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Outta scopes

1. Unpublished/Undetected vulnerabilities:
- we study publication of CVEs;
- keep it high-level, no code analysis.

2. Probability of exploitation:
- we study publication of CVEs;
- ... but check the work of the EPSS!

7135


https://www.first.org/epss/model

2. Background



State of the ART

x Goal Data Method Approach Projects/Libs.
5
o e -
= & @ ¥ & s ML Language # Purport
WIT+2] v v v v v clo 20 Find vulnerabilities regardless of
" existent logs such as CVEs
[BEsT20l v v v v € 3 (although CWEs may be used).
[AT17] v v v v v PHP 3 This includes formal methods and
[BCH 4] v v v v v /G, PHP, Java, J5, SQL 10 Static/dynamic code analysis.
[zt23] v v v v v v Clava 549  Detect known vulnerabilities (and
their correlation to developer
LKKL. c
! 4] 4 4 4 4 4 9 activity metrics) from VCS
[MsM*13] v v v v v c 1 only—eg. commit churn, peer
[MwAo] v v v v v v C,ASM 3 comments, etc.
[CKDR21] v v v v v oo 3
[GoP21] v v v v v Java 7 Detect known vulnerabilities (and
[sAC21] v v v v v v v Java \ their correlation to code metrics)
from code only—e.g. number of
[spbwaz] v v v v v Java 3 classes, code cloning, cyclomatic
[swi7] v v v v v Java 5 complexity, etc
[sMmta2] v v v v v c 7
[AL21] v v v v v v s clee >150k  Detect known vulnerabilities (and
Kwiow] v v v v v v e g their corr. to code and developer
activity metrics) from both code
[AFAt6] - v v v v v v clew 5 and VCS, but without considering
[czn) v v v v v v v v /o ava 1 the effect of dependencies in
[sMwo] v v v v v v v o 2 | theirpropagation.
[PPP22] v v v v v v v Java 500  Detect known vulnerabilities
de or VS, via depend-
LCFF 22 S 62, USINS €O
! 1 v o v v v ! “ ency-aware models that can find
st v oV v v v Jaa >300k  the offending code, to aid in its
[psstx] v v v v v v v v Java, Ruby, Python 450 solution (own vs. 3 party lib)
[LRW22] v v v v v Agnostic 4 Time regression to predict
vulnerabilities from NVD logs,
YP . ,
NIRTE) v v v A L 9 but the models do not use
[Las16] v v v v’ v Agnostic 25 domain-specific data relevant for
[RNR15] v v v v Agnostic 5 security.
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Models to predict vulnerabilities

Q2

Q1

Pr(vuln.) as function of software metrics

» ML & statistical analysis to correlate SE metrics to existent vulner-
abilities

» human-in-the-loop metrics, including VCS (#commits, seniority...)
» (a few) considerations of own and 3™ party dependencies
Pr(vuln.) as function of time

» time-regression models on CVE publications (= FinTech)
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Gap analysis

- Studies typically try to detect, not foretell vulnerabilities.
- The dependency tree is seldom analysed (own code only).

- The rare-event nature of vulnerabilities is disregarded.

We propose white-box model(s) to fill these gaps
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Security-relevant code metrics
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Security-relevant code metrics

Used in remote networks
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Security-relevant code metrics

x Goal Data Method Approach Projects/Libs.
o
. o ©
2 @@ ¥ M s M Language # Purport
[WTT24] v v v v v c/cw 20 Find vulnerabilities regardless of
+ existent logs such as CVEs
[Bestaol v v v v | 3 (although CWES may be used).
[AT17] v v v v voPHP 3 This includes formal methods and
[BCHY ] v v v v v C/C#, PHP, Java, J5,5QL 10 Static/dynamic code analysis,
[zt23] v v v v v v Claa 549  Detect known vulnerabilities (and
their correlation to developer
[kkbe) v v v v v c 3 P
N activity metrics) from VCS
[Msm*a3] v v v v v C 1 only—eg commit churn, peer
[Mw10] v v v v v v C, ASM 3 | CermETE, G
[CKDR21] v v v v v oo 3
[GOP21] v v v v v Java 7 Detect known vulnerabilities (and
1SAC21] v v v v v v v e ,  their correlation to code metrics)
from code only—eg. number of
[sowi7] v v v v v Java 3 classes, code cloning, cyclomatic
[swa7] v v v v v Java 5 complexity, etc
[SMMT12] v v v v v c 7
[AL21] v v v v v ' v oclow >150k  Detect known vulnerabilities (and
kwioyl v v v v v v Clom g  their corr. to code and developer
activity metrics) from both code
lapmel v v v 7 v v c/ce 5 and VCs, but without considering
[czn) v v v v v v v v QG Java 1 the effect of dependencies in
[sMworl v v v v v v v o p | Bl CIeEEEEn
[PPPT22] v v v v v v v Java 500  Detect known vulnerabilities
+ using code or VCS, via depend-
[LCFF22] v v v v v v IS 624 ency-aware models that can find
ney-aw els that can fin,
Lstta1) v v v v v v Java >300k  the offending code, to aid in its
[Psstarl v v v v v v v Java, Ruby, Python 450 solution (own vs. 3 party lib).
[LRW22] v v v v v Agnostic 4 Time regression to predict
[YPWs20] 7 P 7 7 7 | o o Vulnerabilities from NVD logs,
but the models do not use
[Las16] v v v v v Agnostic 25 domain-specific data relevant for 15 /35
[RNR15] v v v v Agnostic 5 security.
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Used in remote networks
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Security-relevant code metrics
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Security-relevant code metrics
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Security-relevant code metrics
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Security-relevant code metrics
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On overfitting and rare events
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On overfitting and rare events

» Count each CVE as one data point
» Discriminate per development environment

» Discriminate per library type
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On overfitting and rare events

v

Count each CVE as one data point

v

Discriminate per development environment

v

Discriminate per library type

Clusterisation mustn’t be too thin

v

- few divisions per metric-dimension
- few metric-dimensions
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Enough!

Gimme results



Here ya go

Probability of CVE in own_code of g:a:v

1.0e-02

8.0e-03

6.0e-03

4.0e-03

2.0e-03

1.0e-02

8.0e-03

6.0e-03

4.0e-03

2.0e-03

Small/Medium | Large
Local & SM _size Local & L_size

Remote network & SM_size Remote network & L_size |
i

3

3

ks

>

-3

1Q 20 3Q 1y 5Q 0 1Q 2Q 3Q 1y 5Q

Time from release date of g:a:v to publication date of CVE

17/35



Here ya go
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Survival analysis on library update

org.redisson:redisson

io.netty:netty-codec

w22 Aug22 "Sep22 " oct22 "Nov'22 "Dec'22 " time
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