22 time

I | CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

13/35

Publication of CVE since time of code release

org.redisson:redisson

A)
1\ 3178
i
fd [d
4.1.79 4.1.81 io.netty:netty-codec
T T | —
Jul'22 Aug'22 Sep'22 time

I | CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

13/35

Publication of CVE since time of code release

org.redisson:redisson

A)
1\ 3178
i
fd [d
4.1.79 4.1.81 io.netty:netty-codec
T T | —
Jul'22 Aug'22 Sep'22 time

I | CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

13/35

Publication of CVE since time of code release

org.redisson:redisson

A)
1\ 3178
i
7, T, &
4.1.79 4.1.81 io.netty:netty-codec
T T L
Jul'22 Aug'22 Sep'22 time

I | CVE-2022-41915 disclosed!
Ls affects netty [4.1.83, 4.1.86)

— : :

13/35

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

T T BT N
Jul'22 Aug'22 Sep'22 Oct'22 time

oo l | CVE-2022-41915 disclosed!
s I L Ls affects netty [4.1.83, 4.1.86)
S soe03{ % _
o
w
3 6.0e-03
st
(o]
2 4.0e-03
Z
8 2.0e-03
o
[=%

0

0 M 2M 3M 4M

1
Time since lib. release 3/35

Publication of CVE since time of code release

org.redisson:redisson

io.netty:netty-codec

T T BT N
Jul'22 Aug'22 Sep'22 Oct'22 time

oo l | CVE-2022-41915 disclosed!
s I L Ls affects netty [4.1.83, 4.1.86)
S soe03{H¥ _
. [e——————r;)
w
3 6.0e-03
st
(o]
2 4.0e-03
Z
8 2.0e-03
o
[=%

0

0 M 2M 3M 4M

1
Time since lib. release 3/35

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

14/35

Rules of the game

» Count each CVE as one data point I e j
[
- must choose one affected version! \\)

14/35

Rules of the game

» Count each CVE as one data point I e j
[
- must choose one affected version! \\)

14/35

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

» Discriminate per development environment

- e.g. Java and C/C++ have different vuln. (and times!)

14/35

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

» Discriminate per development environment

- e.g. Java and C/C++ have different vuln. (and times!)

d &

14/35

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

» Discriminate per development environment

- e.g. Java and C/C++ have different vuln. (and times!)

» Discriminate per library type

- consider security-relevant code metrics

14/35

Rules of the game

» Count each CVE as one data point

- must choose one affected version!

» Discriminate per development environment

- e.g. Java and C/C++ have different vuln. (and times!)

» Discriminate per library type

- consider security-relevant code metrics

14/35

Security-relevant code metrics

#{CVEs from the NVD}

4000

3000

2000

1000

CVEs with the 'Java' keyword

6
Physical

199
11
Local Adjacent
Attack Vector

Network

15/35

Security-relevant code metrics

Used in remote networks

CVEs with the 'Java' keyword

4000
-~
[a]
; 3000
[}
d=
5
£
S
w2000
n
w
>
O
S
H#*

1000

199
o 6 11
Physical Local Adjacent Network
Attack Vector

15/35

0
(]
‘=
fre)
Q
€
(<)
©
o
(]
]
<
(]
>
Q
—
()
0
>
5=
L
=
(8]
(<)
(7]

10°

1 Bigibs

(<= 100 KLoCs) ! (>100 KLoCs)

Small libs

Own size (log-scale), LoCs

©
F =
°
I
ERES
W T o
85 43
88 By
8% 38 g
38
5 %
pEE L
i i e e W i | S
< o o o P
e 2 =] o °
(ae0s-60)) ebetans| 108110

4

TEEEEEE
I

Leverage

o) 0

S
(ele0s-B0)) 9BesoN| 1DBIIP XEW

012345678 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 48 49 51 52 57 59 60 61 62 63

Num vulnerabilities

15/35

Security-relevant code metrics

(Own) Code size

Smalllibs ! Bigiibs

T (<= 100KLoCs) ! (>100 KLoGs)
© | = E
o
]
o E Léverag 657 -
g 100Emanlevamge|orsmaﬂ libs) 3
S Leverage = 0.48_—" £ A2
g ZE(meaian leverage for big libs) oo et e

g N :]
- o |
5 F 2% -
8 q04E 1 1 1
8 10? 10% 10* 10° 10°

Own size (log-scale), LoCs
15

rrrrrrrrrrrrrrrrrrrrrrrrrrIr T rTrorroT

ﬂm’QH R

1
T I 18 TEESEesE
I
I
1

=

o

T
I
I
Lot

|
'
|
'
I
1
L

T
i I
| I
| |
1 I
| |
| |
Lyt
L L

1
1

‘ - . 1 +

T R 11 L1 L I O A B B

456789 |0n12131415161718mzozvzz232425252725293031 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 48 49 51 5257596061 5263

