

Risk metrics for vulnerabilities exploited in the wild

Luca Allodi
University of Trento, Italy.
\$name.\$surname@unitn.it

Outline

- Introduction
 - Approaches to estimate system risk
 - The CVSS score
 - Result: guidelines
- Vulnerability landscapes
 - The good guys
 - Most bad guys
 - Our baseline: data
 - Reality on attacks, according to the data
- Observational analysis of CVSS scores
 - CVSS distributions
 - Map of vulnerabilities, exploits and CVSS scores: CVSS not good
- What makes the CVSS so inaccurate?
 - Inspection of CVSS subscore distributions
 - Case controlled study: CVSS as a test for exploitation
 - A bit of Bayes
 - Relative diminishment in risk with vulnerability patching
- Conclusions

Introduction

What is a vulnerability

- A weakness of an asset or group of assets that can be exploited by one or more threats
- A flaw or weakness in a system's design, implementation, or operation and management that could be exploited to violate the system's security policy
- A weakness in design, implementation, operation or internal control
- •
- Some even speak of "probability of being attacked"...

What is a vulnerability

- All very general definitions
 - Software, Design, Architecture, ...
- We are interested in software vulnerabilities
- Still, a sw vulnerability may mean many things:
 - A security bug is there, nobody knows about it
 - The vulnerability is disclosed
 - A proof-of-concept exploit exists
 - The bad guys are actually attacking it
- → Different levels of risk

With that in mind...

- Say that we decided what a vulnerability is
- How do we measure how much trouble are we in?
 - Vulnerability Discovery Models
 - Attack Surfaces
 - Attack Graphs

With that in mind.. VDMs

- Vulnerability Discovery Models
- Estimate at a certain time t how many vulnerabilities you may expect to have in your software at time t+n

Anderson's Thermodynamic Model

Time

Rescorla Quadratic Model

With that in mind.. VDMs

- Bottom line: Count no. of vulns
- Also, they do not really work (at least for browsers)
 - X = works (p>=0.95)
 - ? = Cannot assess if it works (0.05<p<0.95)
 - = Does not work (p=<0.05)

	Firefox				Chrome					IE							
Model	1.0	1.5	2.0	3.0	3.5	3.6	1.0	2.0	3.0	4.0	5.0	6.0	4.0	5.0	6.0	7.0	8.0
AML	_	_	?	?	?	?	X	?	?	?	?	?	X	?	?	_	X
AT	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	?	_
LN	_	_	X	_	X	?	_	_	_	?	_	_	_	_	_	?	?
$_{ m LP}$	_	_	X	?	X	X	_	_	_	_	?	?	_	X	_	X	?
\mathbf{RE}	_	_	X	?	X	X	_	_	_	_	?	?	_	X	_	?	?
RQ	_	_	_	?	?	X	_	_	?	?	?	?	_	_	_	_	X

Surfaces

- Change the definition of vulnerability
- Vulnerability is not the technicality by itself
 - It needs to be exposed to represent risk
- For example:

Surfaces

Who Cares?

With that in mind.. Attack Surfaces

- They change the definition of vulnerability
- Identify a subset of "vulnerabilities" that are a threat to you

Bottom line: Count no. of vulns

Graph

 Assume that some vulnerabilities can be exploited only after others (e.g. unreachable)

Graphs

Graphs

This is typical in IT security

- Schneier:
 - Security is as strong as the weakest link
- Dolev's Model of the attacker (Crypto)
 - Very powerful, can do anything, can see anything
- Variations to these models exist
 - E.g. honest but curious
- Still, they all say the same:

If a vulnerability is there, sooner or later somebody will attack it

We are almost there

- Vulnerabilities are not all the same
- We need a metric to characterize them
- NIST CVSS Score
 - Identifies a number of technical characteristics of the vulnerability
 - Assign a "criticality score" to each characteristic
 - The function returns a "risk score" for the vulnerability
 - Classic risk function: Risk = Impact x Likelihood

CVSS Score

CVSS Score

CVSS Score: Base Metric

- Impact x Likelihood
- Each variable computed on the basis of three expert assessments
- Impact:
 - Confidentiality (Complete, Partial, None)
 - Integrity
 - Availability
- Exploitability:
 - Access Vector (Network, Adjacent Net., Local)
 - Access Complexity (high, med, low)
 - Authentication (..)

