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Outta scopes

1. Unpublished/Undetected vulnerabilities:
• we study publication of CVEs;
• keep it high-level, no code analysis.

2. Probability of exploitation:
• we study publication of CVEs;
• . . . but check the work of the EPSS!
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State of the ART Models to predict vulnerabilities

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed
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de VC
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De
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Co
rr.

Cla
s.

T.S
er. AH SA ML Language # Purport

[WTT+24] ✓ ✓ ✓ ✓ ✓ C/C++ 20

[BES+20] ✓ ✓ ✓ ✓ C 3

[AT17] ✓ ✓ ✓ ✓ ✓ PHP 3

[BCH+14] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[LYZ+23] ✓ ✓ ✓ ✓ ✓ ✓ C, Java 549

[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7

[SAC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5

[SMM+12] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[AL21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.

[PPP+22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security. 9/35
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This includes formal methods and
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[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7
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[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5
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Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.
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[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.
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[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security.

M
os
tw

or
ks
tr
y
to
di
sc
ov
er
cu
rr
en
tv
ul
ne
ra
bi
lit
ie
s,
no
tp
re
di
ct
fu
tu
re
on
es

M
os
tw

or
ks
di
sr
eg
ar
d
th
e
co
de

de
pe
nd
en
cy
tr
ee

M
os
tw

or
ks
do

no
tc
on
si
de
rt
im
e
in
th
ei
ra
na
ly
se
s

Disregarded
security
data 9/35

https://upload.wikimedia.org/wikipedia/commons/f/f8/Wallpapersden.com_anonymous-hacker-working_1280x720.jpg


State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

Q1 Pr(vuln.) as function of time

9/35



State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

Q1 Pr(vuln.) as function of time

9/35



State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . . )

Q1 Pr(vuln.) as function of time

9/35



State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . . )
▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

9/35



State of the ART Models to predict vulnerabilities

Q2 Pr(vuln.) as function of software metrics

▶ ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

▶ human-in-the-loop metrics, including VCS (#commits, seniority. . . )
▶ (a few) considerations of own and 3rd party dependencies

Q1 Pr(vuln.) as function of time

▶ time-regression models on CVE publications (≈ FinTech)
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Gap analysis

• Studies typically try to detect, not foretell vulnerabilities.

• The dependency tree is seldom analysed (own code only).

• The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps
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Security-relevant code metrics

Goal Data Method Approach Projects/Libs. The rare-event nature of vulnerability disclosures usually passes unnoticed
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T.S
er. AH SA ML Language # Purport

[WTT+24] ✓ ✓ ✓ ✓ ✓ C/C++ 20

[BES+20] ✓ ✓ ✓ ✓ C 3

[AT17] ✓ ✓ ✓ ✓ ✓ PHP 3

[BCH+14] ✓ ✓ ✓ ✓ ✓ C/C++, PHP, Java, JS, SQLSQL 10

Find vulnerabilities regardless of
existent logs such as CVEs
(although CWEs may be used).
This includes formal methods and
static/dynamic code analysis.

[LYZ+23] ✓ ✓ ✓ ✓ ✓ ✓ C, Java 549

[LKKL14] ✓ ✓ ✓ ✓ ✓ C 3

[MSM+13] ✓ ✓ ✓ ✓ ✓ C 1

[MW10] ✓ ✓ ✓ ✓ ✓ ✓ C, ASM 3

Detect known vulnerabilities (and
their correlation to developer
activity metrics) from VCS
only—e.g. commit churn, peer
comments, etc.

[CKDR21] ✓ ✓ ✓ ✓ ✓ C/C++ 3

[GOP21] ✓ ✓ ✓ ✓ ✓ Java 7

[SAC21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 4

[SDW17] ✓ ✓ ✓ ✓ ✓ Java 3

[SW17] ✓ ✓ ✓ ✓ ✓ Java 5

[SMM+12] ✓ ✓ ✓ ✓ ✓ C 7

Detect known vulnerabilities (and
their correlation to code metrics)
from code only—e.g. number of
classes, code cloning, cyclomatic
complexity, etc.

[AL21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ >150k

[KWLO17] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 8

[AFA16] ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 5

[CZ11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++, Java 1

[SMWO11] ✓ ✓ ✓ ✓ ✓ ✓ ✓ C/C++ 2

Detect known vulnerabilities (and
their corr. to code and developer
activity metrics) from both code
and VCS, but without considering
the e�ect of dependencies in
their propagation.

[PPP+22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java 500

[LCF+22] ✓ ✓ ✓ ✓ ✓ ✓ JS 624

[LST+21] ✓ ✓ ✓ ✓ ✓ ✓ Java >300k

[PSS+21] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, Ruby, Python 450

Detect known vulnerabilities
using code or VCS, via depend-
ency-aware models that can find
the o�ending code, to aid in its
solution (own vs. 3rd party lib).

[LRW22] ✓ ✓ ✓ ✓ ✓ Agnostic 4

[YPWS20] ✓ ✓ ✓ ✓ ✓ Agnostic 9

[Las16] ✓ ✓ ✓ ✓ ✓ Agnostic 25

[RNR15] ✓ ✓ ✓ ✓ Agnostic 5

Time regression to predict
vulnerabilities from NVD logs,
but the models do not use
domain-specific data relevant for
security.
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On overfitting and rare events

▶ Count each CVE as one data point

▶ Discriminate per development environment

▶ Discriminate per library type

▶ Clusterisation mustn’t be too thin
• few divisions per metric-dimension
• few metric-dimensions
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Enough!

Gimme results
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Here ya go

Q1 Pr(vuln.) as function of time

Q2 Pr(vuln.) as function of software metrics
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