Num vulnerabilities

&

B & i —)
P I
e == (Y
-0
S
s

Max direct leverage (log-scale)
°
P R pp—— sl

15/35

Security-relevant code metrics

x Goal Data Method Approach Projects/Libs.
o
. o ©
2 @@ ¥ M s M Language # Purport
[WTT24] v v v v v c/cw 20 Find vulnerabilities regardless of
+ existent logs such as CVEs
[Bestaol v v v v | 3 (although CWES may be used).
[AT17] v v v v voPHP 3 This includes formal methods and
[BCHY] v v v v v C/C#, PHP, Java, J5,5QL 10 Static/dynamic code analysis,
[zt23] v v v v v v Claa 549 Detect known vulnerabilities (and
their correlation to developer
[kkbe) v v v v v c 3 P
N activity metrics) from VCS
[Msm*a3] v v v v v C 1 only—eg commit churn, peer
[Mw10] v v v v v v C, ASM 3 | CermETE, G
[CKDR21] v v v v v oo 3
[GOP21] v v v v v Java 7 Detect known vulnerabilities (and
1SAC21] v v v v v v v e , their correlation to code metrics)
from code only—eg. number of
[sowi7] v v v v v Java 3 classes, code cloning, cyclomatic
[swa7] v v v v v Java 5 complexity, etc
[SMMT12] v v v v v c 7
[AL21] v v v v v ' v oclow >150k Detect known vulnerabilities (and
kwioyl v v v v v v Clom g their corr. to code and developer
activity metrics) from both code
lapmel v v v 7 v v c/ce 5 and VCs, but without considering
[czn) v v v v v v v v QG Java 1 the effect of dependencies in
[sMworl v v v v v v v o p | Bl CIeEEEEn
[PPPT22] v v v v v v v Java 500 Detect known vulnerabilities
+ using code or VCS, via depend-
[LCFF22] v v v v v v IS 624 ency-aware models that can find
ney-aw els that can fin,
Lstta1) v v v v v v Java >300k the offending code, to aid in its
[Psstarl v v v v v v v Java, Ruby, Python 450 solution (own vs. 3 party lib).
[LRW22] v v v v v Agnostic 4 Time regression to predict
[YPWs20] 7 P 7 7 7 | o o Vulnerabilities from NVD logs,
but the models do not use
[Las16] v v v v v Agnostic 25 domain-specific data relevant for 15 /35
[RNR15] v v v v Agnostic 5 security.

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg

Security-relevant code metrics

Used in remote networks

Own-code size
15/35

(%]
(8}
‘=
s}
Q
€
(<)
©
o
()
)
c
(]
>
Q
—
()
T
2
S
=
(S}
(<)
(7]

My favourite correlation

© < o o
0. 0 0. 0.
1
u

110
1.08 4
0.98 A

— - —

g d13dW 1UNoAey A

SH)JOM]auU aloWeal Ul pasn

0.96

-10

-20

50

40

30

20

10

My favourite metric A

Own-code size

15/35

(%]
(8}
‘=
s}
Q
€
(<)
©
o
()
)
c
(]
>
Q
—
()
T
2
S
=
(S}
(<)
(7]

My favourite correlation

< o o

S ® o ®

- o o o o o (=)

— — — — — — o
g ol3dwW ajunoAey Ay

SH)JOM]auU aloWeal Ul pasn

0.96

-10

-20

50

40

30

20

10

My favourite metric A

Own-code size

15/35

(2]
(&)
‘=
fras)
Q
€
(<)
©
o
(8]
)
c
(]
S
m
()
T
=)
—
=
(S}
(<]
(7]

My favourite correlation

[°
‘% o o o o
ool S L) °
o Oy ° 00)
o (Y C)
o %% » o,
> Y (] °
o ~.O ° °
° o,
) []
°
o © ©o < o~ o © ©o
— [S] [S] [} o [S] o o
— — — — — — o o

g ol3dwW ajunoAey Ay

S)}J0M]aU a10Wal Ul pas)