CVSS Score: Base Metric

CVSS Severity (version 2.0):

CVSS v2 Base Score: 5.1 (MEDIUM) (AV:N/AC:H/Au:N/C:P/I:P/A:P) (legend)

Impact Subscore: 6.4

Exploitability Subscore: 4.9

CVSS Version 2 Metrics:

Access Vector: Network exploitable; Victim must voluntarily interact with attack mechanism

Access Complexity: High

Authentication: Not required to exploit

Impact Type: Provides user account access, Allows partial confidentiality, integrity, and availability violation; Allows

unauthorized disclosure of information; Allows disruption of service

Vulnerabilities guidelines

 US Government SCAP Protocol for vulnerability remediation [Scarfone 2010]

"Organizations should use CVSS base scores to assist in prioritizing the remediation of known security-related software flaws based on the relative severity of the flaws."

Vulnerabilities guidelines

 US Government SCAP Protocol for vulnerability remediation [Scarfone 2010]

"Organizations should use CVSS base scores to assist in prioritizing the remediation of known security-related software flaws based on the relative severity of the flaws."

→ bother with every software vulnerability, use CVSS to prioritize your work

Don't cite me on that (they said)

- "My job is the professional nightmare: if everything goes well, I am not doing anything. If something goes badly wrong, I get fired." — Security Manager of big Italian player in sw industry
- "Just acknowledging there is a bug costs hundreds of euros" — Representative of EU leader in sw management
- "You are crazy if you think I'll install all the patches" – IT Admin of big US telecommunication company

Vulnerabilities: research question

- What the CIO would like to know
 - If I follow SCAP or equivalent guidelines, how much will my final risk decrease?
- A clear value proposition:
 - if we fix high CVSS vulns we decrease risk by +43%
 - if we fix all medium CVSS only raises to +48%
 - → +5% more is not worth the extra money, maybe even +43% is not worth

Vulnerabilities: landscapes

Vulnerabilities: the good guys

- Databases for vulnerabilities:
 - Lots of Vulnerabilities are published daily
 - NVD runs at 50K
 - CVSS scoring system is now drafting V.3
- Databases for exploits:
 - Vendors' "Bounty programs"
 - iDefender, TippingPoint acquisition program
 - "Responsible Disclosure" debate
- Analysis of complete protection against a powerful adversary
 - Classic model of the attacker [Dolev, Schneier...]
 - Fix all vulnerabilities or die

Vulnerabilities: most bad guys

 Automated web attacks represent 2/3 of final threat for users [Google 2011],[Grier 2012]

Vulnerabilities: most bad guys

> понедельник - суббота

> с 7 до 17 по мск.

Vulnerabilities: most bad guys

 Automated web attacks represent 2/3 of final threat for users [Google 2011],[Grier 2012]

time)

Vulnerabilities: our baseline

NVD

The universe of vulnerabilities

EXPLOIT-DB

- Exploits published by security researchers
- EKITS (The black markets)
 - 1.5 years of study of the black markets
 - Automated monitoring of exploit kits and new CVEs
 - 90+ exploit kits from the black markets

SY	M

- Vulnerabilities actually exploited in the wild
- Browser/Plugins 14% Server 22% App.
 24%
- Solaris, MacOs, Linux and others are included

dataset	volume
NVD	49.624
EDB	8.189
EKITS	126
SYM	1.289

Reality so far

- The "Classic" Attacker Model looks wrong
 - Few exploited vulnerabilities
 - Big chunk of risk from a bunch of vulnerabilities
- But CIO can't wait:
 - Use a Security Configuration Management Product!
 - 30+ products: Microsoft, Dell, HP, VMWare, McAfee, Symantec etc..
 - Based on CVSS (Common Vuln. Scoring System)

Observational analysis of CVSS scores

CVSS Study

 Remember: the SCAP protocol tells you: take a dataset of vulnerabilities, order vulnerabilities by CVSS.

- We therefore look at:
- 1. Distribution of CVSS scores per dataset
 - Are datasets different in terms of type of vulnerabilities?
- 2. VENN diagram of datasets and scores
 - Are datasets interesting in terms of attacks actually delivered by the bad guys?