-10

-20

50

40

30

20

10

My favourite metric A

Own-code size

15/35

Security-relevant code metrics

My favourite correlation

°
1.10 A L4
L O
— o ° ° . °
o 1.08 ° ® o 9 °
= . . Se Py oo,
B = S o [2 °
[o 1.06 — T
- 5 ' 2 ope .
] O °
2 E r04| o "(‘. W“‘s d < oo
=) & o € o0 %0, e e B o 0% 0
e 5 oo ° o7, °® °
) S 1.021 — >
s K] o ooy (19 °. ° :. °
°
= £ loo] e *° o e : ... ® ¢
§e] $
% 0.98 1 °
> []
0.96 .
-20 -10 0 10 20 30 40 50

My favourite metric A

Own-code size
15/35

Security-relevant code metrics

My favourite correlation

My favourite metric B

Used in remote networks

My favourite metric A

Own-code size
15/35

Security-relevant code metrics

My favourite correlation

[]
1.104 _ roee 1002
o s — ' £
S o0 % B
2 [] 2
= =
S 60603 S coe®
1.084 ¢ 3
By 2 a0go3
= =
S 20003 S 2@ 03
1.06 1 £ 2
S ol & °
I T W A
e @@ Time since lib. release Time sine lib. release

My favourite metric B

Used in remote networks

102 L8 ~ = D *
024 = E—— [l ——
5 soe0s Bl []
5 oo
3 60003 S 6083 °
1.004 s s
2 40003 2 40e03
3 3
2 20003 8 20003
0.981 2 3
M oM M am ™ 2 M am
Time since lib. release Time since lib. release
0.96 T T T t T T T T
-20 -10 0 10 20 30 40 50

My favourite metric A

Own-code size
15/35

Security-relevant code metrics

Small/Medium Large

L0e02 Local & SM_size Local &L size
8.0e-03
6.0e-03

4.0e-03

2.0e-03

|e207

1.0e-02
Remote network & SM_size Remote network & L_size

8.0e-03

6.0e-03

JIomiau aj0wWay

4.0e-03

Probability of CVE in own_code of g:a:v

2.0e-03

Used in remote networks

0 1Q 2Q 3Q 1y 5Q0 1Q 2Q 3Q 1y 5Q

Time from release date of g:a:v to publication date of CVE

Own-code size
15/35

On overfitting and rare events

My favourite metric B

My favourite correlation

Boe0a{—

Probability of CVE public
2

W M M
Time since lib. release

-20 -10 0 10 20 30 40

My favourite metric A

50

16/35

On overfitting and rare events

My favourite correlation

1.10
°
1.08
o
o 106 °
= °
£
1.04 L
.g L] o
§ p
1.02
& .
> L]
= 1.00
0.98 °
L]
0.96
-20 -10 0 10 20 30 40 50

My favourite metric A

16/35

50

40

16/35

20

10

0

-10

-20

My favourite metric A

c
e ooy © \J
=] o % of®
CH I TR) N
et 4 &N
5 oo \.oacoo 3
o P N ofle o4
(] °) ﬁ‘ o.
E G—..ﬁu MY O
AR 75F
SRR ot
= % no--\ 9 oooouoo
o o4 OO ° L
© el [g o
C o
. ~.-¢. ou \oo
p 4 ©
.
g duIBW dunoney A

(%]
e}
c
(<)
>
(]
()
—
m
©
c
(1]
N
c
£}
=
=
-
()
>
()
c
(@]

On overfitting and rare events

» Count each CVE as one data point
» Discriminate per development environment

» Discriminate per library type

16/35

On overfitting and rare events

v

Count each CVE as one data point

v

Discriminate per development environment

v

Discriminate per library type

Clusterisation mustn’t be too thin

v

- few divisions per metric-dimension
- few metric-dimensions

16/35

Enough!

Gimme results

Here ya go

Probability of CVE in own_code of g:a:v

1.0e-02

8.0e-03

6.0e-03

4.0e-03

2.0e-03

1.0e-02

8.0e-03

6.0e-03

4.0e-03

2.0e-03

Small/Medium | Large
Local & SM _size Local & L_size

Remote network & SM_size Remote network & L_size |
i

3

3

ks

>

-3

1Q 20 3Q 1y 5Q 0 1Q 2Q 3Q 1y 5Q

Time from release date of g:a:v to publication date of CVE

17/35

Here ya go

Small/Medium | Large

1.0e-02 Local & SM_size Local &L size
8.0e-03
6.0e-:03

4.0e-03

2.0e-03

1e207

Eoes02 Remote network & SM_size Remote network & L size

8.0e-03

6.0e-03

Probability of CVE in own_code of g:a:v
HIOMIBU 330wy

4.0e-03

2.0e-03

0
0 1Q 20 3Q 1y 5Q 0 1Q 2Q 3Q 1y 5Q

Time from release date of g:a:v to publication date of CVE

Q1 Pr(vuln.) as function of time

Q2 Pr(vuln.) as function of software metrics

17/35

Survival analysis on library update

org.redisson:redisson

io.netty:netty-codec

w22 Aug22 "Sep22 " oct22 "Nov'22 "Dec'22 " time

17/35

Survival analysis on library update

Na
AL B means that we change from dependency 2

Al
L4 to £ in t time units counting from ¢y (“today”). %2

4179,

> L4 was released onta < to, fp Ontp < to, ta<tp —

T T T
Aug'22 Sep'22 Oct'22

17/35

Survival analysis on library update

Na
AL B means that we change from dependency 2

Al
04 to £ in t time units counting from ¢y (“today”). %2

4179,

> L4 was released onta < to, fp Ontp < to, taXtp —

T T T
Aug'22 Sep'22 Oct'22

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢

17/35

Survival analysis on library update

Na
AL B means that we change from dependency 2

A4
04 to £ in t time units counting from ¢y (“today”). 7K

> L4 was released onta < to, fp Ontp < to, taXtp T nm el o

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢
A: Pryp(t)=1—SFa(t+ Ata) CDFp(t+ Atp) where Aty = [tz — tof

17/35

Survival analysis on library update

Na
AL B means that we change from dependency 2

A4
04 to £ in t time units counting from ¢y (“today”). 7K

> L4 was released onta < to, fp Ontp < to, taXtp T nm el o

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢

A: Pryp(t)=1—SFa(t+ Ata) CDFp(t+ Atg) where Aty = |tz — to|
vuln. in £4 before change vuln. in ¢ after change

17/35

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, fp Ontp < to, taXtp T nm el o

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢

A: Pryp(t)=1—SFa(t+ Ata) CDFp(t+ Atg) where Aty = |tz — to|
vuln. in £4 before change vuln. in ¢ after change

T 2 39 v s RO I
Time from release date of g:a:v to publication date of CVE

17/35

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, fp Ontp < to, taXtp T nm el o

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢
A: Pryp(t)=1—SFa(t+Ata) CDFp(t+ Atp) where Aty = [tz — tof

o0z Local & S¥_se Lo & _sie Prob. of vuln. when changing 4 = £ at time T
o m—
= o,
5 “ = 1-SFsCDFg
os
“ 15 released
o . o TS ton
H yrelnsea
0 e

o 10)
Time T of change 1415

T 2 30 v s 0 20 30 1Y s ta =184 days
Time from release date of vt publicaton aate of CVE
tp = 21 days 17/35

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, fp Ontp < to, taXtp T nm el o

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢

A: Pryp(t)=1—SFa(t+Ata) CDFp(t+ Atp) where Aty = [tz — tof

Prob. of vuln. when changing £4 - £ at time T 10002 =TT Prob. of vuln. when changing £4 - s at time T

10 s (a) 8003 o —] % W
COF5 ts) COFs (s)
— 1-SF.-COFs

= 1-5FsCDFy | 00603
08 s 08
3 s0e03
Iareleased 8 1 released
o3 17 days ago . _ 06 T84 days ago
Iy released 3 g 15 released
85 days ago o 21 days ago

04 g 04
> 10e sze
g
02 E 8003 o
00 3 00
1Q 20Q 30 1y a Aden o 1Q 20
Time T of change t4 -+ Time T of change 2~ 1s
ta = 17 days R R N t 4 = 184 days
Time from release date of vt publicaton aate of CVE
tp = 85 days tp = 21 days 17/35

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, fp Ontp < to, taXtp T nm el o

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢

A: Pryp(t)=1—SFa(t+Ata) CDFp(t+ Atp) where Aty = [tz — tof

1.000
Prob. of vuln. when changing £, - £ at time T Prob. of vuln. when changing £, - £ at time T
10 SFa () B — A
COF5 (15) 0.975 global min: COFs (ts)
08 = 1 SFy: COFe best moment to change, o £ 1= SFa-CORy
0.950 avoiding peaks of vuln.
1 released i ¥ L released
o] 17 days ago vuln. from botf ibraries wvuln. likely 06 184 days ago
Iy released 0.925 1 likely to hit £ 4 Iy released
o4 85 days ago to hit £ 04 21 days ago
0.900
02 02
0.875
00 00
)) B 7 o))
Time T of change £ fg 0.850 Time T of change Lz 15
0 1Q 2Q 3Q 1y

t 4 = 184 days
tp = 21 days 17/35

t4 = 17 days

tp = 85days Time T of change £2 - [s

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, fp Ontp < to, taXtp T nm el o