CVSS Distribution: HIST

Histogram of cvss\$ekits.score

Histogram of cvss\$sym.score

Histogram of cvss\$nvd.score

Histogram of cvss\$edb.score

- LOW: CVSS <6
- MEDIUM:
 - 6<CVSS<9
- HIGH: CVSS > 9

CVSS Distribution: HIST Histogram of cvss\$sym.score

Histogram of cvss\$ekits.score

Histogram of cvss\$edb.score

Histogram of cvss\$nvd.score

CVSS Distribution: HIST Histogram of cvss\$sym.score

Histogram of cvss\$ekits.score

Histogram of cvss\$edb.score

Histogram of cvss\$nvd.score

CVSS Distribution: HIST Histogram of cvss\$sym.score

10

9

Histogram of cvss\$ekits.score

Histogram of cvss\$edb.score

cvss\$ekits.score

Histogram of cvss\$nvd.score

CVSS Distribution: HIST Histogram of cvss\$sym.score

Histogram of cvss\$ekits.score

Histogram of cvss\$edb.score 3000 Frequency 1000 0 8 10

cvss\$edb.score

CVSS Distribution: VENN

Observational conclusions

- Attackers choose vulnerabilities autonomously:
 - They do not care about every vulnerability (NVD)
 - They do not care about every exploit (EDB)
- HIGH, MED+LOW score vulnerabilities are uniformly distributed in SYM dataset
- If you take NVD and fix all HIGH score vulnerabilities first [SCAP] you will:
 - Waste a lot of money patching all HIGH score vulnerabilities
 - Have addressed only 50% of final possible threats

What makes the CVSS so inaccurate?

CVSS Metrics

CVSS measures risk in the form

Risk = Impact x Likelihood

CVSS score = Impact x Exploitability

CVSS Metrics: Impact

Histogram of cvss\$ekits.impact

Histogram of cvss\$sym.impact

Histogram of cvss\$edb.impact

Histogram of cvss\$nvd.impact

CVSS Metrics: Exploitability

Histogram of cvss\$ekits.expl

Histogram of cvss\$sym.expl

Histogram of cvss\$edb.expl

Histogram of cvss\$nvd.expl

CVSS Metrics: Exploitability explained

- - Is actually a constant
- CVSS lacks of any real measure of likelihood
 - Based on "easiness to exploit"
 - Access Vector = All from Network VAR ≅ 0
 - Authentication = All None VAR ≅ 0
 - Access Complexity = Only interesting variable. VAR != 0
- Let's see what effects does this have to the final CVSS assessment

CVSS Metrics: Exploitability

	metric	value	SYM	EKITS	EDB	NVD
Exploitability	Acc. Vec.	local adj.	$2.98\% \ 0.23\%$	0% 0%	$4.57\% \ 0.12\%$	$13.18\% \ 0.35\%$
		net	96.79%	100%	95.31%	87.31%
	Acc. Com.	low	57.24%	$4.85\% \ 63.11\% \ 32.04\%$		30.42%
	${ m Auth.}$	multiple single none	3.92%	$0\% \\ 0.97\% \\ 99.03\%$		5.35%

CVSS case controlled study

- We test the CVSS score against exploitation
 - First step: build the population of vulns
 - Cannot compare apples with oranges
 - Second step: test the CVSS score
 - Does High CVSS predict exploitation?

CVSS case controlled study

- 1st step
- Do smoking habits predict cancer? [Doll & Bradfor Hill, BMJ]
 - You can't ask people to start smoking so you can't run a controlled experiment

- Do high CVSS scores predict exploitation?
 - You can't attack users so you can't run a controlled experiment

How to perform a casecontrolled observational study

- Instead of performing an experiment, one can still make a observational study
 - Experiment:
 - You control and experimental environment and get the results
 - Observation:
 - You get the results and control the population that generated it
- Let's use the smokers example
- You can't pick up people at random
- You need of course smokers, non smorkers and sick people

How to perform a casecontrolled observational study

Age	Smokers	Sick people			Non Smokers	
15-20	× × × ×	×	×		× × ×	
20-25	×××	××	×		××	
25-30	×	×		×	××	
30-40	×× × × ×	×	×		×	
40+	* * * * * * * * * * * * * * * * * * *	××× ×××	× _× ×	×	×	

CVSS case controlled experiment

Study	Cases	Controls (possible confounding variables)	Explanatory variable
Carcinoma of the lung	People with cancer	AgeSexLocation	Smoke muchsmoke someDoesn't smoke
CVSS	Exploited vulnerabilities	Access complexityAccess vectorAuthenticationImpact type	CVSS is HIGHCVSS is LOWVuln is in {NVD,EDB,EKITS}

CVSS case controlled experiment

- 2nd step
- CVSS Score+DB as a "medical test"

- Sensitivity -> Pr(true positives)
 - You want to capture as many sick people as possible
 Pr(test said: you're sick | you are sick)
- Specificity -> Pr(true negatives)
 - You REALLY don't want to cure people who don't need it

Pr(test said: you're **not** sick | you are **not** sick)

CVSS Case Controlled

Experiment

- Triple Blood Test Down Syndrome Women aged 40+ [Kennard 1997]
 - Sensitivity: 69%
 - 31% of women carrying a fetus with Down syndrome will not be caught by the test
 - Specificity: 95%
 - only 5% of healthy pregnant women would be mislead by the test to undergo additional expensive or dangerous tests
 - Remember: most (but really a lot of) women have healthy pregnancies
- Prostate Serum Antigen Men aged 50+ [Labrie 1992]
 - Sensitivity: 81%
 - Specificity: 90%

Security Rating as "Generate Panic" test

Sensitivity: is High/Med CVSS good marker for v∈SYM?