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢

A: Pryp(t)=1—SFa(t+Ata) CDFp(t+ Atp) where Aty = [tz — tof

Prob. of vuln. when changing 4 - £g at time T 1.0 Prob. of vuln. when changing £4 - g at time T
10 s 00) — TN
CoFs 1) cors)
—1-sheC — -5k cor
08 08 08
Ly released t released
s 19 Gaye ag0 0 1o days ago0
g released s 1 releasea
o &5 days 00 y o A aya 200
02 02
0.4
0.0 0.0
T E) By R b3))
Time T of change 45 02 Time T of change 2~ 1s
t4 = 17 days t 4 = 184 days
tp = 85 days 0.0 tp = 21 days 17/35

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, fp Ontp < to, taXtp T nm el o

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢

A: Pryp(t)=1—SFa(t+Ata) CDFp(t+ Atp) where Aty = [tz — tof

Prob. of vuln. when changing £4 - £ at time T 10 Prob. of vuln. when changing £4 - s at time T
10/ St (1) of—] s ow
COFs (1) COFs (ts)
- 1-SFaC — 1-SFa-COF,
08 08 08
4 released 1 released
od 17 days 000 oG 154 days ago
Iy reteased 0s 1s releasea
s 85 days ago X s 21 daysago
02 0z
0.4
0.0’ 00
0 i) 20 30 v o) 2
Time T of change £,y 02 Time T of change £ ~Is

ta = 184 days
0.0 tp = 21 days 17/35

t4 = 17 days
tp = 85 days

Survival analysis on library update

AL B means that we change from dependency
04 to £ in t time units counting from ¢y (“today”).

> L4 was released onta < to, fp Ontp < to, taXtp T nm el o

Q: Pra p(t) = probability of vuln. of A 4 B asa function of ¢

A: Pryp(t)=1—SFa(t+Ata) CDFp(t+ Atp) where Aty = [tz — tof

Prob. of vuln. when changing 4 - £g at time T 1.0 Prob. of vuln. when changing £4 - g at time T
10 st 0 [e——)
CDF5 (1g) i CDFs (ts)
=—1-5Fs-C 4 = 1-5Fs-CDFs
[X .8 0.8]
Ly released t released
od 17 daye 300 o 1o days ago0
g released s L released
o 85 doys ago . o A aya 200
od 02
0.4
0.0 S——————— o
o 10 20 30 v 10 _ -2 -
Time T of change £~ f5 02 _ = = — = TmcTofchangets-ts
t4 = 17 days t 4 = 184 days
tp = 85 days 0.0 tp = 21 days 17/35

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢

18/35

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min(fa,lp) <t)=1—(1—Pra(t))(1—Prg(t))

18/35

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min(fa,lp) <t)=1—(1—Pra(t))(1—Prg(t))

L4 lp

e e s et o s e 18/35

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))

15: Large
\

la Ip

Piiii

i
Piiii

e e s et o s e 18/35

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))

15: Large
\

RERR

o Mrcec:
o [Heoeos
2 Msoeos
N 4.0e03
¥
t | {aoe0s
= Lot Lo
. = E 2T
. : 14 Y4
PDFy 5 A B
o010 = R
g 2 .
0008 , : 5
0006 . § 1w e = =
4 days ago 3 3
0004 g
0.002 ta = 123 days & aseos
0000 tp = 14 days o

e e s et o s e 18/35

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))

15: Small/Med Probability of vuln. from £, or £g in time
c P07,

Léeloz
0.014 PDFa

14002 0012

b released
1202 o010 28 days ago
L) 1g releasec
10e:02 e o a0
0.006 60 days g
80603)
ta = 28 days
60003 0002 A 3
oouo | Jtp = 60 days
4080 0 10 20 30 2
2.0e-03 time
1g: Large
!l 3
Probability of vuln. from £4 or £g in time, s0e03
s 3 oeon g E
o010 FOFy - A B
8 - PDFavs H
o 20003
o008 H
1 released H
123 days ago £ L
0008 R s — — S
14 days ago 5 soeas
o0 Heo
0.002 ta = 123 days £ aoer
0000 tp = 14 days o
o E) By F O I T T R R D 18/35

time Time from release date of g:a:v to publication date of CVE

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))

12 Small/Med Probability of vuln. from £, or £ in time

Léeloz

o014
14002 o012
12e.02 Qoo
0008
10002
0008
80603)
\ ta = 28 days
2 H6oe0s 0002 A 3
. 0000 Jtp = 60 days
H ~ . r r -
ix 40503, o 1Q 2Q 3Q 1y
A L | 20003 rime
- Lo Lo
Probability of vuln. from £4 or £g in time,
1.4e-02
o 1.2e-02
Y
0.010]
(= POAve 1.0e-02
0.008 8.0e-03
released
123 days ago 6000
0006 1y released
14 days ago 4.0e:03
0.004 2.0e-03
0.002 ta = 123 days
0000 tp = 14 days
o E) E)

18/35

Vulnerabilities from any depen

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))

12 Small/Med Probability of vuln. from £, or £ in time
PoF,

5o ‘gléeoz

C
e e

A 0.008 1 released

2 | == Nice for 2

. . ta = 28 days .

: omol ="Mt = 60 days dependencies!

1:) 40593, o 1Q 20 3Q v

2| [20e03 e

15 Large\ ... btw [have 2000

1.4e-02

Por
oto PDFy 1.2e-02
g w— PDFavp 1.0e-02
0.008 8.0e-03
oD 6.0e-03
4.0e-03
0.004 2.0e-03
0002 ta = 123 days
0000 tp = 14 days
o E) E)

18/35

Vulnerabilities from any dependency

Q: Pr4 p(t) = probability of vuln. in £4 or {5 before ¢
A: Prap(t) =Pr(min({a,lp) <t)=1—(1—Pra(t))(1—Prg(t))
/V\/w Probability of vuln. from £4 or £5 in time

5o ‘gléeoz Lot}

1.4e-02 0.012 ==
o
— e
A 0.008 1 released
2 | P Nice for 2
2 Mooeos o0z U S ZOCTE .
: omol ="Mt = 60 days dependencies!
1:) 40593, o 1Q 20 3Q v
2| [20e03 e
torge, N/ : ... btw I have 2000
= w0 —o
g : TDTs!
Probability of vuln. from £, or g in time, .
1.4e-02
::i: 12e:02
0.010 - PDFavs 1.0e-02
0.008 8.0e-03
123 days ago 6.0e-03
0.006 1y released 4.0e-03
0.004 2.0e-03
0002 t4 = 123 days
0000 tp = 14 days

18/35

Forecast model

CVE root-lib PDFs

3. Forecast model

> 01,0 > £1.1

3.0+ T3.3 Y5.0.0 -+ Y5.0.1-—> Y5.8.3

| il

Time Dependency Trees

lo.g - Lo.9 -

Time Dependency Trees

Dependency Trees in time

20/35

Time Dependency Trees

Dependency Trees in time

D(4g,):
V4
a1 /¢ \
g\

D(4y,):

20/35

Time Dependency Trees

Dependency Trees in time

D(l,,):
D(4g,):

gy \

20/35

Time Dependency Trees

Dependency Trees in time

{D(Zai,) ?:1: EU«B
oy o/
YA SR
N e
da ECI él 1
d1
i

20/35

Time Dependency Trees

Dependency Trees in time Time Dependency Tree

T Dtk ity
s ey,
B Yy) b Nl
i = 00 iy

20/35

Time Dependency Trees

Dependency Trees in time Time Dependency Tree

{D(Zai,) ?:1: EU«B g -V Eag
ga / _-y*a B

Eal / \24 £d3 \é 041—/‘ 2\Agd»/ \
d2 661 / 1 - KCI_‘/"_‘

J lq, / c-chain

g d1 1 dependency

Main library (£g)

20/35

Time Dependency Trees

Dependency Trees in time Time Dependency Tree

{D(Zai,) ?:1: EU«B g -V Eag
ga / _-y*a B

Eal / \24 £d3 \é 041—/‘ 2\Agd»/ \
d2 661 / 1 - KCI_‘/"_‘

J lq, / c-chain

g d1 1 dependency

Main library (£g)

Time span (T)

20/35

Time Dependency Trees

Dependency Trees in time Time Dependency Tree
3 .
{D(Zﬂq) =1 g /EUIB g ’_V,;V/Eag
as \ T a

lay gt Nl Yy, ay lay \e
/ \ d3 ec 2 / \’_, - . v v C2
da Ecl J L i Kc »

J lq, S cchain
g dq 1 dependency

Main library (£g)

Di(la) = D(lay) Time span (T)
for any time pointt € T

after the release of ¢4, and

before the release of 4,

20/35

Properties of TDT Dr(¥)

- Minimal graph representation (no lib-version repetition)

21/35

Properties of TDT Dr(¥)

- Minimal graph representation (no lib-version repetition)

- Canonical for library £ and time span T'

21/35

Properties of TDT Dr(¥)

- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time

21/35

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time

21/35

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time

Practical

- Time-indexing D, (¢) yields the dep. tree attime ¢t € T

21/35

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time

Practical

- Time-indexing D, (¢) yields the dep. tree attime ¢t € T

- Library-slicing Dr(¢)| , yields all instances of
dependency d during time T

21/35

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time
Practical

- Time-indexing D, (¢) yields the dep. tree attime ¢t € T

- Library-slicing Dr(¢)| , yields all instances of
dependency d during time T

- Reachability analysis can spot single-points-of-failure

21/35

SPoF in time and dependencies

My personal project uses ¢

| = l_

22/35

SPoF in time and dependencies

My personal project uses ¢

| |l = l_

22/35

SPoF in time and dependencies

My personal project uses ¢

| |l = |

R2.0 PR s > 22.2

Should | downgrade to £y ¢ or upgrade to #7117

22/35

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time
Practical

- Time-indexing D,(¢) yields the dep. tree attimet € T

- Library-slicing DT(€)|d yields all instances of
dependency d during time T

- Reachability analysis can spot single-points-of-failure

23/35

Properties of TDT Dr(¥)

Theoretical

- Minimal graph representation (no lib-version repetition)
- Canonical for library £ and time span T'

- Natural lifting of dependency trees to time

Practical

- Time-indexing D,(¢) yields the dep. tree attimet € T

- Library-slicing DT(€)|d yields all instances of
dependency d during time T

- Reachability analysis can spot single-points-of-failure

- Can measure health/risk of development environment

23/35

Forecast model

CVE root-lib PDFs

3. Forecast model

o.g ------ov Lo.g -m-p by g oeneneen b1

i g

3.0+ T3.3 Y5.0.0 -+ Y5.0.1-—> Y5.8.3

k.

Time Dependency Trees

Conclusions

4. Conclusions

Some things done

» Time Dependency Trees

26/35

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data

26/35

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties

26/35

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

26/35

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

26/35

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

- Express time from library release to CVE publication

26/35

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

- Express time from library release to CVE publication
- Discriminate per type of library (security-relevant props.)

26/35

Some things done

» Time Dependency Trees

- Aggregate dependency and code-evolution data
- Minimal representation with nice properties
- Framework for large-scale project analysis

» Probability of vulnerabilities as a function of time

- Express time from library release to CVE publication
- Discriminate per type of library (security-relevant props.)
- Base information for probability forecasting

26/35

Some things done

27/35

Some things done

to be

27/35

Some things done

to be

» Other metrics to clusterise libraries for PDF-fitting

27/35

Some things done

to be

» Other metrics to clusterise libraries for PDF-fitting

» Validate in other languages (all Java so far)

27/35

Some things done

to be

» Other metrics to clusterise libraries for PDF-fitting
» Validate in other languages (all Java so far)

» SPoF detection—across versions—in Java/Maven

27/35

Some things done

to be

v

Other metrics to clusterise libraries for PDF-fitting

v

Validate in other languages (all Java so far)

SPoF detection—across versions—in Java/Maven

v

v

c-chains polution by CVE

27/35

Questions?

References i

[

B

Henrique Alves, Baldoino Fonseca, and Nuno Antunes.
Software metrics and security vulnerabilities: Dataset and exploratory study.
In EDCC, pages 37-44. |IEEE, 2016.

Junaid Akram and Ping Luo.

SQVDT: A scalable quantitative vulnerability detection technique for source
code security assessment.

Software: Practice and Experience, 51(2):294-318, 2021.

Manar Alohaly and Hassan Takabi.
When do changes induce software vulnerabilities?
In CIC, pages 59-66. IEEE, 2017.

Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek Janni.
Identifying the characteristics of vulnerable code changes: An empirical study.
In FSE, pages 257-268. ACM, 2014.

28/35

References ii

@ Zeki Bilgin, Mehmet Akif Ersoy, ELlif Ustundag Soykan, Emrah Tomur, Pinar Comak,
and Leyli Karagay.
Vulnerability prediction from source code using machine learning.
IEEE Access, 8:150672-15068L, 2020.

@ Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray.
Deep learning based vulnerability detection: Are we there yet.
IEEE Transactions on Software Engineering, 48(9):3280-3296, 2021.

@ Istehad Chowdhury and Mohammad Zulkernine.
Using complexity, coupling, and cohesion metrics as early indicators of
vulnerabilities.
Journal of Systems Architecture, 57(3):294-313, 2011.