Sensitivity = Pr(HIGH+MED | v in SYM)

Specificity: is Low CVSS good marker for v∉SYM?

Specificity = Pr(LOW | v not in SYM)

UNIVERSITY OF TRENTO

Security Rating as "Generate Panic" test

DB	Sensitivity	Specificity
EKITS	89.17%	49.73%
EDB	98.14%	24.39%
NVD	89.70%	22.22%
3BT: Down Syndrome	69%	95%
PSA: Prostate Cancer	81%	90%

- Sensitivity (+)
 - CVSS is good in marking exploitation
- Specificity (-)
 - Peaks in NVD and EDB at less than 25%
 - 1 out of 4 non-exploited vulnerabilities are marked LOW
 - 3 out of 4 non-exploited vulnerabilities are marked HIGH
- Remember this is a controlled study:
 - We are looking only at vulnerabilities representative of SYM CVSS
- Let's assume linearity of cost for number of fixed vulnerabilities
- You are following US Governement SCAP Guidelines? -> You are spending up to 300% more money than you should

Plug this in into the general risk

- Baye's theorem of conditional probability
- Assume that I have fixed a HIGH score vulnerability
 - What is the probability that this will prevent the attacker from infecting me?

Pr(v in SYM | v patched)

- So, we have:
 - 1200 attacked vulns / 50000 vulns = 2.4%
 - Sensitivity = Probability that an attacked vuln gets HIGH risk score = 89.7%
 - 1- Specificity = Probability that a non-attacked vuln gets HIGH risk score = 87.8%

Vulnerabilities in NVD

87.8% of NON attacked Vulns are scored HIGH

Pr(v in SYM | v patched)*=2.38%

^{*}For the sake of simplicity we do not control the population here, but numbers don't change much

ok, but is this at least the best decision I can make?

What really matters is change in relative probabilities

- Example = Usage of Safety Belts
 - Few people actually die in car crashes vs #crashes [Evans 1986]
 - Pr(Death x Safety Belt on) Pr(Death x Safety Belt off)
 - 43% improvement of chances of survival
- Our Study = Patching High score vulnerabilities
 - Few vulnerabilities are actually exploited vs #vulns
 - Pr(Attack x CVSS High Patched) Pr(Attack x CVSS Low Patched)
 - X% improvement of chances of NOT being attacked

Not really, no.

	Pr(H+M)-Pr(L)		
EKIT			
vuln <mark>in</mark> SYM	+46.3%		
vuln <mark>!in</mark> SYM	-47.28%		
EDB			
vuln <mark>in</mark> SYM	+14.5%		
vuln <mark>!in</mark> SYM	-14.49%		
NVD			
vuln <mark>in</mark> SYM	+3.5%		
vuln <mark>!in</mark> SYM	-3.46%		

What does this mean?

- What the CIO really wants to know:
 - I read on the news that a "security researcher" exploited a vulnerability on X to do some bad stuff. Should I worry?
- You monitor the black markets and fix all HIGH CVSS vulnerabilities you find there?
 - Your risk of suffering from an attack from the black markets decreases by 46%
- You use EDB or NVD to know what exploits are out there, and fix all HIGH CVSS vulnerabilities?
 - Diminished risk: EDB = 14%; NVD = 3%.
 - Arguably a bad investment

Preliminary conclusions

- Where should we look for "real" exploits?
 - EDB, NVD are the wrong datasets
- Should the CIO do what SCAP protocol says?
 - No datasets shows high Specificity:
 - CVSS doesn't rule out "un-interesting" vulns
 - Huge over-investment
- It may be possible to narrow down vulnerabilities the CIO should actually fix
 - Rule out 80% of risk = worth the update pain, measurable gain
 - We need better attacker model -> Research challange ahead

Questions

- You can also mail me for anything
- If you are interested in a PhD@UniTn feel free to exploit me for info
 - luca.allodi@unitn.it

http://disi.unitn.it/~allodi/

- Papers, current research, challenges:
- https://securitylab.disi.unitn.it/