@ Sundarakrishnan Ganesh, Tobias Ohlsson, and Francis Palma.
Predicting security vulnerabilities using source code metrics.
In SweDS, pages 1-7. IEEE, 2021.

29/35

References iii

@ Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh.
VUDDY: A scalable approach for vulnerable code clone discovery.
In SP, pages 595-614. IEEE, 2017.

@ David Last.
Forecasting zero-day vulnerabilities.
In CISRC, pages 1-4. ACM, 2016.

@ Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
Demystifying the vulnerability propagation and its evolution via dependency
trees in the NPM ecosystem.

In ICSE, pages 672-684. ACM, 2022.

@ Hongzhe Li, Hyuckmin Kwon, Jonghoon Kwon, and Heejo Lee.
A scalable approach for vulnerability discovery based on security patches.
In ATIS, volume 490 of CCIS, pages 109-122. Springer, 2014.

@ Eireann Leverett, Matilda Rhode, and Adam Wedgbury.
Vulnerability forecasting: Theory and practice.
Digital Threats, 3(4):42:1-42:27, 2022.

30/35

References iv

@ Qiang Li, Jinke Song, Dawei Tan, Haining Wang, and Jigiang Liu.
PDGraph: A large-scale empirical study on project dependency of security
vulnerabilities.
In DSN, pages 161-173. IEEE, 2021.

@ Yi Li, Aashish Yadavally, Jiaxing Zhang, Shaohua Wang, and Tien N. Nguyen.
Commit-level, neural vulnerability detection and assessment.
In FSE, pages 1024-1036. ACM, 2023.

@ Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa, Alberto Rodriguez
Tejeda, Matthew Mokary, and Brian Spates.
When a patch goes bad: Exploring the properties of vulnerability-contributing
commits.
In ESEM, pages 65-74. IEEE, 2013.

@ Andrew Meneely and Laurie Williams.
Strengthening the empirical analysis of the relationship between Linus’ law and
software security.
In ESEM. ACM, 2010.

31/35

References v

[

Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci.

VulngReal: A methodology for counting actually vulnerable dependencies.
IEEE Transactions on Software Engineering, 48(5):1592-1609, 2022.

Gede Artha Azriadi Prana, Abhishek Sharma, Lwin Khin Shar, Darius Foo,
Andrew E. Santosa, Asankhaya Sharma, and David Lo.

Out of sight, out of mind? how vulnerable dependencies affect open-source
projects.

Empirical Software Engineering, 26(4), 2021.

Yaman Roumani, Joseph K. Nwankpa, and Yazan F. Roumani.
Time series modeling of vulnerabilities.
Computers & Security, 51:32-40, 2015.

Kazi Zakia Sultana, Vaibhav Anu, and Tai-Yin Chong.

Using software metrics for predicting vulnerable classes and methods in Java
projects: A machine learning approach.

Journal of Software: Evolution and Process, 33(3), 2021.

32/35

References vi

[

[

Kazi Zakia Sultana, Ajay Deo, and Byron J. Williams.
Correlation analysis among Java nano-patterns and software vulnerabilities.
In HASE, pages 69-76. |IEEE, 2017.

Nahid Shahmehri, Amel Mammar, Edgardo Montes de Oca, David Byers, Ana
Cavalli, Shanai Ardi, and Willy Jimenez.

An advanced approach for modeling and detecting software vulnerabilities.
Information and Software Technology, 54(9):997-1013, 2012.

Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne.
Evaluating complexity, code churn, and developer activity metrics as indicators
of software vulnerabilities.

IEEE Transactions on Software Engineering, 37(6):772-787, 2011.

Kazi Zakia Sultana and Byron J. Williams.
Evaluating micro patterns and software metrics in vulnerability prediction.
In SoftwareMining, pages 40-47. |EEE, 2017.

33/35

References vii

@ Huanting Wang, Zhanyong Tang, Shin Hwei Tan, Jie Wang, Yuzhe Liu, Hejun Fang,
Chunwei Xia, and Zheng Wang.
Combining structured static code information and dynamic symbolic traces for
software vulnerability prediction.
In ICSE, pages 169:1-169:13. ACM, 2024.

@ Emrah Yasasin, Julian Prester, Gerit Wagner, and Guido Schryen.
Forecasting IT security vulnerabilities — an empirical analysis.
Computers & Security, 88, 2020.

34/35

Forecasting software vulnerabilities

Probability Density Functions and Time Dependency Trees

C.E. Budde R.Paramitha F. Massacci
14th March 2024

ProSVED final event symposium

ProSYED SEC

SEC

	Introduction
	Background
	Forecast model
	PDFs
	TDTs

	Conclusions

